
Mathematical Techniques of Image
Processing

Chris Louder

October 29, 2012

Declaration

I confirm that this is my own work and the use of all material

from other sources has been properly and fully acknowledged.

Chris Louder

Abstract

This paper investigates various different types of image processing methods

and models for image processing: a total variation based approach, a shock filters

approach and morphological component analysis. Discretisations of the first two

will be seen, as well as various different 1D and 2D examples of their results, and

2D+T (video) examples for Morphological component analysis. Their behaviour

and results with different images is compared to contrast the different behaviour

in the presence of noise or small scale texture.

Contents

1 Introduction 2

2 The Vese Osher Total Variation Model (VO) 4

2.1 Discretization . 5

2.2 Numerical Results . 9

3 The Rudin and Osher Shock Filter Enhancement Model (SFE) 16

3.1 Shock Filters and Shock Capturing Methods 17

3.2 Enhancement in One Dimension . 18

3.2.1 One Dimensional Discretisation and Results 19

3.3 Extension to Two Dimensions . 23

3.3.1 Two Dimensional Discretisation and Results 24

4 A Final Comparison of Different Total Variation Models 31

4.1 Comparison of models results . 33

5 Morphological Component Analysis (MCA) 37

5.1 The MCA Model . 38

5.2 A Few Numerical Results . 40

5.3 MCA in Video Processing . 43

5.4 Results of Video Processing . 45

6 Conclusions and Further Work 49

1

Chapter 1

Introduction

Image processing is the mathematical analysis of an image. The image can be still

or video and the output need not be an image. An attempt to reproduce an image

without the glare of the Sun’s reflection is a form of image processing. Producing

a line graph of the varying light intensity in separate frames from a video clip is an

equally valid image processing technique. Image processing has become far more

advanced in recent years due to a wide variety of scientific advances. Cameras

have improved dramatically in the last century when a grainy black and white

camera was expensive: nowdays most people have a high-definition camera in

their mobile phones. With these technological advances comes new possibilities

and requirements. With bigger telescopes allowing deep space observation, less

information is gathered than relatively close observations, and superior techniques

to reconstruct missing information and better detect and remove noise is required.

More advanced optical electronic computer vision systems are being used in a wide

variety of fields: some examples are listed below.

• Navigation;

– the mapping of underwater rocks or currents.

• Surveillance;

– Counting the number of people entering the Olympic Stadium for ex-

ample, or modelling the likely outward flow of people in the event of a

2

fire to detect hazardous areas.

• Scene reconstruction;

– a computer generated 3-D model of a crime scene.

• Industrial object inspection;

– Detecting air bubbles in manufactured parts, automatic processing of

hand-written documents (i.e. a filled in form having the information

automatically added into a database).

• Medical;

– Functional magnetic resonance imaging for brain scans or real time

displays of internal bodies for precise surgery.

While there are many other applications in computer vision, there are also uses

in computer graphics. Computer vision is the attempt to electronically model the

real world, while computer graphics is the attempt to artificially generate an image

(that may or may not resemble the real world).

We will investigate different models for image processing, observing their differ-

ent results and behaviour depending on the content of the image. We will also see

examples of different applications these methods have, such as image inpainting.

3

Chapter 2

The Vese Osher Total Variation

Model (VO)

We first look at an approach developed by Luminita Vese and Stanley Osher,

which uses functional minimisation and partial differential equations to decompose

a noisy image into two functions [21], one an approximation of the true image, the

other an approximation of the visual noise. The model attempts to approximate

the texture preserving model of Meyer [14] and solve it using the edge preserving

total variation minimisation method from the Rudin Osher Fatemi (ROF) model

[18]. The noise is approximated more simply (and less accurately) than in other

techniques, using only two functions g1, g2, and for both the approximate image

and noise, with each iterative step, only the values from the current iteration are

stored, previous values are overwritten. “This is much simpler and much more

efficient than in other techniques for textures,” [21] as the model is designed to be

faster. Examples of models given in the original paper include [18], [16] and [6]

among others. The simplicity makes the algorithm faster, requiring less memory

and processing power than other image processing techniques. As a result there

are a few significant differences. The algorithm also does not preserve texture

(defined in [21] as small scale repeated details/patterns) as it detects noise and

texture similarly. Noise, although random, is also small scale detail so both are

detected, modelled and removed in the same way. We will refer to noise when

4

looking at this model, though the removal of texture is still useful, The paper

attempts to solve approximately the minimization problem

inf
u,g1,g2

{
Gp(u, g1, g2) =

∫
|∇u|+ λ

∫
|f − u− ∂x g1 − ∂y g2|2 dx dy

+µ

[∫
(
√
g2

1 + g2
2)p dx dy

]1/p
}
, (2.1)

where f is the original noisy image, u is the approximation of f, g1, g2 represent

the noise, λ, µ > 0 are tuning parameters, p is from the approximation of the L∞

norm by Lp. Minimising the problem and taking p = 1 generates

u =f − ∂xg1 − ∂yg2 +
1

2λ
div

(
∇u
|∇u|

)
,

µ
g1√
g2

1 + g2
2

=2λ

[
∂

∂x
(u− f) + ∂2

xxg1 + ∂2
xyg2

]
, (2.2)

µ
g2√
g2

1 + g2
2

=2λ

[
∂

∂y
(u− f) + ∂2

xyg1 + ∂2
yyg2

]
.

Values of p > 1 can be used, but introduce new terms to the algorithm, com-

plicating the discretization and requiring more calculations. Vese and Osher com-

mented that results with p > 1 values have been calculated, but show little differ-

ence compared with results from p = 1 calculations. As such only the p=1 case

will be considered.

2.1 Discretization

The equations (2.2) are discretized using a method of finite differences and a

fixed point iteration algorithm, based on other schemes from non-linear variational

image processing algorithms. Using the traditional notation fi,j ≈ f(ih, jh), ui,j ≈
u(ih, jh), g1,i,j ≈ g1(ih, jh), g2,i,j ≈ g2(ih, jh), it is noted that the space step of 1

pixel (i.e. h=1) removes the h term from each notation. The equations (2.2)

5

initially discretise to:

ui,j = fi,j −
g1,i+1,j − g1,i−1,j

2h
− g2,i,j+1 − g2,i,j−1

2h

+
1

2λh2

 ui+1,j − ui,j√(ui+1,j−ui,j
h

)2
+
(ui,j+1−ui,j−1

2h

)2

− ui,j − ui−1,j√(ui,j−ui−1,j

h

)2
+
(ui−1,j+1−ui−1,j−1

2h

)2


+

1

2λh2

 ui,j+1 − ui,j√(ui+1,j−ui−1,j

2h

)2
+
(ui,j+1−ui,j

h

)2

− ui,j − ui,j−1√(ui+1,j−1−ui−1,j−1

2h

)2
+
(ui,j−ui,j−1

h

)2

 ,

(2.3)

µ g1,i,j√
g2

1,i,j + g2
2,i,j

= 2λ

[
ui+1,j − ui−1,j

2h
− fi+1,j − fi−1,j

2h
+
g1,i+1,j + g1,i−1,j − 2g1,i,j

h2

+
1

2h2
(2g2,i,j + g2,i−1,j−1 + g2,i+1,j+1 − g2,i,j−1 − g2,i−1,j − g2,i+1,j − g2,i,j+1)

]
,

(2.4)

µ g2,i,j√
g2

1,i,j + g2
2,i,j

= 2λ

[
ui,j+1 − ui,j−1

2h
− fi,j+1 − fi,j−1

2h
+
g2,i,j+1 + g2,i,j−1 − 2g2,i,j

h2

+
1

2h2
(2g1,i,j + g1,i−1,j−1 + g1,i+1,j+1 − g1,i,j−1 − g1,i−1,j − g1,i+1,j − g1,i,j+1)

]
.

(2.5)

Notice that the partial differentials have been discretised as

∂xg1,i,j =
1

2h
(g1,i+1,j − g1,i−1,j)

∂xxg1,i,j =
1

h2

(
g1,i+1,j + g1,i−1,j − 2g1,i,jh

2
)

∂xyg1,i,j =
1

2h2
(2g2,i,j + g2,i−1,j−1 + g2,i+1,j+1 − g2,i,j−1 − g2,i−1,j − g2,i+1,j − g2,i,j+1)

Similarly for g2 and partial differentials with respect to y. For the discretization of

u, to prevent division by zero, a small term ε2 is introduced into the square roots.

6

The discrete form is then linearised to:

un+1
i,j =fi,j −

gn1,i+1,j − gn1,i−1,j

2h
−
gn2,i,j+1 − gn2,i,j−1

2h

+
1

2λh2

 uni+1,j − un+1
i,j√(

uni+1,j−u
n+1
i,j

h

)2

+
(
uni,j+1−uni,j−1

2h

)2

+ ε2

−
un+1
i,j − uni−1,j√(

un+1
i,j −uni−1,j

h

)2

+
(
uni−1,j+1−uni−1,j−1

2h

)2

+ ε2



+
1

2λh2

 uni,j+1 − un+1
i,j√(

uni+1,j−uni−1,j

2h

)2

+

(
uni,j+1−u

n+1
i,j

h

)2

+ ε2

−
un+1
i,j − uni,j−1√(

uni+1,j−1−uni−1,j−1

2h

)2

+

(
un+1
i,j −uni,j−1

h

)2

+ ε2

 ,

(2.6)

µ gn+1
1,i,j√

(gn1,i,j)
2 + (gn2,i,j)

2
= 2λ

[
uni+1,j − uni−1,j

2h
− fi+1,j − fi−1,j

2h
+
gn1,i+1,j + gn1,i−1,j − 2gn+1

1,i,j

h2

+
1

2h2

(
2gn2,i,j + gn2,i−1,j−1 + gn2,i+1,j+1 − gn2,i,j−1 − gn2,i−1,j − gn2,i+1,j − gn2,i,j+1

)]
,

(2.7)

µ gn+1
2,i,j√

(gn1,i,j)
2 + (gn2,i,j)

2
= 2λ

[
uni,j+1 − uni,j−1

2h
− fi,j+1 − fi,j−1

2h
+
gn2,i,j+1 + gn2,i,j−1 − 2gn+1

2,i,j

h2

+
1

2h2

(
2gn1,i,j + gn1,i−1,j−1 + gn1,i+1,j+1 − gn1,i,j−1 − gn1,i−1,j − gn1,i+1,j − gn1,i,j+1

)]
.

(2.8)

7

By introducing the shorthand notation’s below, the above equations can be

simplified, and then rearranged to yield the n+ 1 terms:

c1 =
1√(

uni+1,j−uni,j
h

)2

+
(
uni,j+1−uni,j−1

2h

)2
,

c2 =
1√(

uni,j−uni−1,j

h

)2

+
(
uni−1,j+1−uni−1,j−1

2h

)2
,

c3 =
1√(

uni+1,j−uni−1,j

2h

)2

+
(
uni,j+1−uni,j

h

)2
,

c4 =
1√(

uni+1,j−1−uni−1,j−1

2h

)2

+
(
uni,j−uni,j−1

h

)2
.

(2.9)

By solving equations(2.6-2.8)

un+1
i,j =

(
1

1 + 1
2λh2

(c1 + c2 + c3 + c4)

)[
fi,j −

gn1,i+1,j − gn1,i−1,j

2h

gn2,i,j+1 − gng2,i,j−1

2h

+
1

2λh2
(c1u

n
i+1,j + c2u

n
i−1,j + c3u

n
i,j+1 + c4u

n
i,j−1)

]
, (2.10)

gn+1
1,i,j =

 2λ
µ√

(gn1,i,j)2+(gn2,i,j)2
+ 4λ

h2

[uni+1,j − uni−1,j

2h
− fi+1,j − fi−1,j

2h
+
gn1,i+1,j + gn1,i−1,j

h2

+
1

2h2
(2gn2,i,j − gn2,i−1,j−1 − gn2,i+1,j+1 − gn2,i,j−1 − gn2,i−1,j − gn2,i+1,j − gn2,i,j+1)

]
(2.11)

gn+1
2,i,j =

 2λ
µ√

(gn1,i,j)2+(gn2,i,j)2
+ 4λ

h2

[uni,j+1 − uni,j−1

2h
− fi,j+1 − fi,j−1

2h
+
gn2,i,j+1 + gn2,i,j−1

h2

+
1

2h2
(2gn1,i,j − gn1,i−1,j−1 − gn1,i+1,j+1 − gn1,i,j−1 − gn1,i−1,j − gn1,i+1,j − gn1,i,j+1)

]
(2.12)

In the numerical model a space step of one (i.e. one pixel length) is taken. It is

worth noting that in in image processing the space step is almost always set as 1

8

pixel (i.e. h=1) and therefore does not need to be included in the discretisations,

though it has been included here for clarity. Values of the tuning parameters are

varied from between 0.01 and 10. Dirichlet boundary conditions are applied. For

calculating u, values at the boundary of the domain are extended by reflection.

Images are processed in greyscale double precision form. The values of u, g1 and

g2 were initialised as u0 = f , g0
1 = − fx

2λ|∇f | , g
0
2 = − fy

2λ|∇f | . Approximately 100

iterations are performed. Reproducing the code of the above technique has been

attempted, though this has failed to reproduce similar results to those obtained

originally. We will therefore show some results from the original paper, as well as

some from extensions on this work in subsequent papers.

2.2 Numerical Results

Fig 2.1 demonstrates texture removal. In Fig 2.1c we see the resultant image u,

alongside the extracted noise v (adding 150 makes the noise easier to see on its

own). Alongside are u + v and (f − u − v), these display what remains of the

original image, and the information that has been lost in the process respectively.

Contrasted with the previously developed ROF model which was designed for

noise removal, a lot more texture has been extracted, leaving a relatively plain

image u, with most texture preserved in v. The texture extracted by the ROF

model is displayed by f − u as ROF does not store the extracted noise/texture.

In Fig 2.2 we see the results for the same image with random zero mean

noise added. Fig 2.2b shows that the ROF model has removed most of the noise

successfully, though a lot of texture has been removed as well. In Fig 2.2c the

consequences of high or low µ values is demonstrated. The low µ values have

removed and stored most noise and texture together, failing to differentiate be-

tween the two. Higher values of µ has also removed most noise and more texture

is preserved, though it is most noticeable that most noise and texture has been

lost rather than stored. In fact so little noise has been stored that u + v appears

to be a better resultant image than u for noise removal texture preserved.

In Fig 2.3 we see the results for a real world textured image. The model has

9

(a) An initial fingerprint image.

(b) Result using ROF model with λ = 0.1.

(c) Result using TVM model with λ = 0.1, µ = 0.1.

Figure 2.1: Results for a clean, high detail image.

Reproduced from [21]

10

(a) Original fingerprint image (left) and a noisy version (right).

(b) Result using ROF model with λ = 0.03.

11

(c) Results using TVM model with λ = 0.03 and µ = 2; 1; 0.5; 0.1.

Figure 2.2: Results for a noisy, high detail image.

Reproduced from [21]

12

(a) Original Barbara image (left) and a noisy version (right).

(b) Result using TVM model with λ = 0.2, µ = 0.01.

Figure 2.3: Results for a high texture image.

Reproduced from [21]

13

extracted texture effectively, most notably the stripes in the clothing and table-

cloth. Little information has been lost, as there is no noticeable difference between

f and u+v. Texture segmentation and extraction like this is not usually useful on

it’s own, but is useful in further image processing techniques like image inpainting

(filling in gaps in images). The Total Variation Model was extended in [3] for this

very purpose, separating the texture so the plain image and the extracted tex-

ture can be processed separately to attempt to rebuild the lost information using

an image inpainting model from [2] and a texture syntheses model from [9]. An

example of this is given in Fig 2.4.

Given the wide range of applications this Total Variation framework has, it

is worth investigating where this implementation into image processing originally

started. The original paper [15] was on a different form of processing than what

we have seen here and as such, the results cannot be compared. Despite this the

models are originating from similar mathematical problems, using total variation

methods to try and solve them. It is therefore worth observing the relative success

of the original model.

14

Figure 2.4: Example of image inpainting using the Total Variation Model to sep-

arate texture from the initial image.

15

Chapter 3

The Rudin and Osher Shock

Filter Enhancement Model (SFE)

We now look at an image sharpening method using shock filters. By using non-

linear time dependent partial differential equations we see the discretisation of a

system where an initial image u(x, y, 0) converges to that of a steady state solution

u(x, y,∞). The partial differential equations satisfy a maximum principle, and the

total variation of u(x, y, t) is the same for all t ≥ 0. The resultant image obtained

is nonoscillatory and piecewise smooth.

Unlike the VO model from the Chapter 2 we are not attempting to diffuse

the image and preserve sharp boundaries, we are reverse engineering a diffusion

procedure to remove blurring and restore sharp boundaries. This attempt to

recover/generate new information is an ill posed problem in the sense that infor-

mation is being extracted from incomplete data. In addition to boundaries being

sharpened, noise is amplified significantly and in an unstable manner. Noise could

be present in the initial image, or just introduced by rounding errors from the

discretisation of the scheme. If the image has discontinuities (which is usually the

case) oscillations will occur near them (known as ringing) if an attempt to prevent

noise amplification is made by removing high frequencies.

The techniques developed in [15] build in total variation preserving techniques

into partially tested non linear shock filter schemes. Image sharpening is a logical

16

application of shock filters as images are essentially two dimensional functions with

sharp discontinuities, (the boundaries between objects). Shock filters are designed

to resolve discontinuities and the discontinuities are usually the most important

part of an image (as opposed to say the texture within objects). It is difficult to

discern what is within a blurry image, yet it is quite easy to see what is in an

untextured (cartoon) image with sharp boundaries. People have claimed to see

the Loch Ness Monster in blurry image for years, who cannot see what is going

on in The Simpsons.

3.1 Shock Filters and Shock Capturing Methods

The following description of shock filters is from [15].

The filters use non-linear time-dependent partial differential equations. The

evolution of the initial data u0(x) as t→∞ through u(x, t), t > 0 is the filtering

process. The partial differential equations have solutions that satisfy a maximum

principle and more. In fact the total variation of the solution for any fixed positive

time is the same as that of the initial data, i.e., the operator is total variation

preserving.

The paper [15] looks at the 1D case and then extends the process to a 2D

situation. A shock capturing scheme for image processing needs to be quite so-

phisticated as the aim is to restore sharp edges accurately from smeared images

and without generating oscillations. Resolving edges sharply is critical as it is

the whole point, but resolving them in an oscillatory way will cause ghost lines, a

duller copy of edges appearing either side.

We first observe the 1D case, which transforms smooth curves into piecewise

constant lines with sharp edges (as expected) and how any noise is sharpened

as well. In addition to these examples there will also be an example of where

significant diffusion has removed too much information for an accurate recovery.

17

3.2 Enhancement in One Dimension

We start with the following equation, which stems from previous work in shock

calculations (though this is not made explicitly clear in [15])

ut = − |ux|F (uxx) (3.1)

where x ∈ R, 0 ≤ t ∈ R, u(x, 0) = u0(x) is the initial data and F is a

Lipschitz continuous function satisfying

F (u)


> 0 if u > 0

< 0 if u < 0

= 0 if u = 0.

(3.2)

The − |ux| term satisfies a maximum principle (meaning that the solution in

non-oscillatory), in that at extrema ux = 0 so ut = 0. i.e. extrema are time

invariant so

maxu(x, t) = maxu(x, 0)

minu(x, t) = minu(x, 0)

TV u(x, t) = TV u(x, 0) ∀x.

While this still holds for

ut = + |ux|F (uxx) (3.3)

with a positive sign, the results are better, or rather more stable. The authors

of [15] were informed by P. L. Lions (by private communication [15]) that his

work in viscosity solutions had revealed that conservation form of solutions to 3.3

can result in singularities at extrema which then diminish the magnitude of the

extrema as t increases. As a result reverse engineering such schemes can generate

spurious extrema resulting in very unstable behaviour. The F function determines

what type of extrema are encountered and is referred to as the edge switch.

18

3.2.1 One Dimensional Discretisation and Results

Equation (3.1) is discretised to

un+1
i = uni −

∆t

h

∣∣m(uni+1 − uni , uni − uni−1)
∣∣F (uni+1 − 2uni + uni−1

h2

)
(3.4)

with time and space step ∆t, h, and m is defined as

m(x, y) =

(sign x) min(|x| , |y|) xy > 0

0 xy ≤ 0.
(3.5)

F is taken in the following (self generated) examples to be F (x) = sign(x).

From the plots of the sin graph, it can be seen that after only 500 iterations

the sin wave curves are being straightened into vertical and horizontal lines. By

10000 iterations they have reached a steady state solution of a square wave. Note

that the steady state is not necessarily the sought result, since any resultant image

in between may be equally valid. The square wave is in keeping with expected

behaviour, though an observer may expect more of a zig-zag of diagonal lines

instead.

The next set of plots are of an x2 curve containing two small errors on one side.

The symmetric nature of x2 helps compare the effects of the errors after processing.

We can see how the errors are altering the shape resultant graph. After around

500-1000 iterations the errors are somewhat emphasised, with all symmetry lost

by 5000 iterations. Here it is important to note that while no attempt to solve

this problem (in 1D) has been found in subsequent papers in this area, (the point

of this is to adapt the approach for 2D image processing), there were far more

efficient and elegant methods available for sharpening 1D graphs available at the

time. Indeed [15] refers to how they “could have done the same just by finding

inflection points and extrema and then performing thresholding.” They then state

how this would be “a futile exercise if we tried to extend it to a two-dimensional

calculation.”

The plots 3(a)-(f) demonstrate the limitations of the enhancement process. An

initial wave has been heavily diffused, reducing the magnitude of the oscillations.

19

(a) Original image (b) 100 iterations

(c) 500 iterations (d) 1000 iterations

(e) 10000 iterations (f) 100000 iterations

Figure 3.1: Sin wave

Self generated

20

(a) Original image (b) 100 iterations

(c) 500 iterations (d) 1000 iterations

(e) 5000 iterations (f) 10000 iterations

Figure 3.2: x2 curve

Self generated

21

(a) Original image (b) Diffused image

(c) 100 iterations (d) 250 iterations

(e) 500 iterations (f) 1000 iterations

Figure 3.3: x+ 2 sin(x× π)

Self generated

22

While the programs attempts have partially restored the waves, the loss of infor-

mation is beyond recovery, with waves being squared off and the original wave

magnitude remaining diminished. This is a result that stems from the ill posed

nature of the problem and can never be completely overcome.

The program remained fast and efficient, performing around 300 iterations a

second. While results would have been slower at the time of development, this

is still very fast in comparison to other developed image processing techniques.

Note that it is unlikely to be performing thousands of iterations, the 10000 and

100000 iteration cases being performed here to demonstrate the convergence of

the scheme.

Table 3.1: Results for sin wave plots 1(b)-(f)

number of iterations time to execute (seconds)

100 0.3410

500 1.7011

1000 3.4027

10000 34.0194

100000 339.7153

Computer specs: 3.16GHz Duo CPU, 3.21GB RAM

3.3 Extension to Two Dimensions

We now at the generalisation to two dimensional image enhancement,

ut = −
√
u2
x + u2

yF (L (u)) (3.6)

where x, y ∈ R, 0 ≤ t ∈ R, u(x, y, 0) = u0(x, y) is the initial data. F

again satisfies the criteria given in (3.2). L (u) is a second order, (generally)

non-linear elliptic operator. The − |∇u| term determines the magnitude of the

gradient, while F (L (u)) is the edge detector and is again key as it determines

where sharpening should occur. F is taken to be the same as in the one dimensional

23

case, (i.e. F (L (u)) = sign L (u)). Thus sharpening will occur when L (u) changes

sign, and the accuracy of the sharpening process will depend on how good L (u) is

at changing sign at the boundaries. Based on the 1D case a logical edge operator

might be the Laplacian L (u) = uxx+uyy. However shortly before [15], Rudin (one

of the authors) had done extensive work on shock filters, edge detectors and their

performance in the proximity of singularities. It was demonstrated in [17] that

the Laplacian detector will miss “geometrically non-trivial singular boundaries.”

Based on this work a “better choice” is made, an “expression for the second

derivatives of u in the direction of the gradient.”

L (u) = uxx · u2
x + 2 · uxuyuxy + uyy · u2

y (3.7)

This choice is far from unique, many choices exist and will give different results

depending on the type of blurring. This choice is based on the assumption that

blurring was by a Gaussian convolution, and is also a trade-off between quality

and speed.

3.3.1 Two Dimensional Discretisation and Results

Equation (3.6) is discretised to

un+1
i,j = uni,j −

∆t

h

√
(m(∆x

+u
n
i,j,∆

x
−u

n
i,j))

2 + (m(∆y
+u

n
i,j,∆

y
−u

n
i,j))

2Fi,j(L (u)). (3.8)

The ∆x
± terms are as defined in [15], given below

∆x
+u

n
i,j = uni+1,j − uni,j

∆x
−u

n
i,j = uni,j − uni−1,j

∆y
+u

n
i,j = uni,j+1 − uni,j

∆y
−u

n
i,j = uni,j − uni,j−1

with the minmod operatorm as defined in (3.5), and partial differentials discretised

to

ux = (1/h)(∆x
+u

n
i,j + ∆x

−u
n
i,j)

uxx = (1/h2)(∆x
+∆x
−u

n
i,j)

uxy = (1/2h2)(∆x
+∆y

+u
n
i,j + ∆x

−∆y
−u

n
i,j)

24

(uy, uyy defined similarly). Satisfaction of the CFL stability condition is achieved

using

sup

(
∆t

h
Fi,j(L (u))

)
≤ 1

4
(3.9)

To remove the external function m and simplify coding the scheme is then modified

to

un+1
i,j =uni,j

− ∆t

h

√
((∆x

+u
n
i,j)

+)2 + ((∆x
−u

n
i,j)
−)2 + ((∆y

+u
n
i,j)

+)2 + ((∆y
−u

n
i,j)
−)2F−i,j(L (u))

− ∆t

h

√
((∆x

+u
n
i,j)
−)2 + ((∆x

−u
n
i,j)

+)2 + ((∆y
+u

n
i,j)
−)2 + ((∆y

−u
n
i,j)

+)2F+
i,j(L (u))

(3.10)

with (∆u)+ = max(∆u, 0) (∆u)− = min(∆u, 0). This modified discretisation

has the same CFL condition. The space step h is chosen as 1 pixel (i.e. h=1). We

shall now see some results from the enhancement process, one from the original

paper and some new results made by coding up the model, shown in Fig 3.5 - 3.7

With Fig 3.4, after only a few iterations the results of the enhancement are

immediately obvious. The process has increased the contrast between certain fea-

tures and their surroundings making them clearer, most notably the entry hatches

on the turret or the ladder in the lower left corner (from the observers perspective).

Although some detail has been lost as well. The boundary between the left side

of the tank and the terrain is even harder to see than in the diffused image. Most

terrain detail has been lost too. In Fig 3.5 again the enhancement has increased

contrast, making certain features clearer, most notably the cameraman’s gloves,

side pockets and where his coat overlaps (this is less clear in the smaller scale

figure here).

Looking at some colour results, Fig 3.6 we see a diffused natural scene with

larger scale boundaries and smaller scale texture. The larger boundaries have

been sharpened, though this has partially caused jagged edges and a separation

of colours. Colour images are processed in RGB (Red Green Blue) format, where

each pixel is stored as a sum of all three colours. The shock filter is applied

separately to each colour, and different rounding errors between them causes slight

25

(a) Original tank image

(b) Diffused tank image (c) 13 iterations

Figure 3.4: Tank images and results obtained from [15].

26

(a) Cameraman

(b) 10 iterations

Figure 3.5: Original Cameraman image obtained from MATLAB.

27

(a) Autumn

(b) Autumn (diffused)

(c) 10 iterations

Figure 3.6: Original Autumn image obtained from MATLAB.

28

(a) Peppers

(b) Peppers (diffused)

(c) 10 iterations

Figure 3.7: Original Peppers image obtained from MATLAB.

29

discrepancies resulting in minor colour separation at boundaries. Note that the

small scale texture is not restored, as little information of it is left by a diffusion

of the image. The result is a painting-like image.

With Fig 3.7 there are lots of different colours, some sharing similar colour

levels, such as the overlapping green peppers, some sharing partial colour levels,

such as the red and orange peppers (orange consists of red and green in RGB),

and totally distinct colours such as the red and green peppers. Comparing with

Fig 3.6 due to the lack of multicoloured texture of objects within this figure, it

suffers far less from colour separation. The more distinct colours are not all good

news however, as higher iterations that were performed showed the process began

to emphasise the glare of light reflection in some locations. This appears to af-

fect colour images more than black and white images; notice how in Fig 3.5 the

sharpened black and white in the camera stand does not suffer from glare. The

shock filter model has demonstrated substantial success in the above examples,

with interesting quirks and unwanted side effects of the sharpening process. The

ill-posed nature of the problem means complications will always be present, such

as the jagged edges. It will also always have its limitations, the lack of a unique so-

lution means with more image distortion comes more reasonable solutions, making

it harder for any model to ’guess’ which is correct.

30

Chapter 4

A Final Comparison of Different

Total Variation Models

We now see a short comparison of three total variation models. The VO model

of Chapter 2, Meyer’s model [14](the texture preserving element that was built

into VO), and the more recent TV-L1 model [23](a different total variation model

stemming from the ROF model [18], the other element encompassed by the VO

model). We will briefly see the key difference between these models and observe

the results.

The ROF model was attempting to solve

min
u∈BV

{
TV (u) + λ ‖f − u‖2

L2

}
. (4.1)

Here the TV(u) term reduces oscillations, while λ ‖f − u‖2
L2 keeps the processed

image u close to the original image f .

Meyer’s model attempts to solve

inf
u∈BV

{∫
|∇u|, s.t. ‖f − u‖G ≤ σ

}
, (4.2)

or in Lagrangian relaxed form

inf
u∈BV

∫
|∇u|,+λ ‖f − u‖G . (4.3)

The Lagrangian relaxed version is included here for comparison, but it was the

constrained version above that was used originally in [14]. The Lagrangian form of

31

Meyer’s model cannot be solved simply with a partial differential equation method

(as Euler-Lagrange equations cannot be formed for (4.3))

The VO model attempts to approximate (4.3) in a way that can be solved

using partial differential equations. The approximation (2.1) is given again below

for convenience.

inf
u,g1,g2

{
V Op(u, g1, g2) =

∫
|∇u|+ λ

∫
|f − u− ∂x g1 − ∂y g2|2 dx dy

+µ

[∫
(
√
g2

1 + g2
2)p dx dy

]1/p
}
. (4.4)

(The G term from (2.1) has been replaced with VO in the above equation to avoid

confusion with the norm of Meyer’s model.)

The TV-L1 model, similar to the ROF method, it modifies the minimisation

problem to

min
{
TV (u) + λ ‖f − u‖2

L2

}
, (4.5)

which yields the Lagrangian relaxed form

min
u∈BV

∫
Ω

|∇u|+ λ

∫
|f − u|, (4.6)

where Ω is a bounded convex open set Ω. It was stated in the original [18] paper

that “the L1 norm of the gradient is the appropriate space. This is basically the

space of functions of bounded total variation: BV.” Despite this the L2 norm was

used as it is easier to work with. Advances in dealing with the L1 norm (and its

associated complications) since then in a wide range of papers such as [1] and [7]

among others, have demonstrated the better approximation that the L2 norm

also give rise to, including other useful properties such as texture extraction by

scale [22].

32

4.1 Comparison of models results

(a) Clean fingerprint image

(b) Meyer (σ = 35)

(c) VO (µ = 0.1)

(d) TV-L1 (λ = 0.4)

Figure 4.1: Reproduced from [22].

Here we see a fingerprint processed to

extract the texture for analysis. Fin-

gerprint analysis is a comparison of the

ridges from a finger, so the ideal result

in this example would be separate the

ridges sharply and accurately but leave

any light changes in the cartoon ele-

ment. Here the Meyer and VO mod-

els give similar results, though the TV-

L1 has extracted the varying light levels

with the texture. While this small differ-

ence might not seem significant to the hu-

man eye and visual comparison would be

unimpaired, an algorithm meant to com-

pare a print to those stored in a database

may suffer more.

33

(a) Clean 4texture image

(b) Meyer (σ = 50)

(c) VO (µ = 1.0)

(d) TV-L1 (λ = 0.8)

Figure 4.2: Reproduced from [22].

Given the varying texture levels, the

parameters were chosen to ensure the

extraction of the texture in the upper

right box. For this quadrant the TV-L1

model has outperformed the other mod-

els. However for the upper left and lower

right boxes Meyer’s model has extracted

more texture than the others, and is the

only one that has managed to extract

the knots leaving smooth lines. The VO

model performs quite poorly in this ex-

ample, the upper right and lower left

quadrants show less texture separation

than the other models, and the other two

quadrants have kept most texture in the

cartoon part.

34

(a) Clean Barbara image

(b) Meyer (σ = 6) (c) Meyer (σ = 15)

(d) VO (µ = 0.5) (e) TV-L1 (λ = 0.8)

Figure 4.3: Reproduced from [22].

35

In this example the Meyer model begins to have difficulties. It seems unable to

extract most texture without bringing parts of smooth objects with it. There are

“...two different σ’s, one very conservative and then one very aggressive...” [22].

For the conservative form 4.3b most texture is not extracted, where as with 4.3c

the outlines of smooth objects such as the arm or the table leg have also been

extracted. The VO and TV-L1 perform rather similarly, most texture and only

texture being separated from the image. The only noticeable difference is the

ripple in in the sleeve has been extracted also by the TV-L1 model but remains

for the VO model.

36

Chapter 5

Morphological Component

Analysis (MCA)

So far we have seen a model for diffusing still images to remove noise or texture, and

a model for sharpening the edges of a diffused image, both focusing on speed and

efficiency rather than quality of results. We have also seen a comparison of a couple

of other variational models for different textured images. All models displayed

varying degrees of success, performing well with some images and poorly with

others. The differences in the results are because different images have different

kinds (and scales) of texture, and different models work better with different

textures. Recall Fig 4.1, the TV-L1 model extracted the varying light level, which

was undesirable in the example. However it is perfectly valid to view varying light

levels as an added texture (or even noise) to the underlying image. While the

light extraction was undesirable, that does not make its extraction wrong. Until

now we have simply assumed the image-texture representation f = u + v, but

all different textures and noise are just lumped into one function v. A somewhat

better definition is one that defines a sum of layers, each layer being its own piece

of texture or noise. For the purposes of the new approach in this Chapter, we will

now reformulate this breakdown.

A given overall signal (in our case the original image) consists of a sum of com-

ponent signals to be separated (the component textures, objects, lighting effects,

37

etc.) composed by the sum

f =
K∑
k=1

fk. (5.1)

Separation of images into separate components is not a new form of texture

separation. Independent Component Analysis (ICA) and sparsity methods have

been used to calculate this breakdown, with varying levels of success. The Match-

ing Pursuit method is an example of one such approach, first developed by Mallat

and Zhang in 1992, it uses a greedy algorithm which decomposes and refines the

input signal into a linear expansion of waveforms [13]. These kinds of approaches

are combinatorially complex and very expensive. An alternative to these is Mor-

phological Component Analysis, an adaptation of the Basis Pursuit method that

separates features within an image with different morphological aspects [20].

The MCA model requires two assumptions to hold true.

1. For each signal f , there exists a dictionary of bases D = {Φ1, . . . ,ΦN} (that

may be overcomplete) such that each component signal fk is sparse in Φi ∈ D

for some i.

2. For each signal component fk that is sparse in Φi, fk is non-sparse (or at

least less sparse) in Φj ∈ D for all j 6= i.

Thus choosing the dictionary wisely is key, as the dictionary is what discriminates

between the different image layers. The speed of the model will also heavily depend

on the dictionary chosen; the greater the difference between the sparse and non

sparse representations of a component, the more effectively it will be separated in

terms of speed and accuracy.

5.1 The MCA Model

Here we will look at an example of an MCA model, presented in [20]. MCA models

are not unique as MCA can be applied to different types of problems and usually

have small differences depending on the desired result, or to incorporate known

38

information about the input signal. An example of known information would be

if added noise is known to be Gaussian, uniform, zero-mean, etc.

We are attempting to find the most sparse representation over the dictionary

D of a given signal f . Thus we are attempting to solve

arg min
{α1,...,αK}

K∑
k=1

‖αk‖0

subject to: f =
K∑
k=1

Φkαk.

(5.2)

‖αk‖0 denotes the `0 pseudo-norm of the vector αk (that is, the number of non-zero

coefficients in αk). If our previous two assumptions about the dictionary hold, this

will lead to an accurate separation of the signal components. While this might

lead to the desired solution, (5.2) is difficult to solve as the problem is non-convex.

The suggested way to overcome this is by replacing the `0 norm with the `1 norm.

A solution can then be formulated by relaxing the constraint in (5.2), then by

rewriting the constrained form in Lagrangian form we obtain

arg min
{α1,...,αK}

K∑
k=1

‖αk‖0 + λ

∥∥∥∥∥f −
K∑
k=1

Φkαk

∥∥∥∥∥
2

2

. (5.3)

The above gives an example of where the model is tailored to a specific type of

problem. The use of the `2 norm is applied if the residual is assumed to behave

as zero-mean Gaussian noise. Different models could assume different behaviour,

like Laplacian (`1) or uniform distribution (`∞).

This model also further notes the memory hungry nature the algorithm will

have depending on the total length of all components αk due to all the matrices

involved. As the dictionary is usually (very) over-complete, the introduced redun-

dancy increases the overall matrix size. If the redundancy factor is 10 (i.e. the

total length of all components αk is 10 times the length of the input signal), then

10 times as much memory as the input signal will be required for manipulating the

solution. By reformulating the problem the signal components f1, . . . , fK become

the unknowns, which reduces the memory required.

arg min
{f1,...,fK}

K∑
k=1

‖Tkfk‖1 + λ

∥∥∥∥∥f −
K∑
k=1

fk

∥∥∥∥∥
2

2

, (5.4)

39

where Tk is the basis transformation of Φk (αk = Tkfk). Further an advantage

of the reformulation is that constraints can be added to each signal component

leading to an addition term in (5.4),

arg min
{f1,...,fK}

K∑
k=1

‖Tkfk‖1 + λ

∥∥∥∥∥f −
K∑
k=1

fk

∥∥∥∥∥
2

2

+
K∑
k=1

γkCk(fk), (5.5)

where Ck implements constraints on fk.

This can then be solved by external numerical solvers. The paper this model

originates from uses the Block-Coordinate Relaxation Method [20]. The discreti-

sation will not be shown for this, though examples of discretised models and

algorithms implementing this can be found in [20], [5] and [4] among others.

While all this might seem like a lot of hassle, separating each object and texture

into separate layers, the appeal is not simplicity of the model, it is the simplicity

it allows and induces in various applications. Demonstrations of the application

of MCA applied to real world imaging can be found in such papers as fingerprint

separation [12], astronomical imaging [19] and cancer screening [11].

5.2 A Few Numerical Results

The following result is an example from [20], demonstrating the ability to separate

Gaussian dots from straight lines in a relatively empty image. For this example

the authors used two transforms, the wavelet transform as its isotropy makes

it efficient at Gaussian detection, and the ridgelet transform which is optimal

for extracting lines. The efficiency of these transforms at this was discovered in

previous work by the authors.

Fig 5.1 is an example of astronomical imaging. Most stars will appear as

Gaussian distributed, with dust, gas and other remnants in space adding separate

noise. Separation of these features must be very accurate for astronomical imaging

as most features are very small. The authors have also demonstrated in [10] the

texture separation and inpainting capabilities of MCA, seen in Fig 5.2 and 5.3.

40

(a) Original Image. (b) Extracted Gaussians. (c) Extracted lines.

Figure 5.1: Lines and Gaussians image. Reproduced from [20].

Gaussians extracted with the à trous wavelet.

Lines extracted using Ridgelet.

(a) Original Image. (b) Separated cartoon. (c) Separated texture.

Figure 5.2: Textured Barbara image. Reproduced from [20].

Separation obtained using curvlet transform and cosine transform [10].

41

Figure 5.3: Barbara image with missing information. Reproduced from [20].

Separation obtained using curvlet transform and cosine transform [10].

20%, 50%, 80% of pixels removed, with restored image to the left.

42

5.3 MCA in Video Processing

We now look at MCA moving beyond stills and its application in video processing.

Moving into three dimensions (2D+T) leads to more complexity in the problem

and more possibilities to improve how the input video is processed. This adds

the new form of texture caused by movement alone. A smooth moving object can

become textured in video depending on the movement pattern. In fact what we

mean by texture has still not been actually defined. Most papers have just referred

to terms like most useful information or semantically meaningful information. For

rigorous mathematical based models this is somewhat unsatisfactory, but giving

any mathematical definition of texture is a notoriously difficult problem. Math-

ematical definitions require quantifiable features with clear cut off points. What

is meaningful information depends on the observer and the purpose of their ob-

servation, it’s situational and subjective. MCA being used in video processing

is relatively new and a recent paper [8] makes a real step towards this. Stating

“around 75% of major publications do not specify their definition of dynamic tex-

ture,” while not actually defining texture, it defines several different classes that

texture will fit into to separate the variety of textures that exist. This Taxonomy

is promising, separating textures by the different properties they present.

1. Classification of texture begins with its origins, is the texture natural (cre-

ated by natural process), artificial (human created) or synthetic (computer

generated).

2. The texture is then classed as static (still) or dynamic (moving).

3. Dynamic then undergoes further breakdown by the cause of this motion. Is

the motion the result of an internal force (e.g. a moving car), an external

force (e.g. a tree blowing in the wind) or acquisitional (e.g. movement of

the clouds blocking sunlight).

4. The motion is further separated by texture and motion patterns. Is the

texture rigid or deformable, meaning does the texture just move or does it

43

rearrange itself as well. Is the motion stochastic or deterministic, meaning

is the motion predictable or mostly random.

5. Finally the motion has its number of modes determined. This is referring

to when there are different motions within the same texture. A large scale

tidal wave with smaller scale ripples within is an example of dynamic texture

with two modes. This also poses added complexity when they overlap and

interact with each other.

Figure 5.4: Examples of texture and mo-

tion separation. Reproduced from [8].

From this the authors then gave

the following definition of dynamic tex-

tures.

A natural, artificial or synthetic im-

age sequence may contain a static tex-

ture component and/or a dynamic tex-

ture component. This latest one is

composed of at least one dynamic tex-

ture.

A dynamic texture is a textured pat-

tern that can be rigid or deformable.

This pattern has a motion induced by

a force which can be internal, external or created by camera motions. This mo-

tion can be deterministic or stochastic. Dynamic textures are composed of modes,

which may overlap, characterized by repetitive spatial and temporal phenomena.

In addition to the different motions that can occur within the same texture it

is worth noting that separate dynamic textures that are transparent (partially or

totally) can overlap, which is not the same thing. The MCA model used in [8] for

video processing is similar to what was seen in section 5.1,though they do not use

44

Lagrangian form.

min
f1,...,fK

K∑
k=1

∥∥ΦT
k fk
∥∥p
p

such that

∥∥∥∥∥f −
K∑
k=1

fi

∥∥∥∥∥
2

≤ σ

(5.6)

This is then solved by hard thresholding the residual

r
(n)
k = f −

∑
i 6=k

f
(n−1)
i , (5.7)

α
(n)
k = δλ(n)

(
ΦT
k

(
r

(n)
k

))
, (5.8)

where r
(n)
k is the residual and δλ(k) is the hard threshold function with threshold

λ(k). Hard thresholding sets to zero any element whose absolute value is lower

than the threshold λ(k). An outline of the algorithm is presented in [8].

5.4 Results of Video Processing

Here we will see a few results of the MCA model for video processing from [8],

and comment on their level of success. We will also see the difference between a

2D+T processing and a 2D (frame by frame) processing.

Fig 5.5 is split into three separate areas highlighted for comparison. (a) shows

how the texture of the lake has been separated. Ripples in the water have been

extracted as texture in the 2D+T process, but the 2D has left ripples behind in

the cartoon component. (b) captures how the model handles objects with the

video. It can be seen how the 2D case has extracted smooth parts of the duck

to the texture component, and the 2D+T has done so to a far smaller extent.

(c) reveals how well texture is preserved in the texture component, and again the

2D+T excels ahead. The water ripples are a highly dynamic texture and the 2D

approach entirely misses the dynamic behaviour.

Fig 5.6 is of two overlaying dynamic textures, a water fountain which overlays

with water ripples around it. The 2D+T model has attempted to separate the

textured ripples in the water from the transparent smooth water flow from the

45

Figure 5.5: Reproduced from [20].

46

Figure 5.6: Reproduced from [20].

47

fountain. There is also a surface plot for a section in the real video and its

components. As can be seen there is a rather smooth surface in one component,

and most bumps and peaks are in the texture surface plot.

These results demonstrate that the MCA model can be extended to the video

processing are is capable of extracting various different features and components.

It can process video taking advantage of all three dimensions and is far more

effective than a similar two dimensional approach that handles videos frame by

frame without interpreting temporal features.

As MCA was designed to be an alternative to the computationally expensive

ICA and sparsity methods mentioned earlier, it is worth just noting the compu-

tation time needed for these kinds of component separations. There is a short

section in [8]on time considerations and a table of the time taken on two different

machines is given.

Platform 1 (32 bits) Platform 2 (64 bits)

ATSLc ≈ 3h47 ≈ 1h56

ATSEc ≈ 5h22 ≈ 2h44

Table 5.1: Average computation time for MCA to decompose 5 second video from

DynTex database. ATSLc and ATSEc are thresholding strategies implemented in

the MCA algorithm.

This timing is relatively large for 5 seconds of video. The fastest of the two,

ATSLc would take approximately a day to process 1 minute of video. A video

longer than a few minutes would most likely need to be split between multiple

platforms. This is commented on by the authors, who also point out that the

algorithm is multi core compatible (multiple platforms can be set up to split the

process between them).

48

Chapter 6

Conclusions and Further Work

We have investigated image processing techniques including total variation, shock

filters and MCA. The total variation model has been discretised and its results for

different images and textures seen. The shock filter enhancement model has also

been discretised and shown to restore sharp edges, with notable side effects like

jagged edges occurring. Total variation models have been contrasted to show how

they outperform each other depending on the textured image they are processing.

MCA methods have demonstrated the breaking down of images into multiple

layers, and an extension to videos has given good results for texture separation.

A taxonomy for dynamic textures has also been defined.

Work in Total variation minimisation for image processing continues, with

other additions to solving the problem being implemented such as the H−1 norm

and Bregman equations. Despite this potential and continued research total vari-

ation minimisation methods in image processing remain mostly unused. Most

applied models have been specifically tailored to their applications, and total vari-

ation remains general in its applications. Attempting to develop an application

targeted model could be a potential for further development within the total varia-

tion minimisation framework. Different total variation models have outperformed

each other which suggests a total variation model could be tailored to a specific

problem.

The shock filter model is somewhat outdated, while its work has been incorpo-

49

rated into other methods, there does not appear to be much point in attempting to

improve the original model, as superior sharpening techniques have already been

discovered.

Morphological Component Analysis has demonstrated the greatest amount of

promise for future work. Relatively new, with many application and capabilities,

and development of applications to dynamic textures and video processing only

occurring in the last few years, the wealth of possibilities and the quality of the

results suggest further research in this area is likely to yield improved models that

could be easier to solve or more easily tailored to an application. An area of MCA

that needs further work is the dictionary selection. A wider array of dictionaries

already confirmed to be suited to representing certain types of noise or texture

would ease the task of most MCA algorithm designs. MCA is also still afflicted

with a long processing time, short clips can be done by standard computers, but

prolonged videos require days or supercomputers to process. While MCA is more

about the quality of the results that speed and simplicity, a more efficient solver

for the minimisation problem would be another very useful improvement to the

model.

50

Bibliography

[1] S. Alliney. Digital filters as absolute norm regularizers. Signal Processing,

IEEE Transactions on, 40(6):1548–1562, 1992.

[2] M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester. Image inpainting. In

Proceedings of the 27th annual conference on Computer graphics and interac-

tive techniques, pages 417–424. ACM Press/Addison-Wesley Publishing Co.,

2000.

[3] M. Bertalmio, L. Vese, G. Sapiro, and S. Osher. Simultaneous structure

and texture image inpainting. Image Processing, IEEE Transactions on,

12(8):882–889, 2003.

[4] J. Bobin, JL Starck, J. Fadili, Y. Moudden, and DL Donoho. Morphological

component analysis: New results. IEEE Transactions on Image Processing-

revised, 2006.

[5] J. Bobin, J.L. Starck, J.M. Fadili, Y. Moudden, and D.L. Donoho. Mor-

phological component analysis: An adaptive thresholding strategy. Image

Processing, IEEE Transactions on, 16(11):2675–2681, 2007.

[6] A. Chambolle and P.L. Lions. Image recovery via total variation minimization

and related problems. Numerische Mathematik, 76(2):167–188, 1997.

[7] T.F. Chan and S. Esedoglu. Aspects of total variation regularized l 1 function

approximation. SIAM Journal on Applied Mathematics, 65(5):1817–1837,

2005.

51

[8] S. Dubois, R. Péteri, and M. Ménard. Decomposition of dynamic textures

using morphological component analysis. IEEE Transactions on Circuits and

Systems for Video Technology, 22(2):188, 2012.

[9] A.A. Efros and T.K. Leung. Texture synthesis by non-parametric sampling. In

Computer Vision, 1999. The Proceedings of the Seventh IEEE International

Conference on, volume 2, pages 1033–1038. IEEE, 1999.

[10] M. Elad, J.L. Starck, P. Querre, and D.L. Donoho. Simultaneous cartoon

and texture image inpainting using morphological component analysis (mca).

Applied and Computational Harmonic Analysis, 19(3):340–358, 2005.

[11] X. Gao, Y. Wang, X. Li, and D. Tao. On combining morphological component

analysis and concentric morphology model for mammographic mass detection.

Information Technology in Biomedicine, IEEE Transactions on, 14(2):266–

273, 2010.

[12] R. Geng, Q. Lian, and M. Sun. Fingerprint separation based on morphological

component analysis. Computer Engineering and Applications, 44(16):188–

190, 2008.

[13] S.G. Mallat and Zhifeng Zhang. Matching pursuits with time-frequency dic-

tionaries. Signal Processing, IEEE Transactions on, 41(12):3397 –3415, dec

1993.

[14] Y. Meyer. Oscillating patterns in image processing and nonlinear evolution

equations: the fifteenth Dean Jacqueline B. Lewis memorial lectures, vol-

ume 22. Amer Mathematical Society, 2001.

[15] S. Osher and L.I. Rudin. Feature-oriented image enhancement using shock

filters. SIAM Journal on Numerical Analysis, 27(4):919–940, 1990.

[16] P. Perona and J. Malik. Scale-space and edge detection using anisotropic

diffusion. Pattern Analysis and Machine Intelligence, IEEE Transactions on,

12(7):629–639, 1990.

52

[17] L.I. Rudin. Images, numerical analysis of singularities and shock filters. 1987.

[18] L.I. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise

removal algorithms. Physica D: Nonlinear Phenomena, 60(1):259–268, 1992.

[19] J.L. Starck, D.L. Donoho, and E.J. Candès. Astronomical image representa-

tion by the curvelet transform. Astronomy and Astrophysics, 398(2):785–800,

2003.

[20] J.L. Starck, Y. Moudden, J. Bobin, M. Elad, and DL Donoho. Morphological

component analysis. In Proceedings of the SPIE conference wavelets, volume

5914, page 191. Citeseer, 2005.

[21] L.A. Vese and S.J. Osher. Modeling textures with total variation minimization

and oscillating patterns in image processing. Journal of Scientific Computing,

19(1):553–572, 2003.

[22] W. Yin, D. Goldfarb, and S. Osher. A comparison of three total variation

based texture extraction models. Journal of Visual Communication and Im-

age Representation, 18(3):240–252, 2007.

[23] W. Yin, D. Goldfarb, and S. Osher. The total variation regularized l. 1 model

for multiscale decomposition. Multiscale Modeling & Simulation, 6(1):190–

211, 2007.

53

	Introduction
	The Vese Osher Total Variation Model (VO)
	Discretization
	Numerical Results

	The Rudin and Osher Shock Filter Enhancement Model (SFE)
	Shock Filters and Shock Capturing Methods
	Enhancement in One Dimension
	One Dimensional Discretisation and Results

	Extension to Two Dimensions
	Two Dimensional Discretisation and Results

	A Final Comparison of Different Total Variation Models
	Comparison of models results

	Morphological Component Analysis (MCA)
	The MCA Model
	A Few Numerical Results
	MCA in Video Processing
	Results of Video Processing

	Conclusions and Further Work

