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A COMPARATIVE STUDY OF COMPUTATIONAL 

METHODS IN COSMIC GAS DYNAMICS (an extension) 

 

SUMMARY 

 

We compare how well some computational methods model a representative 

astrophysical flow problem. This is an extension of a paper written in 1981.  

We use the two best methods in the paper plus : Roe’s method; Roe’s method with 

flux limiters applied; Roe’s method with the source term decomposed and flux 

limiters applied; the HLL-method; the HLL-method with flux limiter applied; the 

HLLC-method; the HLLC-method with flux limiter applied. 

 

INTRODUCTION 

 

In a paper entitled ‘A Comparative Study of Computational Methods in Cosmic Gas 

Dynamics’ written in 1981, Van Albada, Van Leer, and Roberts, Jr. [12] compared 

some computational methods on a representative astrophysical flow problem in order 

to acquaint astronomers with the virtues and failings of typical numerical methods. 

The methods they used were the Beam scheme, Godunov’s method, second-order 

flux-splitting method, MacCormack’s method and the flux corrected transport method 

of Boris and Book.  Since 1981 there has been substantial progress in computational 

methods. This work therefore extends the paper to explore new methods which may 

be an improvement on the methods previously studied. 
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THE PROBLEM (as stated in the previous paper [12]) 

 

Our test problem is a simple, one-dimensional model of the gas flow in a spiral 

galaxy.  

The generally accepted theory for the coherent, large-scale spiral patterns observed in 

many galaxies is the density wave theory of Lin and Shu (1964, 1966) [6, 7].  

The density wave theory states that the spiral-arm pattern is caused by a spiral density 

wave. This is a supersonic compression wave of increased density that moves through 

the stars and gas in the galaxy.  

The wave rotates more slowly than the actual material causing the density of the 

material to build up. A shock wave builds up and possible outcomes are star 

formation and increased collisions of giant molecular clouds.  

 Roberts wrote a paper in 1969 [8] in which he used one-dimensional, steady state gas 

equations which included a forcing term due to the spiral field of stars. He showed 

how a mild stellar structure can induce shock waves in the gas and how this effects 

the observed features of the spiral structure.  The actual evolution of the flows was 

studied by Woodward in 1975 [15] where he used a simplified time-dependent 

version of Roberts’ equations.   

 

We use Woodward’s equations and a set of his parameter values here.  

 

The nonlinear response of the gas to an imposed spiral gravitational field has several 

distinguishing characteristics of astrophysical flows (i.e. a major role is played by 

source terms, strong shocks are apt to develop and rotational effects are significant). 
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When we explore the numerical methods we note that: 

1. Source terms can lead to unexpected behaviour in numerical methods which 

are usually ana lysed and tested in the absence of such terms. 

2. Strong shocks demand reliability. 

3. The proper treatment of angular momentum requires accuracy. 

 

Often methods cope well with the shock only by artificially redistributing the angular 

momentum. This can be a serious problem when we are investigating the dynamics of 

the gas.     

 
 
The equations in an inertial frame for an isothermal gas are: 
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where Q  is the density, q  is the velocity, c  is the (constant) sound speed and Φ   

is the gravitational potential. 

 

We can assume that the flow is isothermal since the gas cools by radiative processes 

much quicker than it takes for any dynamical processes to take place. 

Without spiral forcing the gas flows round in a circle and has an angular velocity of 

)(rΩ  at radius r.  A steady spiral field with small pitch angle α is assumed to rotate 

with pattern speed pΩ . We will use a coordinate system which rotates at this speed 
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and is aligned with the equipotential contours of the spiral. We denote the coordinates 

parallel and perpendicular to the equipotential contours by ξ  and η  respectively. 

 

The velocity components in this system are written as: 

v= ξq ,                                                                                                                          (3) 

u= ηq . 

 

We take the spiral pattern to be tightly wound (so thatα  <<1) and the equilibrium 

velocities to be approximately: 

),(0 prv Ω−Ω=
                                                                                                         (4) 

)(0 pru Ω−Ω= α . 

 

In this approximation derivatives with respect to η  (normal to the spiral arms) are 

retained, but derivatives with respect to ξ  (along the spiral arms) are discarded. For a 

two-armed spiral the resulting equations can be written as the system of conservation 

laws: 

η∂
∂
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∂ F
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=H,                                                                                                             (5) 

 

where the vector of conserved quantities is 
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the vector of fluxes is 
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and the vector of source terms is 
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The spiral phase η̂  is defined by 

rα
η

η
2ˆ =                                                                                                                         (9) 

 

and the epicyclic frequency κ  by 

)(
2 22 Ω

Ω
= r

dr
d

r
κ .                                                                                                    (10) 

 

In this approximation the flow is periodic. In terms of the spiral phase the periodicity 

condition reads 

U( η̂ ,t)=U(η̂ +2π ,t).                                                                                                  (11)     

 

In these equations η
α

ˆsin
2

QA
r

 is a driving term. This arises from the assumed 

gravitational field of the stellar component. While Qvv )(2 0−Ω  is called the inertial 

term and is related to gravitational, centrifugal and Coriolis forces. 
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The parameters that we shall assume in our test problem that are thought to be 

appropriate to the neighbourhood of the Sun in our galaxy are: 

Ω =25 km 1−s /kpc 

κ =31.3 km 1−s /kpc 

pΩ =13.5 km 1−s /kpc 

c=8.56 km 1−s

r=10 kpc                                                             α ≈ 0.11667 

 

We choose A=72.92 (km 21)−s  for the amplitude so that the amplitude of the spiral 

force is two percent of the equilibrium force r 2Ω . 

In the steady state (5) becomes: 
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In the case that we study there is a shock at °= 68.131η̂ and the flow becomes 

supersonic with a sonic point at °= 53.155η̂ . In Robert’s paper 1969 [8] he shows a 

method to solve (12) in conjunction with (11). In this flow there is a rapid 

decompression after the shock and a secondary structure near °= 270η̂  caused by 

resonance effects. The time dependent version of this is modelled best by numerical 

methods that are able to deal with the shock while also resolving the rest of the 

structure well. 
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BACKGROUND PHYSICS 

 

MATERIAL FROM ROBERTS, 1969 [8] 

 

When we look at the overall structure of galaxies we often see a spiral structure 

occurring. Over the years many scientists have tried to explain what causes this grand 

design to happen. One theory associates each spiral arm with a specific body of matter 

throughout the arms evolution however this causes a winding problem when we 

consider differential rotation. Another suggested theory is the density wave theory. 

Originally this was studied by B.Linblad by considering the properties of individual 

stellar orbits; however this was not very convincing. Later P.O. Linblad studied the 

stellar collective modes and had more success. After his studies there was still a need 

to understand how such a structure could stay quasi-stationary but this was soon 

solved by an asymptotic theory developed by Lin and Shu. 

 

In galaxies we see the young stellar associations and brilliant HII Regions appearing 

in chains and spiral arcs within the spiral structure. They lie along the inner sides of 

the observed gaseous spiral arms. Therefore we see that star formation takes place 

over an even narrower region than the total spiral arm width. Considering the short 

amount of time the gas stays in the spiral arm and the fact that in the linear theory the 

gas concentration in a density wave extends over a broad region we would not expect 

to find such narrow strips of newly born stars. To explain these strips we therefore 

turn to the existence of   ‘galactic shocks’. In fact over time we might expect self-

sustained density waves to turn into shocks.  
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The factors that effect the gas dynamics in this system are: 

 

1. The inertial force associated with the rotation of the disc. 

2. The smoothed gravitational force of the system as a whole. 

3. Gaseous ‘pressure’ associated with turbulence in the interstellar medium and 

the hydromagnetic forces (due to magnetic fields embedded in the interstellar 

medium)   

4. Primary sources of the turbulent energy for the gas: 

-cosmic rays 

-supernova explosions 

-stellar radiation 

      5.   The effect of dissipation of turbulence by collisions of gas clouds (the primary 

            sink of turbulent energy for the gas). 

 

We visualise each gas streamtube to have a uniform mean turbulent dispersion speed. 

The gas flow along each streamtube being isothermal at a uniform mean equivalent 

turbulent temperature. 

Now, we know that the majority of the stars and gas are within a layer which is from 

one fiftieth to one hundredth of the diameter of the galactic disc. We can therefore 

‘squeeze’ our problem so that it all takes place over an infinitely thin sheet. We 

translate our physical variables into this setting by integrating over the layer’s 

thickness and taking the mean values.  In this problem we shall mainly be concerned 

with the response of the gas to an imposed background spiral gravitational field. 
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To resolve this problem we need to look at the fundamental equations of motion for 

gas flow about the circular disc. Our base state of motion is the Schmidt model (our 

galaxy) in which there is an equilibrium state of purely circular gas flow. This 

equilibrium is caused by the total smoothed central gravitational force field exactly 

balancing the inertial force associated with the rotation of the disc as a whole. Our 

coordinate system for this model consists of the radius out from the centre and the 

angle we have rotated around our circle. Building on this model we are able to 

construct a perturbed state which superposes a two-armed spiral field on top of the 

Schmidt model. Here we shift the coordinate system to be the one we use in this 

paper. The coordinates are fixed in a pΩ -rotating system and are parallel and 

perpendicular to the spiral equipotential curves. 

 

In the asymptotic theory the perturbation quantities to the first order vary only along 

the direction normal to the contours of constant phase. This sort of approximation is 

first thought of by noticing that the imposed spiral potential is oscillatory as cosine 

normal to the contours of constant phase and only slowly varying parallel to them.   

 

 When we are using the non-linear gas flow equations we are primarily interested in 

solutions which satisfy the following: 

1. They permit the gas to pass through two periodically located shock waves 

which lie coincident with spiral equipotential curves in the disc. 

2. They describe the gas flow along a narrow, nearly concentric streamtube band 

about the galactic centre, and the streamtube should repeat itself through every 

half revolution of the gas flow about the disk. 
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3. They ensure closure of the gas streamtube so that no net radial transfer of 

mass, momentum, or energy takes place across the streamtube. 

This provides a solution of gas flow in a closed, nearly concentric and twice periodic 

streamtube band through two periodically located shock waves (otherwise known as 

an STS solution). 

The variables that determine the nature of the STS solution are: 

i) the angle of inclination of a spiral arm to the circumferential direction; 

ii) the angular speed of the spiral pattern; 

iii)  the amplitude of the spiral gravitational field taken as a fixed fraction of 

the smoothed axisymmetric gravitational field; 

iv) the average radius of the streamtube; 

v) the mean turbulent dispersion speed of the gas along the streamtube.  

 

Once the three STS conditions have been satisfied and we have specified the values 

for all of the above mentioned variables the shock location with respect to the 

background spiral arm is determined.   

 

The shape of our graphs in the rest of this paper are illustrated in the diagram below. 

From this diagram we can see that the density suddenly increases (shock appears) at 

the same point that the velocity normal to the contours of constant phase decreases 

and the velocity parallel to them increases. 
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The outer bound of the spiral pattern is dependent on the number of arms in the spiral 

design and the spiral gravitational field taken as a fixed fraction of the smoothed 

axisymmetric gravitational field. 

 

If we now try to visualise how a galaxy will look we see that: 

1. The background distribution of moderately old stars will not be seen. 

2. We will notice the gaseous spiral arms. 

3. The newly luminous stars and brilliant HII regions will stand out. 

 

 

Therefore translating our graphs to the observable spiral features of the galactic 

structure we see that the point of phase from our shock on the density graph to the 

point at which the density falls below unity is the region in which our spiral arm lies. 
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Now, if an upper bound of thirty million years is taken for the formation and 

evolution of relatively massive stars we see that the possible locations for the regions 

of new stars and their associated HII Regions are on the inner side of the observable 

HI spiral arms. They stretch from the shock to approximately the centre of the arm 

and so on the graph are contained in the left most part of the section we specified 

above.    

 

MATERIAL FROM WOODWARD, 1974 [15] 

 

Most of the time-dependent results presented in Woodward’s paper use the isothermal 

equation of state. The isothermal flow equations scale with the density and so the 

average density chosen is unimportant. By solving these equations he was able to gain 

insight into how and why the shock forms. Looking at his equations it was seen that 

time-reversal symmetry and so shockless steady flow solutions were possible. 

However for sufficiently large wave amplitudes the symmetry is broken when 

irreversible processes occur in the gas and a shock is formed.  The shock’s 

development takes place as follows: 

 

1. Initially the steepening is a result of the tendency of the gas in the wave crests to 

    flow more rapidly than the gas in the wave troughs in the direction of the wave 

    propagation. This is called convective steepening. 

2. Later there is an increase in the effectiveness of pressure forces in opposing 

    convective steepening near the wave crests relative to the wave troughs. 

3. The final stage of the steepening is caused by inertial and gravitational forces. 
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When a resonance condition is met (i.e. the spiral driving potential rotates at an 

angular frequency equal to that of a free mode of oscillation of the system) then the 

second harmonic component of the density wave form can grow unusually large. 

If the symmetry is broken by numerical viscosity, it is natural that the resonance 

should be altered or diminished, if not eliminated. Resonant conditions for higher 

harmonics can be found if they are not damped out by the numerical viscosity. 

Harmonic resonance may provide an explanation for secondary spiral features such as 

spiral arm spurs, branches, or feathers.     
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THE METHODS 

 

The schemes that we shall study are: 

a) MacCormack’s method (studied in the previous paper [12]) 

b) Second-order flux splitting method (studied in the previous paper [12]) 

c) Roe’s scheme 

d) Roe’s scheme with flux limiters 

e) Roe’s scheme with flux limiters and the source term decomposed 

f) The HLL scheme 

g) The HLL scheme with the minmod limiter applied 

h) The HLLC scheme 

i) The HLLC scheme with the superbee limiter applied to the contact field and 
      minmod applied elsewhere 
 

We choose to study (a) and (b) from the previous paper as these suited the problem 

the best from the last investigation. We then go on to investigate the methods (c), (d), 

(e), (f), (g), (h) and (i) to examine whether they produce even better results. 

 

 

HOW WE APPLY THE METHODS 

 

Firstly, the definition of some of the notation that we shall use here is as follows: 

n
iU   is the approximate value of U at ( ni t,η  ), 

n
iF = )( n

iUF  and 

n
iH = ),( i

n
iUH η  (or ),,( tUH i

n
i ∆η ). 
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This is when the subscript i  denotes the value at the spatial point  η∆i  (with 

η∆ =
N

rπα
 or equivalently

N
π

η
2ˆ =∆ ) and the superscript n  denotes the value at 

temporal point tn∆ . 

 

The schemes can be written in the form 

2
1

2
1

2
11 +−++

=
∆

−
+

∆
− n

i

v

i

v

in
i

n
i H

t
UU

η

φφ
                                                                      (13) 

with nv =  or )2/1(+= nv . This approximates (5) in the so-called “conservation 

form” and is obtained from a discretised version of the partial differential equations. 

 

The numerical flux vector  

),,( 1
2
1

n
ki

n
ki

v

i
UU ++−

+
≡ ΚΚφφ                                                                               (14) 

is a function of k2  initial values. At a certain time step it is taken to be our F  at 
2
1

+i
η   

and is determined by the particular numerical method we are using. 

 

 In applying our numerical methods we divide our spatial region (0, rπα ) into N equal 

zones. The edge of the zones are at η∆i   where Ni ,,0 Λ= .  Using (13) we can 

progress our values from nt  to 1+nt . 

 

The methods are usually stable under the CFL condition, which states that the largest 

radial wave or material speed in a cell must not exceed the numerical signal speed. 
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In most of the methods that we study in this paper we accounted for the source terms 

in separate steps. 

First, we approximated  

,H
t

U
=

∂
∂

                                                                                                            (15) 

over a half time-step, then continued by approximating 

,0=
∂
∂

+
∂

∂
η
F

t
U

                                                                                                    (16) 

over a whole time-step, finally completing this by approximating (15) again over a 

half time-step. 

 

This method has the advantage that (15) can be solved analytically for the current 

problem. The solution is as follows: 

 ,),( n
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Ω
−
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The use of such an accurate solution proved essential for maintaining stability of very 

long runs (over 2000 time-steps). 
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TESTING THE METHODS (as in the previous paper [12]) 

 

TEST ONE 

Since the exact solution is only known reliably at the steady state limit we cannot 

compare the methods on how well they model the time evolution of the flow.  We 

therefore choose to test how accurately the methods produce the steady state. Also, 

due to reasons stated in the previous paper we choose to take the exact steady state 

solution as the initial value distribution and compare how well each of the methods 

preserve it. 

Note that the values taken at the start 0
iU are zone-averaged values of the exact 

solution in order to be consistent with the data representation of the methods. 

During this investigation we found that although the exact solution is known it is not 

readily ava ilable. We therefore turned to the last paper for assistance in this matter. 

 

TEST TWO 

We will only apply this test to the methods which performed the best in test one. 

Here we take uniform initial values ),,1(),,( 00
0 vuvuQ i =  to determine the 

“robustness” of the methods. 

 

In test one we use 64 spatial zones and progress the values by 1200 time-steps from 

the exact steady-state with a constant time-step corresponding initially to a global 

Courant number of 0.5.  

In test two we shall progress the values by 2400 time-steps.  
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a) MACCORMACK’S METHOD (as in the previous paper [12]) 

 

This was developed by MacCormack in 1969 and has been widely used in 

aerodynamics.  

 

In this method one-sided differencing is used twice, first to one side and then to 

the other. In implementation we can either apply the one-sided differences in the 

same order repeatedly or alternate them to obtain a more symmetric system. We 

will use the latter type of method here. 

 

It is a method that is formally second order accurate in both space and time and 

that does not require you to approximate the Jacobian matrix or its eigenstructure. 

 

On even time steps we will apply a forward predictor step which will determine 

the provisional values at 1+nt , 

n
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i

n
i

n
i tHFF

t
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∆
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1

η
.                                                             (18) 

 

We follow this with a backward corrector step which determines the final values 

at 1+nt ,  
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
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The corrector step corresponds to inserting 

( )1
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into (13). On the other hand, on odd time-steps we apply a backward predictor step 

followed by a forward corrector step.  

Even though MacCormack’s method is slightly dissipative we had to add an explicit 

smoothing term in order to control nonlinear instabilities in the test problem. The term 

that we added was 







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∆
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We applied this to the right hand side of (19). The coefficient b is an adjustable 

constant of order unity which we take to be 1.10 in this paper. We choose the artificial 

coefficient to be n
i

n
i

n

i
uuv −= +

+
1

2
1  where u is the velocity component mentioned 

earlier.  

 

In our results we see that our smooth region is modelled well by the MacCormack 

method however the shock is not very sharp and is quite wide compared to other 

methods in our study. 
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Figure one: Result’s from MacCormack’s method 
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b) SECOND-ORDER FLUX-SPLITTING METHOD (as in the previous paper [12]) 

 

In this method we change a first-order upwind-differencing method into a second-

order method by first advancing the cell-boundary values and source terms to the time 

level 
2
1

+n
t . In calculating these intermediate values we can ignore the interaction 

between the cells (this was observed by Hancock(1980)). 

  

We take Q  to be a vector of quantities (not necessarily conserved) describing the state 

of the gas.  
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We then assume that the initial values for Q  form a piecewise linear distribution so 

that 
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where ),( baave  is defined at the end of this methods description. 
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The formulation of (26) ensures positivity of Q  when it is substituted into (24). 

Therefore we have 
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allowing us to calculate 
n
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from the appropriate modification of (5) (as shown in 

the appendix). 

The source terms have already been advanced. Now, we advance the cell averages to 

2
1

+n
t  and calculate boundary values using the following equations: 
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We can now compute the time-centred fluxes at the cell boundary 
2
1

±i  from 2
1

)
2
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)
2
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i
U by any upwind-biased numerical flux formula. We will use a formula, due 

to Van Leer (1981b) [14], which is based on flux-vector splitting.  

We define the forward and backward fluxes of mass and momentum using  

                                                   (31)  
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and  )()()( UFUFUF +− += . 

The numerical flux for this method being 
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The local stability condition is a combination of 

1)( ≤+
∆
∆

icu
t

µ
η

     with 1=µ ,                                                                            (33)  

and 
2
1

≤
∆
∆

ic
t
η

. 

The function ),( baave  is chosen such that it tends to )(
2
1

ba +  if a  and b  are 

subsequent finite differences of a smooth solution, but when the solution is not 

smooth it tends to the smallest value (see Van Leer,1977 [13]), 

222

2222

2
)()(

),(
ε

εε
++

+++
=

ba
baab

baave                                                                        (34) 

where 2ε is a small non-vanishing bias of the order ))(( 3η∆Ο . 

In the actual computations we used 2ε =0.008, but the results are not very sensitive to 

its precise value.  

 

In our results we see that the smooth region is modelled reasonably accurately and our 

shock is sharper and narrower than the shock produced by MacCormack’s method. 
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Figure two: Results from the second-order flux-splitting method 
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GODUNOV’S METHOD 

Godunov’s method considers the numerical values of the solution to be the cell 

averages of the analytic solution and so to have a piecewise constant distribution. It 

then goes onto solve the exact Riemann problems at each of the cell boundaries over 

the following time step. It averages the end solutions to return to a uniform constant 

distribution and this cycle is repeated.  

 

APPROXIMATE RIEMANN SOLVERS (see Leveque [3]) 

 

All the methods in this paper excluding (a) and (b) are approximate Riemann solvers. 

Approximate Riemann solvers were developed because Godunov’s method and the 

higher order variations of this method require us to solve Riemann problems at every 

cell boundary on each time step. This is very expensive and typically requires some 

iteration for nonlinear equations. After computing the Riemann problem we go onto 

average over each time step and so lose most of the structure of the resulting Riemann 

solver. This introduces large numerical errors. We therefore consider approximate 

Riemann solvers to be a possible alternative as they may produce equally good results 

with less expense.  

 

For given data iQ and 1−iQ , an approximate Riemann solution might define a function 









− t
x

Q
i

2
1

ˆ  that approximates the true similarity solution to the Riemann problem with 

data iQ and 1−iQ . This function will typically consist of some set of wM waves p

i
W

2
1

−
 

propagating at some speeds p

i
s

2
1

−
, with 
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∑
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We can generalise Godunov’s method using  this function by taking one of the 

following approaches. 

 

1. We begin by setting  
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   and substitute these values into the following equation 
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2. We use the waves and speeds from the approximate Riemann solution to define: 
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and use them in (39). 
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b) ROE’S SCHEME 

 

Roe proposed a method which approximates the system 

0=+ xt fu , 

by using a piecewise constant approximation in each cell 
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where Lu and Ru are piecewise constant states at nt  and then determines the solution 

of the following linearised problem: 

0),(
~

=+ xRLt uuuAu .                                                                                             (43)  

In this linearised problem we have 
u
f

uuA RL ∂
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=),(
~

 

where ),(
~

rl uuA  needs to satisfy the following conditions : 

    i) )()())(,(
~

lrlrrl ufufuuuuA −=−  (conservation)                                 

   ii) ),(
~

rl uuA is diagonalisable with real eigenvalues (hyperbolicity)  

  iii) )('),(
~

ufuuA rl → smoothly as uuu rl →,  (consistency) 

As shown in the appendix we find that for this problem the Roes averages are as 

follows 
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We now find the eigenvalues and eigenvectors of our matrix (as shown in the 

appendix). Once we have completed these calculations we observe that in this 

problem we have a contact discontinuity (an eigenvalue being u).  

 

We take our numerical flux function in this method to be 

pp

m

p
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where 

 pλ  are the eigenvalues, 

pr are the right eigenvectors, 

and 

pα )( lrp uul −=  

where pl  are the left eigenvectors. 

 

Therefore our numerical flux function works out to be 
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We work the source terms out separately. 
 
This method only uses shocks in the solution and is not entropy satisfying. However 

entropy fixes do exist. 
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STABILITY 

For this scheme to remain stable we require that: 

1)max( ≤
∆
∆

k
t

λ
η

.                                                                                                (47) 

 

In the results we see that this method models the general features of the smooth zone 

and produces a shock which is similar to that produced by the second-order flux-

splitting method. 
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Figure three: Results from Roe’s Scheme  
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  d) ROE’S SCHEME WITH FLUX LIMITERS 
 

In these methods we apply a limited anti-diffusive flux to Roe’s scheme.  

Flux limiters are functions of the ratio of consecutive gradients of the solution. 

We begin by choosing a high order flux Hf  that works well in smooth regions and a 

low order flux Lf  that behaves well near discontinuities. We then try to hybridise 

these two fluxes into a single flux f .  

 

This is implemented as follows 

      1. We view the high order flux as 

      )( LHLH ffff −+=                                                                                (48) 

    (i.e. it is equivalent to the low order flux plus a correction term) 

2. We apply our flux limiter to the correction term as below 

   ))(( LHL ffff −+= θφ                                                                                 (49)   

We use the limiter to try to alter the flux in relation to the data so that our method 

produces good results.  

 

 The correction term is often known as the antidiffusive flux (as above) since the low 

order flux contains too much diffusion for the smooth data and the correction term 

compensates. 

     

All the flux limiter functions that we shall study are high-resolution second-order 

TVD limiters and are defined as below: 

 

Minmod: ))1,min(,0max()( θθφ = ;                                                                        (50) 
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Superbee: )),2min(),2,1min(,0max()( θθθφ = ;                                                    (51) 

 

MC: ))2,2,2/)1min((,0max()( θθθφ += ;                                                              (52) 

 

Van Leer: 
θ
θθ

θφ
+
+

=
1

)(  .                                                                                     (53) 

 

Our limited antidiffusive flux in this case is as follows: 
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in which  
 
 

pλ  are the eigenvalues (as before), 

pr are the right eigenvectors (as before), 

and 

p

i
2
1

~
−

α )()(
2
11

p

i
ii

p uul
−

−−= θφ                                                                                     (55) 

where  

pl  are the left eigenvectors, 
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First, we looked at using the minmod limiter over all the characteristic fields and then 

went onto vary the limiters we used particularly concentrating on our contact field. 
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RESULTS FOR TEST ONE 

 

Roe’s scheme with minmod limiter: 

This has a sharp, reasonably narrow shock and a smooth zone that is modelled well.  

Roe’s scheme with Van Leer limiter applied to the contact field and minmod 

applied elsewhere: 

 This has a sharp, reasonably narrow shock and a smooth zone that is modelled well.  

 Roe’s scheme with superbee limiter applied to the contact field and minmod 

applied elsewhere: 

This has a sharp and narrow shock and a smooth zone that is modelled very well. 

Also, when we apply this method to uniform initial values and look at the results after 

30,000 time steps we see that our values have started blowing up.  

Roe’s scheme with MC limiter: 

The results of this method are very similar to those we obtained from Roe’s scheme 

with the superbee limiter applied to the contact field and minmod applied elsewhere. 

We therefore have omitted these graphs. 

Roe’s scheme with Van Leer limiter: 

The results of this method are very similar to those we obtained from Roe’s scheme 

with the Van Leer limiter applied to the contact field and minmod applied elsewhere. 

We therefore have omitted these graphs. 

  

 

In the results we see that these methods are a substantial improvement on the Roe 

scheme without limiters applied. The smooth zone is modelled very well and the 

shocks produced are sharp and narrow. The best results are produced by the method 
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with the MC limiter applied and the method with the minmod and superbee limiters 

applied. These two methods were chosen for test two. Also shown are the results these 

schemes produced after thirty thousand time steps when we start from uniform initial 

values. From these graphs we see that our results blow up after a certain amount of 

time and therefore may not be the best methods to use for this problem.   
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Figure four: Results from Roe’s scheme with minmod limiter  
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Figure five: Results from Roe’s scheme with Van Leer limiter applied to the 
contact field and minmod applied elsewhere . 

0 50 100 150 200 250 300 350
0

0.5

1

1.5

2

2.5

3

3.5

4

SPIRAL PHASE

R
H
O

0 50 100 150 200 250 300 350
0

5

10

15

20

25

30

35

40

SPIRAL PHASE

U

 

0 50 100 150 200 250 300 350
100

105

110

115

120

125

130

135

140

SPIRAL PHASE

V

 



                                                                                                                                  39   

Figure six: Results from Roe’s scheme with superbee applied to the contact field 
and minmod applied elsewhere . 
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After 30,000 time steps using uniform initial values 

0 50 100 150 200 250 300 350
0

0.5

1

1.5

2

2.5

3

3.5

4

SPIRAL PHASE 

R
H
O

 

0 50 100 150 200 250 300 350
0

5

10

15

20

25

30

35

40

SPIRAL PHASE

U

 

0 50 100 150 200 250 300 350
100

105

110

115

120

125

130

135

140

SPIRAL PHASE

V

 
 



                                                                                                                                  41   

e) ROE’S SCHEME WITH THE SOURCE TERM DECOMPOSED AND FLUX 

LIMITERS APPLIED 

 

We go on to consider this method since it is thought to create a balance between the 

flux and source term in the steady state and so satisfy the C-property of Bermudez and 

Vazquez. 

 

We can decompose the source terms as we have decomposed the flux terms. If we do 

this we have that 

∑
=∆

=
p

k
kk e

x
R

1

~~1~
β                                                                                                    (57) 

where kβ
~

 are the coefficients of the decomposition of the source terms onto the 

eigenvectors of the characteristic decomposition. 

 

From this we can approximate the source term by the following 
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RESULTS FOR TEST ONE 

 

Roe’s scheme with the source term decomposed: 

This has a sharp, reasonably narrow shock and a smooth zone that is modelled well.  

Roe’s scheme with the source term decomposed and MC limiter applied: 

This has a narrow, reasonably sharp shock and a smooth zone that is modelled well.  

Roe’s scheme with the source term decomposed and Van Leer limiter applied: 

This has a narrow, reasonably sharp shock and a smooth zone that is modelled well.  

Roe’s scheme with the source term decomposed and minmod limiter applied:  

This has a sharp and narrow shock and a smooth zone that is modelled well. 

Also, when we apply this method to uniform initial values the results are still close to 

the exact solution after 30,000 time steps.  

Roe’s scheme with the source term decomposed, the  Van Leer limiter applied to 

the contact field and minmod applied elsewhere: 

The results of this method are very similar to those we obtained from Roe’s scheme 

with the source term decomposed and the Van Leer limiter applied. 

We therefore have omitted these graphs. 

Roe’s scheme with the source term decomposed, the  superbee limiter applied to 

the contact field and minmod applied elsewhere: 

 The results of this method are very similar to those we obtained from Roe’s scheme 

with the source term decomposed and the MC-limiter applied. 

We therefore have omitted these graphs. 
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We see similarly good results from these methods as we did in (d) however there are 

some differences. We have a sharper shock with the minmod limited scheme and 

blunter shocks with the method using the MC-limiter as well as the method using a 

combination of the minmod and superbee limiters. Our best results obtained in this 

section is from the scheme using the minmod limiter.  Test two was therefore 

performed on this scheme. 

As before we also look at how the results have progressed after 30,000 time steps 

(using uniform initial values) for the minmod limited scheme. We see that these 

results do not blow up as they did in the previously studied methods and therefore 

conclude that this may be a better method for this problem. 
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Figure seven: Results from Roe’s scheme with the source term decomposed 
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Figure eight: Results from Roe’s scheme with the source term decomposed and 
minmod limiter applied.                     
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After 30,000 time steps using uniform initial values 
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Figure nine: Results from Roe’s scheme with the source term decomposed and 
MC limiter applied. 
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Figure ten: Results from Roe’s scheme with the source term decomposed and 
Van Leer limiter applied. 
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f) HLL SCHEME 
 

 
Harten, Lax and Van Leer proposed this approach for solving the Riemann problem 

approximately.  

In this method we obtain an approximation for the intercell flux directly. We assume a 

wave configuration for the solution that consists of two waves separating three 

constant states. Taking the wave speeds to be given by one of the following 

algorithms, application of the integral form of the conservation laws gives a closed-

form, approximate expression for the flux. 

 
 
Possible algorithms for the wave speeds (signal velocities) are:  
 
 
1. cuScuS RRLL +=−= , ; 
 
2. ),max(,),min( cucuScucuS RLRRLL ++=−−= ;                           (60) 
 
3. cuScuS RL +=−= , . 
 
where  u  is our Roe average. 
 
 
The HLL flux is 
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The corresponding intercell flux for the approximate Godunov method is 
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 STABILITY 
 
 

The numerical flux function may also be written in the following form 
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where 
2
1

+i
Q  (the numerical viscosity-matrix) is defined by 
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when ),( RL uuA is a Roe-type linearization which has real eigenvectors k

i
2
1

+
α , 

a complete set of eigenvectors and satisfies the property 
 

))(,( LRRLLR uuuuAFF −=− . 
 
 

Now, a necessary condition for stability is that the viscosity matrix (as defined above) 

has nonnegative eigenvalues where the eigenvalues are defined as below: 
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where ),0max( RSS =+  and  ),0min( LSS =− . 
 
 

Therefore, a necessary stability condition for the signal velocities is as follows: 
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RESULTS FOR TEST ONE 

HLL using the first algorithm for the wave speeds: 

This has a reasonably sharp shock which is displaced downstream and captures the 

most general features of the smooth zone.  

HLL using the second algorithm for the wave speeds: 

This has a shock which isn’t modelled very well and captures the most general 

features of the smooth zone.  

HLL using the third algorithm for the wave speeds : 

This has a sharp, reasonably narrow shock and captures the most general features of 

the smooth zone.   

 

In the results we see that the third algorithm for the wave speeds is the best method to 

choose for this problem. The shock in this method is slightly sharper than the other 

two and it models the smooth zone reasonably well. The methods are not as good as 

the schemes in (d) and (e) at modelling the smooth zone. In the method using the first 

algorithm we see a shock which is nearly as sharp as the shock produced using the 

third whereas the second algorithm obtains a much blunter shock than the others.  
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g) HLL SCHEME WITH THE MINMOD LIMITER APPLIED 

 

When we apply flux limiters to this scheme we use a different method to the one we 

have previously described in this paper. We apply the limiters to the waves p

i
W

2
1

−
. 

This is implemented as follows 
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and  p

i
s

2
1

−
are wave speeds determined by the HLL method. 

 

Our limited antidiffusive flux here is as below 
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RESULTS FOR TEST ONE  

 

HLL with the minmod limiter applied and using the first algorithm for the wave 

speeds: 

This has a sharp and narrow shock which is displaced downstream. It shows an 

improvement on the accuracy in the smooth zone that we found without the limiter 

but is still not one our best methods at modelling this region. 

HLL with the minmod limiter and using the second algorithm for the wave 

speeds: 

This has a reasonable sharp and narrow shock. It shows an improvement on the 

accuracy of the smooth zone that we found without the limiter but is still not one our 

best methods at modelling this region. 

HLL with the minmod limiter and using the third algorithm for the wave speeds:  

This has a relatively blunt shock. It shows an improvement on the accuracy of the 

smooth zone that we found without the limiter but is still not one our best methods at 

modelling this region. 
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Figure eleven: Results from the HLL Scheme with wave speed algorithm (1) 

0 50 100 150 200 250 300 350
0

0.5

1

1.5

2

2.5

3

3.5

4

SPIRAL PHASE

R
H
O

 

0 50 100 150 200 250 300 350
0

5

10

15

20

25

30

35

40

SPIRAL PHASE

U

 

0 50 100 150 200 250 300 350
100

105

110

115

120

125

130

135

140

SPIRAL PHASE

V

 
 



                                                                                                                                  55   

Figure twelve: Results from the HLL Scheme with the minmod limiter applied 
and using wave speed algorithm (1) 
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Figure thirteen: Results from the HLL Scheme with wave speed algorithm (2) 
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Figure fourteen: Results from the HLL Scheme with the minmod limiter applied 
and using wave speed algorithm (2) 
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Figure fifteen: Results from the HLL Scheme with wave speed algorithm (3) 
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Figure sixteen: Results from the HLL Scheme with the minmod limiter applied 
and using wave speed algorithm (3) 
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h) HLLC SCHEME 
 
 
A modification of the HLL scheme is the HLLC method. This was suggested by Toro, 

Spruce and Spears. It is a better scheme to apply on our problem as we are dealing 

with a three equation system and so the two-wave assumption is incorrect. The C in 

HLLC stands for contact. In this method we modify the Riemann solver to obtain a 

more accurate approximation of our contact discontinuity. We do this by including the 

middle wave of speed *S  in our calculations in addition to the fastest and slowest 

(which were used in HLL). 

 

The HLLC approximate solver is as follows: 
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The following conditions are imposed on the approximate Riemann solver: 
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the HLLC flux for the approximate Godunov method is 
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RESULTS FOR TEST ONE  

HLLC using the first algorithm for the wave speeds: 

This has a sharp, narrow shock which is displaced downstream and captures the most 

general features of the smooth zone. 

HLLC using the second algorithm for the wave speeds : 

This has a narrow, reasonably sharp shock and captures the most general features of 

the smooth zone. 

HLLC using the third algorithm for the wave speeds:  

This has a relatively blunt shock and captures the most general features of the smooth 

zone. 

  

In the results we see that the best method for this problem is the scheme which uses 

the first algorithm for the wave speeds. It has a sharp shock and models the smooth 

zone reasonably well. Again the smooth zone in these methods is not modelled nearly 

as well as it was using (d) and (e). The third algorithm was the worst of the three 

producing a blunter shock. 
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i) HLLC SCHEME WITH THE SUPERBEE LIMITER APPLIED TO THE 

CONTACT FIELD AND MINMOD APPLIED ELSEWHERE. 

 

This is implemented in a similar way to the method shown above for the flux limited  

HLL scheme.  

 
 
RESULTS FOR TEST ONE  

HLLC with the superbee limiter applied to the contact field, minmod applied 

elsewhere and using the first algorithm for the wave speeds: 

This has a sharp, narrow shock and models the smooth zone well.  

HLLC with the superbee limiter applied to the contact field, minmod applied 

elsewhere  and using the second algorithm for the wave speeds : 

This is one of our best methods. It has a sharp, narrow shock and models the smooth 

zone well.  

When we apply this method to uniform initial values and look at the results after 

30,000 time steps we see that our values have started blowing up.  

 HLLC with the superbee limiter applied to the contact field, minmod applied 

elsewhere  and using the third algorithm for the wave speeds:  

This has a narrow, reasonably sharp shock and models the smooth zone well. 
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Figure seventeen: Results from the HLLC Scheme with wave speed algorithm (1) 
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Figure eighteen: Results from the HLLC Scheme with the superbee limiter 
applied to the contact field, minmod applied elsewhere and using wave speed 
algorithm (1) 
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Figure nineteen: Results from the HLLC Scheme with wave speed algorithm (2) 
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Figure twenty: Results from the HLLC Scheme with the superbee limiter applied 
to the contact field, minmod applied elsewhere and using wave speed algorithm 
(2) 
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After 30,000 time steps using uniform initial values 
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Figure twenty-one: Results from the HLLC Scheme with wave speed algorithm 
(3) 
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Figure twenty-two: Results from the HLLC Scheme  with the superbee limiter 
applied to the contact field, minmod applied elsewhere and using wave speed 
algorithm (3) 
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CALCULATED ERRORS IN THE SMOOTH ZONE 
 
TEST ONE 
 
SCHEME AVE.OF ABS. 

ERRORS IN RHO 
AVE.OF ABS. 
ERRORS IN U 

AVE.OF ABS. 
ERRORS IN V 

MacCormack’s method 0.02213081 0.246966 0.164614 

Second-order flux-
splitting method 

0.0351086 0.53583 0.20800 

Roe’s method 0.03775312 0.611001 0.230072 

Roe’s method with 
minmod limiter 

0.02204784 0.198943 0.193965 

Roe’s method with MC 
limiter 

0.01868166 0.137541 0.186092 

Roe’s method with van 
Leer limiter 

0.01983648 0.150512 0.189726 

Roe’s method with 
minmod and van Leer  

0.02064359 0.162159 0.185261 

Roe’s method with 
minmod and superbee  

0.01729878 0.121218 0.182321 

With source term 
decomposed 

   

Roe’s method 0.01308100 0.149290 0.200135 
Roe’s method with  
minmod applied 

0.01877022 0.197524 0.148464 

Roe’s method with  
MC-limiter applied 

0.01759703 0.159043 0.151072 

Roe’s method with van 
leer limiter applied 

0.01826681 0.156895 0.146105 

Roe’s method with 
minmod and  van leer 

0.01857917 0.169565 0.141185 

Roe’s method with  
minmod and  superbee  

0.01613746 
 

0.157628 0.147561 
 

 HLL method (1) 0.03832700 
 

0.528293 0.215260 

HLL method (1) with 
minmod applied  

0.03394140 0.328469 0.225486 

HLLC method (1) 0.03596082 0.504485 0.206247 
HLLC method (1) with 
minmod and superbee 

0.01602880 0.117367 0.193181 

HLL method (2) 0.03888338 0.574836 0.229622 
HLL method (2) with 
minmod applied 

0.02710122 0.299554 0.208508 

HLLC method (2) 0.03569156 0.560873 0.217723 
HLLC method (2) with 
minmod and superbee 

0.01631037 0.113876 0.183057 

HLL method ( 3) 0.03622968 0.531410 0.213227 
HLL method (3) with 
minmod applied 

0.02913047 0.336032 0.217052 

HLLC method (3) 0.03346389 
 

0.504332 0.202928 
 

HLLC method (3) with 
minmod and superbee 

0.01705845 0.125504 0.186109 



                                                                                                                                  71   

TEST TWO 
 
SCHEME AVE.OF ABS. 

ERRORS IN 
RHO 

AVE.OF ABS. 
ERRORS IN U 

AVE.OF ABS. 
ERRORS IN V 

HLLC method (2) with 
minmod and superbee 

0.171665 4.28341 2.34807 

Roe’s method with MC 
limiter 

0.174213 4.10867 2.32001 

Roe’s method with 
minmod and superbee 

0.175255 4.15482 2.37474 

With source term 
decomposed 

   

Roe’s method with  
minmod applied 

0.170250 4.14017 2.28312 
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RESULTS 
 
 

In the HLL method the density peak is displaced downstream and only the most 

general features of the smooth zone are represented. The third algorithm for the signal 

velocities produced the best results with a density peak that is better represented and a 

narrower shock. The HLLC scheme is similarly quite poor at modelling the smooth 

zone. In the first two algorithms it produces sharper shocks than HLL (this is not so 

for the third). The best algorithm of the three for modelling the shock using the HLLC 

method is the first one.  

 

The HLL method with the minmod limiter applied improved on the shocks found by 

the HLL scheme without the limiter but the smooth zone was still not as accurate as 

we would like. However when we went on to apply a combination of the superbee and 

minmod limiters to the HLLC scheme we found very good results. The results were 

particularly good for the schemes which used wave speed algorithms (1) and (2).    

 

Roe’s method produces results that are much like the best of the HLL scheme without 

limiters applied. However these results are substantially improved when we apply the 

flux limiters to Roe’s method. From the limited schemes we find results that follow 

the smooth zone closely and produce sharper and narrower shocks. All of the plotted 

limiters showed very good results. The best two are the scheme limited by a 

combination of the minmod and superbee limiters and that using the MC-limiter. 

These were closely followed in accuracy by the scheme which was limited by a 

combination of the minmod and Van Leer limiters. 
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When we decompose the source term and apply the flux limiters we find similarly 

good results as for the limited schemes mentioned above. There are a few differences 

between the two however which is mainly shown in the shock. The shock using the 

minmod limiter becomes sharper using this method whereas the shock in the scheme 

using the MC–limiter and the scheme using a combination of the superbee and 

minmod limiters becomes blunter. 

 

All of our new results produced sharper and narrower shocks than MacCormack’s. 

Roe’s scheme with limiters applied, the HLLC scheme with limiter applied, and Roe’s 

method with the source term decomposed and limiters applied produced the best 

results. They produced good approximations of the smooth zone and modelled the 

shock well. 

The methods that we chose to perform test two on were 

1) Roe’s scheme with the MC limiter applied,  

2) Roe’s scheme with a combination of the minmod and superbee limiters 

applied,  

3) Roe’s scheme with the source term decomposed and minmod limiter applied,   

4) The HLLC scheme with a combination of the minmod and superbee limiters  

      applied. 

All of the schemes produced similar results in the test. However when we looked at 

their progression after 30,000 time steps we saw that the results of  (1), (2) and (4) 

blew up whereas (3) stayed close to the exact solution. 
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CONCLUSIONS AND RECOMMENDATIONS 

 

The programming effort of Roe’s scheme with flux limiters applied, the HLLC 

scheme with flux limiter applied, and Roe’s scheme with the source term decomposed 

and flux limiters applied is similar to that of the second order flux splitting method 

but the limited schemes produced the better results.  

While MacCormack’s method and the second order flux splitting method are 

reasonably accurate in the smooth region of the flow they cannot compare with the 

best methods found in this study at modelling the shock. 

Now, taking the progression after 30,000 time steps into consideration we would 

prefer Roe’s method with the source term decomposed and flux limiters applied out of 

our preferred methods. 

Concisely, we would recommend Roe’s scheme with the source term decomposed and 

flux limiters (in particular minmod) applied to be used in the flow problem. 
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APPENDIX 
 
 
 In this appendix we show the calculations which enable us to implement our 

methods. 

First, we show the calculations which led to the necessary equations for 
n

it
Q









∂
∂

 in the 

Second order flux splitting method. 

Following this are our calculations to find the decomposition and Roe averages used 

in the Roe scheme. 

 
SECOND-ORDER FLUX-SPLITTING METHOD 
 
 

The following calculations show how to obtain 
n
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We can also write (ii) in the following form: 
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From (iv) minus u multiplied by (i) we obtain 
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We can now manipulate this equation as shown below: 
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Q

c
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Therefore we have that 

 

 

From (i) by simple manipulation we find 
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∂

−+
∂
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From (iii) we find 
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t
Q
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Now, by taking (i) multiplied by v  away from this equation we get 
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After some manipulation this becomes 
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Finally, we have obtained the following equations: 
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ROE’S SCHEME 

 

Taking 
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Next, we work out the derivative of F as follows: 
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We now go on to find the eigenvalues and eigenvectors of this matrix. 

 

FINDING OUR EIGENVALUES 
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Therefore our eigenvalues are  .,, cucuu −+  

 

FINDING OUR EIGENVECTORS 
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from which we have 
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.)( uzuzvyxuv =++−  

From the first of the three equations we find 

,
u
y

x =  

and substituting this into the second equation we have 

.2)( 22 uyuy
u
y

uc =+−  

By manipulating this equation we find 
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Therefore by the above equation we must have that 
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Now, substituting these values into the third equation we find that our z can be any 
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and by substituting this into the second equation we have 
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cu

yuc
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By manipulating this equation we find  

yy = . 

Now, if we take 
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and substitute these values into the third equation we find 
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and substituting this into the second equation we have 

ycuuy
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)(2
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. 

By manipulating this equation we find 

yy = . 

Now, if we take 

1=x , 
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and substitute these values into the third equation we find 
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from which we have 
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Finally, we have found that our three right eigenvectors are as follows: 
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We can now find our left eigenvectors by finding the inverse of the following matrix. 
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Finding the inverse: 
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Therefore our inverse is as follows: 

















−
−+

−

ccv
cu

uc

c
202
01)(

01)(

2
1

 

and so our left eigenvectors are 
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ROE AVERAGES 

 

As a parameter vector we choose 
















=

v
uQz

1

, 

from which we find 

















=















=

31

21

2
1)(

zz
zz

z

Qv
Qu
Q

u  , 
















=

∂
∂

13

12

1

0
0

002

zz
zz

z

z
u

 , 
















+=
















+=

32

2
1

22
2

21
22 )()()(

zz
zcz

zz

Quv
cuQ

Qu

F  , 
















=

∂
∂

23

21
2

12

0
022

0

zz
zzc

zz

z
F

 , 

and 

















−
−=

uvvu
uucuuA RL 02

010

),( 22   where u  and v  are the Roe averages as defined 

below: 

 
LR

LLRR

QQ

uQuQ

z
z

u
+

+
==

1

2  , 

LR

LLRR

QQ

vQvQ

z
z

v
+

+
==

1

3  . 



                                                                                                                                  84   

ACKNOWLEDGEMENTS 

 

I would like to thank Dr.P.K.Sweby for all his help. I am also grateful for the financial 

support received from EPSRC.    

 

REFERENCES 

 

Bermudez, A., Vazquez, M.: 1994, Computers Fluids, Vol.23, No.8, 1049.           [1]                                                                                  

Einfeldt, B.: 1988, SIAM J. on Numerical Anal., Vol.25, Issue 2, 294.                    [2]                                                        

Leveque, R.J.: Finite Volume Methods for Hyperbolic Problems, 

Cambridge Texts in Applied Mathematics.                                                                 [3] 

Leveque, R.J.: Numerical Methods in Conservation Laws.                                        [4]   

Lin, C.C., Lau, Y.Y.: 1979, Studies in Appl. Math. 60, 97.                                        [5] 

Lin, C.C., Shu, F.H.: 1964, Astrophysics J. 140, 646.                                                [6] 

Lin, C.C., Shu, F.H.: 1966, Proc. Natl. Acad. Sci. USA. 55, 229.                              [7] 

Roberts, W.W.: 1969, Astrophysics J. 158, 123.                                                        [8] 

Sanders, R.H., Prendergast, K.H.: 1974, Astrophysics J. 188, 489.                           [9] 

Shu, F.H., Milione, V., Roberts, W.W.: 1973, Astrophysics J. 183, 819.                [10] 

Toomre, A.: 1977, Ann. Rev. Astron. Astrophys. 15, 437.                                       [11] 

Van Albada, G.D., Van Leer, B., Roberts, Jr, W.W.: 1982, Astronomy and  

Astrophysics. 108, 76.                                                                                               [12]  

Van Leer, B.:1977, J. Computational Phys. 23, 276.                                                [13] 

Van Leer, B.:1981b, ICASE Report.                         .                                               [14] 

Woodward, P.R.:1975, Astrophysics J. 195, 61.                                                       [15]  

  


