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Abstract

We consider scale-invariant problems governed by nonlinear partial
differential equations on finite moving domains that conserve total
mass in time.

We show that, under spatial deformations of the domain driven
by a local conservation of mass principle, an initial condition that
coincides with a self-similar scaling solution is propagated as the self-
similar solution for all time, while for spatial deformations generated
by the conservation of distributed masses, an initial condition that
coincides with the piecewise-linear L2 projection of the self-similar
solution is propagated as the piecewise-linear L2 projection of the
self-similar solution for all time, the latter exhibiting a discrete scaling
symmetry.

For more general initial conditions we adapt the proofs to obtain
related scale-invariant procedures that possess the S-property, i.e. if
the initial condition coincides with a self-similar scaling solution (in
an appropriate norm), then it is propagated as the self-similar scaling
solution exactly in that norm (modulo a projection error in the L2

case).
Scale-invariant finite-difference and finite-element (piecewise-linear)

schemes are constructed for classes of flux-driven mass-conserving
problems. The finite-difference scheme possesses the S-property in
the l∞ norm, thus preserving a discrete scaling symmetry, while the
finite-element scheme possesses the S-property (in the L2 norm) mod-
ulo the projection error.

The S-property is suggested as a yardstick for establishing con-
fidence in numerical schemes for nonlinear scale-invariant problems,
in a similar way to which standard schemes on fixed grids for linear
problems are constructed so as to be exact for polynomial solutions of
given degree.
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1 Introduction

Many problems governed by partial differential equations (PDEs) that
arise in practical applications possess scaling properties which are in
a sense more fundamental than the equations themselves [14]. In ap-
proximating such problems by numerical schemes it is desirable to
construct algorithms that preserve these scaling properties, an objec-
tive beyond the reach of conventional numerical schemes using fixed
meshes for which the mesh depends on neither time nor the solution.
The preservation of such properties is an aspect of geometric inte-
gration, which was reviewed by Budd and Piggott in [12, 14] who
considered the effectiveness of numerical methods in preserving geo-
metric structures of differential equations, including the necessity for
moving meshes. In this paper we relate scaling properties to the con-
servation of local or distributed masses on moving meshes, leading to
procedures that propagate scaling symmetries exactly in time.

We recognise features similar to those in Noether’s Theorem (see
e.g.[23]) for PDEs derived from a variational principle, that a continu-
ous symmetry implies the existence of conserved quantities. However,
in this paper we are concerned with a separate class of PDE problems.

Moving-mesh schemes may be categorised as mapping-based or
velocity-based (see [17]). Mapping-based schemes, often based on
equidistribution, have been extensively discussed in [11, 17, 15, 13],
while velocity-based moving-mesh schemes can be found in [18, 22, 7,
16, 1, 28, 2, 3, 25, 4, 21, 6, 9, 10, 24, 27]. Velocity-based moving-mesh
schemes are particularly well adapted to problems posed on finite mov-
ing domains with free or moving boundaries whose location depends
on the solution. Our approach is velocity-based.

In [25] a velocity-based scale-invariant moving-mesh finite-difference
scheme based on local mass conservation was shown to propagate a
self-similar solution of a second order nonlinear diffusion problem with
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a moving boundary exactly to within rounding error. Also, in [9],
velocity-based scale-invariant moving-mesh finite-difference and finite-
element schemes based on conservation were shown to propagate self-
similar solutions of a fourth-order nonlinear moving boundary problem
exactly to within rounding error.

In this paper we generalise these results by proving first that for
a general class of scale-invariant mass-conserving PDE problems de-
formations of the domain generated by the conservation of local (or
distributed) masses imply the exact propagation of self-similar solu-
tions (or their L2 projections) in time. We then adapt the steps of
the proof to apply to a class of scale-invariant problems with general
initial conditions, resulting in numerical algorithms that possess the
S-property, defined as the exact propagation of a scaling symmetry
when the initial condition coincides with the self-similar scaling solu-
tion in some norm.

The layout of the paper is as follows. In section 2 we prove that,
for scale-invariant time-dependent PDE problems that conserve to-
tal mass, conservation of local mass implies the propagation of self-
similar scaling solutions exactly in time. Then, in section 3 we prove
that conservation of distributed (piecewise-linear) masses implies the
same property in the case of the L2 projection of a self-similar scaling
solution, thus preserving a discrete scaling symmetry in the L2 norm.

In section 4 these procedures are extended to general initial condi-
tions, yielding algorithms for a class of first-order-in-time flux-driven
PDEs that possess the S-property in some norm.

Finite-difference and finite-element algorithms are presented in sec-
tion 5 for classes of flux-driven problems, again aiming for the S-
property. The finite-difference scheme possesses the S-property in the
l∞ norm when a function is interpolated quadratically from adjacent
gridpoints, while the finite-element scheme possesses the S-property
(in the L2 norm) but subject to a projection error.

An illustrative example is given in section 6 and the paper sum-
marised in section 7.

We first recall the concepts of scale invariance and similarity.

1.1 Scale invariance

A problem governed by a one-dimensional time-dependent PDE for
a scalar function u(x, t) (density) in a moving interval (a(t), b(t)) is
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scale-invariant if it is unaltered under the scalings

t→ λαt, x→ λβx, u→ λγu, (1)

where λ is the group parameter. Here α, β, γ are scaling exponents
for the particular PDE, (and a(t), b(t) scale in the same way as x).
Without loss of generality we take α = 1.

Under the transformation (1) the total mass, defined as

θ(t) =

∫ b(t)

a(t)
u(x, t) dx, (2)

scales as λγ+β. When the total mass is independent of time γ+β = 0.
Similarity variables (themselves scale-invariant) may be defined as

x

tβ
= ξ,

u

t−β
= η

using γ + β = 0. Also define

ξa =
a(t)

tβ
, ξb =

b(t)

tβ

1.2 Self-similarity

We define a self-similar scaling solution to be an ansatz of the form

u(x, t) = tγη(ξ), where x = tβξ (3)

The function η(ξ) satisfies a reduced order differential equation (see
e.g. [8, 11]) in which the partial time derivative of u is

∂tu = t−β−1{−βη(ξ)− βξη′(ξ)} = −βt−β−1(ξη(ξ))′ (4)

From (3), for each fixed ξ the time evolution of the x coordinate
(written here as x̂(t)) is effected by a similarity velocity

v(x̂(t), t) =
dx̂

dt
= βtβ−1ξ =

βx̂(t)

t
(5)
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2 Propagation of scaling symmetry

2.1 An integral invariant

An invariance property of the self-similar scaling solution (3) is that
the local masses between any two coordinates x̂1(t) and x̂2(t),∫ x̂2(t)

x̂1(t)
u(χ, t) dχ (6)

are independent of time for all those a(t) ≤ x̂1(t) < x̂2(t) ≤ b(t)
that are proportional to ξa ≤ ξ1 < ξ2 ≤ ξb respectively, by the factor
tβ. The result follows by substituting χ = tβζ into (6) to obtain the
time-invariant quantity ∫ ξ2

ξ1
η(ζ) dζ

where ξ1 = x̂1(t)/t
β and ξ2 = x̂2(t)t

β.
We prove a converse of this property.

2.2 Theorem 1

Theorem 1: Let the density u(x, t) be a strictly positive solution of
a time-dependent scale-invariant mass-conserving PDE problem in a
moving domain (a(t), b(t)).

If

• the points x̂1(t), x̂2(t) of the domain move in such a way that
the local masses∫ x̂2(t)

x̂1(t)
u(χ, t) dχ (= c(x̂1, x̂2) , say) (7)

are constant in time for all a(t) ≤ x̂1(t) < x̂2(t) ≤ b(t),
• the initial condition on u(x, t) coincides with a self-similar scaling

solution of the form (3) for all x,

then for any moving coordinate x̂(t) the solution u(x̂(t), t) coincides
with the self-similar scaling solution (3) in the interval a(t) ≤ x̂(t) ≤
b(t) for all t, thus preserving a scaling symmetry, and the induced
velocity v(x̂(t), t) is the similarity velocity (5)..
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As a preliminary to the proof we obtain the differential equation
satisfied by the velocity v(x, t) induced by the invariance of (7).

Lemma 1:
The velocity v(x, t) induced by (7) satisfies∫ x̂2(t)

x̂1(t)
∂tu(χ, t) dχ+ [uv]

x̂2(t)

x̂1(t)
= 0 (8)

for all a(t) ≤ x̂1(t) < x̂2(t) ≤ b(t), where v(x, t) is the induced velocity
Proof: From (7),

d

dt

∫ x̂2(t)

x̂1(t)
u(χ, t) dχ = 0

for all a(t) ≤ x̂1(t) < x̂2(t) ≤ b(t), leading by Leibnitz’ Integral Rule
to ∫ x̂2(t)

x̂1(t)
∂tu(χ, t) dχ+ [uv]

x̂2(t)

x̂1(t)
= 0

for all a(t) ≤ x̂1(t) < x̂2(t) ≤ b(t), as required.

Proof of Theorem 1:

The proof is in six parts.

1. In the first part we show that at the initial time t = t0, say, the
velocity induced by (7) is the similarity velocity v(x, t0) = βx/t0 of
(5) for all a(t0) < x < b(t0).

At time t = t0 the initial condition u(x, t0) coincides with the
self-similar scaling solution u(x, t0) = (t0)−βη(ξ0) of (3), where ξ0 =
x/(t0)β and ∂tu is given by (4). Substituting into (8) at t = t0 we
obtain the reduced order equation∫ x̂2(t0)

x̂1(t0)

{
−β(t0)−β−1η(ζ)− βζ∂ζη

}
dχ+ (t0)γ

[
η(ξ) v(x, t0)

]x̂2(t0)
x̂1(t0)

= 0

(9)
where now ξ = x/(t0)β, ζ = χ/(t0)β.

Changing the integration variable from χ to ζ = χ/tβ, equation
(9) reduces to∫ ξ02

ξ01

{
−β(t0)β−1∂ζ(ζη(ξ))

}
dζ +

[
η(ξ) v(x, t0)

]ξ02
ξ01

= 0 (10)
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at t = t0, for all ξ0a ≤ ξ01 < ξ02 ≤ ξ0b such that

ξ01 =
x̂1(t

0)

(t0)β
, ξ02 =

x̂2(t
0)

(t0)β
, ξ0a =

a(t0)

(t0)β
, ξ0b =

b(t0)

(t0)β
,

Hence from (10)

[−β(t0)β−1ξ0η(ξ0) + η(ξ0)v(x, t0)]
ξ02
ξ01

= 0 (11)

where ξ0 = x/(t0)β.
In order to solve (8) uniquely for the velocity v(x, t0) a value is

requred at one point. Without loss of generality we take the point at
which v(x, t0) is zero to coincide with the origin of ξ0 . Thus, putting
ξ01 = 0 and taking ξ02 as a general point ξ0 in equation (11), we obtain

η(ξ0){−β(t0)β−1ξ0 + v(x, t0)} = 0

Since η(ξ0) > 0 (because u(x, t0) > 0) it follows that

v(x, t0) = β(t0)β−1ξ0 =
βx

t0
, (12)

as required.
Remark: Equation (12) does not follow immediately by differenti-

ating the second of (3) with respect to t since (3) holds only at t = t0.
On the other hand, the reduced order equation holds at t = t0 with
∂tu given by (4) at ξ = ξ0.

2. In the second part of the proof we show that under a deformation
of the domain initiated by the velocity (12) the similarity variable
ξ1 = x(t1)/(t1)β is equal to ξ0 at time t1 = t0 + h to second order in
h.

Let x̂(t) be a moving coordinate, coinciding with x at t = t0 and
moving with the velocity v(x, t0) of (12). Given an increment h in
time, a Taylor series expansion of x̂(t) at t1 = t0 + h yields

x̂(t1) = x̂(t0) + h v(x̂(t0), t0) +O(h2) (13)

Substituting for v(x̂(t0), t0) from (12), we obtain

x̂(t1) = x̂(t0) + h
βx̂(t0)

t0
+O(h2) =

(
1 +

βh

t0

)
x̂(t0) +O(h2)
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=

(
1 +

h

t0

)β
x̂(t0) +O(h2) =

(
t1

t0

)β
x̂(t0) +O(h2),

showing that the similarity variable

ξ1 =
x̂(t1)

(t1)β
=
x̂(t0)

(t0)β
+O(h2) = ξ0 +O(h2) (14)

is invariant to order h2.

3. In the third part of the proof we demonstrate that under the
deformation generated by (12) the similarity variable η(ξ) is also in-
variant to second order in h. From the conservation property (7)∫ x̂(t1)

a(t1)
u(χ, t1) dχ =

∫ x̂(t0)

a(t0)
u(χ, t0) dχ (15)

Differentiating (15) wrt x̂(t1) we obtain

u(x̂(t1), t1) =
dx̂(t0)

dx̂(t1)

d

d(x̂(t0), t0)

∫ x̂(t0)

a(t0)
u(χ, t0) dχ

=
dx̂(t0)

dx̂(t1)
u(x̂(t0), t0)

Thus, due to (14)

u(x̂(t1), t1)

(t1)−β
=
u(x̂(t0), t0)

(t0)−β
= η(ξ0) +O(h2),

equivalently,

η(ξ1) =
u(x̂(t1), t1)

(t1)−β
= η(ξ0) +O(h2), (16)

using (14) again. Thus the similarity variable η(ξ) of (3) is invariant
to order h2.

4. The fourth part of the proof is concerned with repetition of the
first three parts over a further time step h. Returning to (11) and
using the invariants ξ and η(ξ) of (14) and (16) to order h2, we find
that at t = t1

η(ξ1){−β(t1)β−1ξ1 + v(x, t1)} = O(h) (17)
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where the right hand side of (17) is O(h) rather than O(h2) since one
power of h is lost in the differentiation with respect to ξ in deriving
(10) from (8) using (4). Hence by equations (11) through to (12) with
t0 replaced by t1,

v(x, t1) =
βx

t1
+O(h)

Thence, by the argument from equation (13) through to (16) with
t0 and t1 replaced by t1 and t2, respectively, we obtain

ξ2 =
x̂(t2)

(t2)β
=
x̂(t1)

(t1)β
=
x̂(t0)

(t0)β
= ξ0, (18)

η(ξ2) =
u(x(t2), t2)

(t2)−β
=
u(x(t1), t1)

(t1)−β
=
u(x(t0), t0)

(t1)−β
= η(ξ0) (19)

together with two terms of order h2 in each equation (18) and (19).
Thus ξ2 and η(ξ2) are invariant to order h2.

5. After n time steps of h we find that at tn = t0 + nh

v(x, tn−1) =
βx

tn−1
+O(h)

as well as

ξn =
x(tn)

(tn)β
=
x(t0)

(t0)β
= ξ0, (20)

and

η(ξn) =
u(x(tn), tn)

(tn)−β
=
u(x(t0), t0)

(t0)−β
= η(ξ0), (21)

together with n terms of order h2 in each equation (20) and (21).

6. In the final part of the proof we let h→ 0 and n→∞ in such
a way that nh = t− t0, so that nh2 = O(h). It follows that at time t

v(x, t) =
βx

t
+O(h),

i.e

v(x̂(t), t) =
βx̂(t)

t
+O(h)

Also

ξ =
x̂(t)

tβ
=
x̂(t0)

(t0)β
+O(h) = ξ0 +O(h),
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η(ξ) =
u(x̂(t), t)

t−β
=
u(x̂(t0), t0)

(t0)−β
+O(h) = η(ξ0) +O(h),

In the limit

v(x̂(t), t) =
βx̂(t)

t

and

ξ =
x̂(t)

tβ
= ξ0, η(ξ) =

u(x̂(t), t)

t−β
= η(ξ0),

for all t > t0. Hence u(x̂(t), t) coincides with the self-similar solution
(3), and v(x̂(t), t) concides with the similarity velocity (5) for all t > t0.
This completes the proof.

We now seek a similar finite-dimensional result in the L2 norm.

3 Propagation of scaling symmetry in

the L2 norm

Denote by U(x, t) the strictly positive L2 projection of a density u(x, t)
into an (N + 2) dimensional subspace of piecewise linear functions on
the subdivision

a(t) = X0(t) < . . . < XN+1(t) = b(t) (22)

of the interval (a(t), b(t)), satisfying the projection condition∫ b(t)

a(t)
Wi(ζ) {U(χ, t)− u(χ, t)} dχ = 0, (i = 0, . . . , N + 1) (23)

where ζ = χ/tβ, for all Wi belonging to te set of piecewise-linear basis
functions on the subdivision (22) constituting a partition of unity. By
summing (23) over all i,∫ b(t)

a(t)
u(χ, t)dχ =

∫ b(t)

a(t)
U(χ, t)dχ

(cf. (2)), showing that the total masses are the same.
Scaling invariance holds as in section 1.1.
The L2 projection of the self-similar scaling solution (3) is defined

as
U(x, t) = t−βN (ξ) where ξ =

x

tβ
(24)
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The function N (ξ) satisfies a reduced order equation in which the
partial time derivative of U(x, t) is

∂tU = −βt−β−1N )(ξ) + (−β)tγ−1ξ∂ξN )(ξ) = −βt−β−1∂ξ(ξN ) (25)

From (24), for each fixed ξ the variation of the spatial coordinate with
time (written here as x̂(t)) is effected by a similarity velocity defined
as

V (x̂(t), t) =
dx̂

dt
= βtβ−1ξ =

βx̂(t)

t

3.1 Invariant integrals

The self-similar scaling solution (3) has the property that for any
square-integrable function W (x/tβ) the weighted integrals∫ b(t)

a(t)
Wi(ζ)u(χ, t) dχ (26)

(i = 0, . . . , N + 1), where ζ = χ/tβ, are invariant in time for all
Wi constituting a partition of unity in the interval (a(t), b(t)) and all
a(t), b(t) proportional to the time-independent coordinates ξa, ξb by
a factor tβ. The result follows by substituting χ = tβζ into (26) to
obtain the time-invariant quantity∫ ξb

ξa
Wi(ζ) η(ζ) dζ

where ξa = a(t)/tβ and ξb = b(t)/tβ.
A similar property holds for L2 projections U(x, t). The weighted

integrals ∫ b(t)

a(t)
Wi(ζ)U(χ, t) dχ

(i = 0, . . . , N + 1), are also time-invariant for all weight functions
Wi(ζ) constituting a partition of unity in the interval (a(t), b(t)) and
all a(t), b(t) proportional to the time-independent coordinates ξa, ξb
by a factor tβ, the result following from (23) and (26).

We prove a converse of this result.
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3.2 Theorem 2

Theorem 2:

If

• the nodes of the partition move such that the weighted masses∫ b(t)

a(t)
Wi(ζ)U(χ, t) dχ (= Ci, say), (27)

where ζ = χ/tβ, are independent of time for all i = 0, . . . , N + 1,

• the piecewise-linear weight functions Wi are advected with a
piecewise-linear velocity V induced by (27) (NB: velocities that
advect piecewise-linear functions Wi exactly must be piecewise-
linear.),

• the initial condition on U(x, t) coincides with the L2 projection
of a self-similar scaling solution of the form (3) for all a(t) < x <
b(t),

then for any moving coordinate x̂(t) the projected solution U(x̂(t), t)
coincides with the L2 projection of the self-similar scaling solution (3)
in the domain a(t) ≤ x̂(t) ≤ b(t) for all t, thus exhibiting a discrete
scaling symmetry in the L2 norm, and V (x̂(t), t) coincides with the
similarity velocity (5).

As a preliminary to the proof we obtain the weak form of the differ-
ential equation satisfied by a piecewise-linear velocity V (x, t) induced
by the invariance of (27).

Lemma 2:
The invariance of (27) together with the advection property of the

Wi implies that ∫ b(t)

a(t)
Wi(ζ) {∂tU + ∂χ(UV )}dχ = 0 (28)

for all i = 0, . . . , N + 1. where V (x, t) is the induced piecewise-linear
velocity.

Proof: By the Reynolds Transport Theorem applied toW (ξ)U(x, t),

d

dt

∫ b(t)

a(t)
Wi(ζ)U(χ, t)dχ =

∫ b(t)

a(t)
Wi(ζ, t) {∂tU + ∂χ (UV )} dχ
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+

∫ b(t)

a(t)
U(χ, t) {∂tWi + V (χ, t) ∂χWi} dχ, (29)

where V (x, t) is any velocity field consistent with the the boundary
velocities.

The advection property of the basis functions Wi gives

∂tWi + V ∂xWi = 0 (30)

reducing (29) to

d

dt

∫ b(t)

a(t)
Wi(ζ)U(χ, t)dχ =

∫ b(t)

a(t)
Wi(ζ, t) {∂tU + ∂χ (UV )} dχ (31)

where V (x, t) is piecewise-linear.
The Lemma follows from (31) and the time invariance of (27).

We now turn to the proof of Theorem 2.

Proof of Theorem 2

The proof is again in six parts.

1. In the first part we show that the velocity induced by (27) is
the similarity velocity (12).

At time t = t0 the initial condition U(x, t0) coincides with the L2

projection (t0)γN (ξ0) of the self-similar scaling solution (24), where
ξ0 = x/(t0)β and ∂tU is given by (25).

Substituting into (28) at t = t0 we obtain∫ b(t0)

a(t0)
Wi(ζ){−βt−β−1∂χ(ξN ) + t−β−1∂χ(NV (χ, t))}dχ = 0 (32)

at t = t0, where ζ = χ/(t0)β, ξ0a = a(t)/tβ and ξ0b = b(t)/tβ.
Changing the integration variable from χ to ζ, equation (32) re-

duces to∫ ξ0b

ξ0a

Wi(ζ){−β(t0)β−1∂ζ(ζN (ζ)) + ∂ζ(N (ζ)V (x, t0))}dζ = 0,

Let
Z(ζ) = −β(t0)β−1ζ + V (x, t0) (33)
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so that (32) can be written∫ ξ0b

ξ0a

Wi(ζ) ∂ζ{N (ζ)Z(ζ)}dχ = 0, (i = 0, . . . , N + 1) (34)

at t = t0.
Expanding Z(ζ) as

Z(ζ) =
J∑
j=1

ZjWj(ζ, t)

equation (34) yields the matrix equation

B(N )Z = 0 (35)

at t = t0, where Z = {Zi} and the matrix B(N ) has entries∫ ξ0b

ξ0a

Wi(ζ) ∂ζ{N (ζ)Wj(ζ)}dζ (i, j = 0, . . . , N + 1)

In order to solve for V (x, t0) uniquely a value of V is required at one
point. Without loss of generality we choose the origin of ζ to be the
point where V is zero, so that Z(0) = 0. As in Theorem 1 the velocity
V (x, t) requires an anchor condition for uniqueness which without loss
of generality we take to be zero at ξ0 = ξ0a = 0, so that Z(0) = 0. With
this condition imposed, the reduced matrix in (35) is non-singular and
it follows that Z = 0. Thus from (33)

V (x, t0) =
βx

t0
(36)

(cf. (12)) for all x, as in (12).

2. In the second part of the proof, under deformation of the domain
generated by the similarity velocity (36) the similarity variable ξ1 =
x̂(t1)/(t1)β coincides with ξ0 at time t1 = t+ h to second order in h,
as in Theorem 1. In particular, the nodes X̂i satisfy

X̂i(t
1)

(t1)β
=
X̂i(t

0)

(t0)β
+O(h2), (i = 0, . . . , I + 1) (37)

3. In the third part of the proof we show that under the deforma-
tion generated by (37) the L2 projection N (ξ) of η(ξ) is also invariant

15



at t = t1 to order h2 using the conservation law (27) in the form∫ b(t1)

a(t1)
Wi(ζ

1)U(χ, t1) dχ =

∫ b(t0)

a(t0)
Wi(ζ

0)U(χ, t0) dχ (38)

(i = 0, . . . , N + 1), where ζ1 = χ/(t1)β, ζ0 = χ/(t0)β.
Expanding the piecewise-linear functions U(x̂(t1), t1) in terms of

the basis functions Wi(ξ
1) as

U
(
x̂(t1), t1

)
=

J∑
j=1

U1
jWj(ξ

1) (39)

where ξ1 = x̂(t1)/(t1)β, equation (38) yields the matrix equation

M̃(X̂(t1))U1 = M̃(X̂(t0))U0 (40)

where X̂ = {X̂i}, U = {Ui}, and the M̃(X̃(t)) are standard piecewise-
linear mass matrices, each depending on a vector of the nodal differ-
ences ∆X̂i(t) (= X̂i(t)− X̂i−1)(t).

By (37) the M̃(X̂(t1)) and M̃(X(t0)) are identical to order h2

apart from a factor (t/t0)−β. It follows from equation (40) that
(t1)γU1 = (t0)γU0 and hence from (39)

U(x(t1), t1)

(t1)γ
=
U(x(t0), t0)

(t0)γ
+O(h2) = N (ξ0) +O(h2) (41)

4. The fourth part of the proof is concerned with repetition of the
first three parts over a further time interval (t1, t2), where t2 = t1 +h,
with x0, x1 replaced by x1, x2, respectively. Returning to (32) and
using the invariants (14) and (16) of ξ and N (ξ) to order h2, we find
at t = t1∫ ξb

ξa
Wi(ζ)

{
−β(t1)β−1∂ζ(ζN (ζ) + ∂ξ(N (ζ)V (x, t1))

}
dχ = O(h),

where now ζ = χ/(t1)β and the right hand side is of first order rather
than second order in h since one power of h is lost in the differentiation
used in deriving (32) from (28) using (25). Also, from (30) the function
Wi is advected by the induced velocity to only first order in h, so
Wi(ξ

1) = Wi(ξ
0) +O(h) at t = t1.
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We then deduce by the argument from equations (32) to (36) with
the superfix 0 replaced by 1 that

V (x, t1) =
βx

t1
+O(h)

Further, by the argument from (37) to (41) with the superfixes 0 and
1 replaced by 1 and 2, respectively,

ξ2 =
x̂(t2)

(t2)β
=
x̂(t0)

(t0)β
= ξ0, (42)

and

N (ξ2) =
U(x̂(t2), t2)

(t2)−β
=
U(x̂(t0), t0)

(t0)−β
= N (ξ0), (43)

at t = t2, together with two terms of order h2 in each equation (42)
and (43).

5. After n time steps of h we obtain

V (x, tn−1) =
βx

tn−1
+O(h),

as well as

ξn =
x̂(tn)

(tn)β
=
x̂(t0)

(t0)β
= ξ0 (44)

and

N (ξn) =
U(x̂(tn), tn)

(tn)−β
=
Ûi(x(t0), t0)

(t0)−β
= N (ξ0), (45)

together with n terms of order h2 in each equation (44) and (45).

6. In the final part of the proof we let h→ 0 and n→∞ in such
a way that nh = t − t0, so that nh2 = O(h). It then follows that at
time t

V (x, t) =
βx

t
+O(h),

as well as

ξ =
x̂(t)

tβ
= ξ0 +O(h), N (ξ) =

Û(t)

t−β
= N (ξ0) +O(h),

so that in the limit,

V (x, t) =
βx

t
,
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equivalent to

V (x̂(t), t) =
βx̂(t)

t
,

as well as
ξ = ξ0, N (ξ) = N (ξ0),

for all t > t0. Thus U(x̂(t), t) coincides with the L2 projection of
the self-similar solution, and V (x̂(t), t) coincides with the similarity
velocity at any time t > t0, for all a(t) ≤ x̂(t) ≤ b(t).

This completes the proof.

Corollary: The moving nodes X̂i satisfy

X̂i(t)

(t)β
=
X̂i(t

0)

(t0)β
(i = 0, . . . , N + 1)

4 General initial conditions

In the Theorems of the previous two sections the initial conditions
coincided with a self-similar solution or its piecewise-linear L2 projec-
tion. However, it is of interest to study methods based on the steps
of the proofs for general initial conditions, having the property that
they propagate self-similar scaling solutions exactly in the event that
the initial condition coincides with a self-similar solution, a property
referred to here as the S-property.

The main differences for general initial conditions are that ∂tu is
no longer given by (4) nor ∂tU by (25), hence the velocity is no longer
(12) or (36). Consequently, neither the time evolution of the moving
coordinate x̂(t) (or X̂(t)) nor the propagation of the solution u(x̂(t), t)
(or U(x̂(t), t)) are as in the Theorems. Nevertheless, we can adapt the
steps of the proofs to construct methods based on conservation for
first-order-in-time scale-invariant PDE problems with general initial
conditions, leading to formulae for the velocity, moving coordinate,
and solution that are consistent with Theorems 1 and 2.

18



4.1 Calculation of a general velocity

4.1.1 The analytic case

Suppose that a first-order-in-time scale-invariant PDE for the function
u(x, t) is written in the form

ut = Lu, (a(t) < x < b(t)) (46)

where L is a purely spatial operator, with boundary conditions ensur-
ing constant total mass (2).

Then from (8) with x1(t) = a(t) and x̂2(t) = x̂(t) and (46), the
local conservation of mass principle (7) implies that

∫ x̂(t)

a(t)
Ludχ+ [uv]

x̂(t)
a(t) = 0 (47)

which yields the velocity formula

v(x̂(t), t) =
(uv)|a(t),t −

∫ x̂(t)
a(t) Ludχ

u(x̂(t), t)
(48)

provided that u(x̂(t), t) 6= 0. If a(t0) is an anchor point at which v = 0,
the velocity reduces to

v(x̂(t), t) = −
∫ x̂(t)
a(t) Ludχ

u(x̂(t), t)
(49)

When u coincides with a self-similar solution the conservation
equation (47) reverts to (8) which ensures, as in Theorem 1, that
the velocity is the similarity velocity (5).

If the PDE takes the form

∂tu = Lu = ∂xf [u], (50)

where f [u] is a flux function depending on u and its space derivatives,
the velocity (48) can be written

v(x̂(t), t) =
(uv)|a(t),t − [f [u]]

x̂(t)
a(t)

u(x̂(t), t)
(51)
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4.1.2 Piecewise linear L2 projections

From now on we restrict the argument to problems governed by PDEs
of the form (50) with zero net flux boundary conditions ensuring that
the total mass is constant in time.

Define the weak form of (50) given by∫ b(t)

a(t)
Wi(ζ) {∂tu− ∂χf [u]} dχ = 0 (52)

where ζ = χ/tβ, for all piecewise-linear test functions Wi belonging to
a partition of unity on the subdivision (22) at time t.

Under the distributed conservation of mass principle (27), from
(52) and (28), ∫ b(t)

a(t)
Wi(ζ) {∂χf [u] + ∂χ(uv)}dχ = 0 (53)

Integrating (53) by parts using the zero net flux boundary conditions
we obtain the weak form∫ b(t)

a(t)
(∂χWi) (f [u] + uv) dχ = 0 (54)

Taking u and v to be piecewise-linear functions U and V , from
(54) the velocity V satisfies∫ b(t)

a(t)
(∂χWi) (UV + f [U ]) dχdχ = Ei(u, U), (55)

where

Ei(u, U) =

∫ b(t)

a(t)
(∂χWi) {f [U ]− f [u]} dχ, (56)

is a projection error associated with the function f [u].
When U(x, t) coincides with the L2 projection of a self-similar

solution, equation (55) reverts to (28), which ensures that the velocity
given by (55) is the similarity velocity (36), as in Theorem 2.

4.2 Evolution of the moving coordinate

In order to find the moving coordinate x̂(t) for general initial condi-
tions we consider the scale-invariant differential equation problem

dx̂

dt
= v(x̂(t), t), x̂(t0) = x,
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seeking a solution for x̂(t) that reduces to (5) in the event that v is
the similarity velocity. (The often-used explicit Euler scheme does not
have this property.)

From the second of (3) we note that in the case of similarity the
function ŷ(t) = x̂(t)1/β = ξ1/βt is linear in t. Hence the formula

ŷ(t) = ŷ(t0) + (t− t0)
(

dŷ

dt

)0

(57)

generates ŷ(t) from ŷ(t0) exactly.
By the chain rule

dŷ

dt
=

dŷ

dx̂

dx̂

dt

so equation (57) can be written as

ŷ(t) = ŷ(t0) + (t− t0)β−1 {x̂(t0)}(1/β)−1v(x̂(t0), t0),

or entirely in terms of x̂(t) as

x̂(t) =

(
1 + β−1(t− t0) v(x̂(t0), t0)

x̂(t0)

)β
x̂(t0) (58)

Equation (58) is a general formula for the evolution of the spatial coor-
dinate x̂(t) with the property that is exact in the event that v(x̂(t0), t0)
is the similarity velocity βx̂(t0)/(t0).

4.3 Solution retrieval

It remains to retrieve the solution on the deformed domain.

4.3.1 The analytic case

The conservation of mass principle (7) implies that

∫ x̂(t)

a(t)
u(χ, t)dχ =

∫ x̂(t0)

a(t0)
u(χ, t0)dχ

Differentiating wrt x̂(t),

u(x̂, t) =
d

dx̂(t)

∫ x̂(t)

a(t)
u(χ, t0)dχ
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=
dx̂(t0)

dx̂(t)

d

dx̂(t0)

∫ x̂(t0)

a(t0)
u(χ, t0)dχ =

dx̂(t0)

dx̂(t)
u(x̂, t0) (59)

In the event of an initial condition that coincides with a self-similar
solution u(x̂(t0), t0) = (t0)γη(ξ0) so, since x̂ is proportonal to tβ, it
follows that u(x̂(t), t) reduces to the self-similar solution (3).

4.3.2 Piecewise-linear L2 projections

The conservation of distributed mass principle (27) implies that∫ b(t)

a(t)
Wi(ζ)U(χ, t)dχ =

∫ b(t0)

a(t0)
Wi(ζ

0)U(χ, t0)dχ (60)

where ζ = χ/tβ, ζ0 = χ/(t0)β.
Expanding U(χ, t) and U(χ, t0) as

U(χ, t) =
∑
j

Uj(t)Wj(ζ), U(χ, t0) =
∑
j

Uj(t
0)Wj(ζ

0),

equation (60) yields the matrix equation

M(X̂(t))U(t) = C =M(X̂(t0))U(t0)) (61)

where U(t) = {Ui(t)}, C = {Ci}, and M(X̂(t)) is a standard mass
matrix for piecewise-linears in terms of the nodal coordinates X̂i(t).

When the initial condition coincides with a self-similar solution
the components Ui(t

0) are proportional to (t0)γ and the X̂i(t) are
proportional to tβ, so equation (61) leads back to (24).

4.4 Summary

Using local and distributed conservation of mass we have constructed
two procedures which propagate a scaling symmetry exactly (modulo
a projection error in the L2 case) for a PDE problem of the form (50)
with zero net flux at the boundaries ensuring constant total mass.

In the analytic case the combination of steps (48), (58) and (59)
yields a scale-invariant procedure possessing the S-property.

In the piecewise linear L2 case the combination of steps (66), (58)
and (60) gives a scale-invariant procedure possessing the S-property
in the L2 norm modulo the projection error (56).
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5 Discrete algorithms

In this section, devoted to discrete methods, we continue to focus
on flux-driven PDEs of the form (50), with zero net flux boundary
conditions ensuring that the total mass is constant in time.

5.1 Semi-discrete velocities

5.1.1 A pointwise approach

From (49) with a zero net flux condition at a(t), the semi-discrete
velocity v(t) at position x̂(t) is given by

v(x̂(t), t) = −
f [u]

x̂(t)
a(t)

u(x̂(t), t)
(62)

Pointwise, a semi-discrete velocity may be defined in terms of the
semi-discrete solution ui(t) by sampling (62) at mesh points x̂i(t),
giving

vi(t) = −
[f [u]]

x̂i(t)
a(t)

ui(t)
(63)

5.1.2 The piecewise-linear L2 case

In the piecewise-linear L2 case a semi-discrete velocity V (x, t) may be
determined in terms of U(t) from (55) omitting the projection error
(56), i.e. ∫ b(t)

a(t)
(∂χW ) (UV + f [U ]) dχ = 0, (64)

which is already discrete in space.
Since V (x, t) is piecewise-linear it can be expanded as

V (x, t) =
N+1∑
j=0

Vj(t)Wj(ξ)

where ξ = x/tβ. From (64),

∫ b

a
(∂χWi)U(χ, t)

N+1∑
j=0

Vj(t)Wj(ζ)

dχ = −
∫ b

a
(∂χWi) f [U(ζ, t)]dχ

(65)
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Equation (65) can be written as the matrix equation

B(U)V = b (66)

where B(U) is the matrix with entries∫ b

a
(∂χWi(ζ))U(χ, t)Wj(ζ) dχ

and V = {Vi}, b = {bi} in which bi is the right hand side of (65).
Because the basis functions Wn

i form a partition of unity the ma-
trix equation (69) is not of full rank, but there is a unique solution if
the velocity is prescribed at one (anchor) point.

We now give details of two fully discrete scale-invariant algorithms
which aim to possess the S-property, beginning with a finite difference
scheme.

5.2 Fully discrete velocities

5.2.1 A finite-difference approach

In a finite-difference approach the data representation is pointwise at
mesh points xi with corresponding values ui say, (i = 0 . . . , N + 1).

In this section we further restrict the argument to PDEs of the
form

∂tu = ∂x{u∂xp(u)}, (67)

where p(u) > 0 is a function of u only, with zero net flux boundary
conditions ensuring preservation of the total mass. In certain applica-
tions the function p(u) may be identified with a pressure.

From (63) the velocity sampled at the point x̂ni at time tn is then

vni = −{∂xp(u)}ni (68)

where ∂xp(u) is yet to be approximated.
The way in which {∂xp(u)}i is estimated from gridpoint values uni

is crucial to the preservation of similarity solutions. In the case of
similarity the velocity v is linear in x̂ by (5). Thus the S-property
may be achieved if the right hand side of (68) is approximated in
such a way that it is exact for linears. Such a linear function may
be obtained for example by differentiating the interpolating quadratic
through values of p(u) at adjacent gridpoints.
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5.2.2 A finite-element approach

In the finite element approximation the data representation is piecewise-
linear, thus the functions W (x, tn), V (x, tn), X(x, tn), and U(x, tn) are
all piecewise-linear.

At time t = tn equation (65) can be written as the matrix equation

B(Un)V n = bn (69)

where B(Un) is the matrix with entries∫ bn

an
(∂χWi(ζ))U(χ, tn)Wj(ζ) dχ

where ζ = χ/(tn)β, and V n = {V n
i }, bn = {bni } in which bni from (65)

is

bni = −
∫ bn

an
(∂χW

n
i ) f [U(ζ, tn)]dχ (70)

We now consider discretisation in time.

5.3 Time stepping

When the nodal velocities are not similarity velocities, as in the case
of general initial conditions, the time evolution (58) from t0 to t is not
exact. Nevertheless, (58) can still be used as one step of a first-order-
in-time explicit scheme from tn to tn+1 (= tn+h), where h is the time
step, having the property that it is exact in the case of similarity.

We therefore use the first-order scheme

xn+1
i =

(
1 + β−1h

vni
x̂ni

)β
x̂ni (71)

where xni and vni are the nodal positions and nodal velocities, respec-
tively, having the property that the xn+1

i are exact in the case of
self-similarity. In the finite-element algorithm the nodal positions X̂n

j

are updated using (71) in the form

X̂n+1
i =

(
1 + β−1h

V n
i

X̂n
i

)β
X̂n
i (72)

where V n
i is the nodal velocity.
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5.4 Solution retrieval

It remains to retrieve the approximate solutions un+1
i or Un+1

i at the
forward time t = tn+1.

5.4.1 Finite-difference solution retrieval

In the finite-difference algorithm for mass-conserving problems of the
form (67) equation (59) may be discretised over a time step from tn

to tn+1 as

un+1
i =

∆x̂ni
∆x̂n+1

i

uni

where ∆x̂i is a spatial difference approximating dx. We use a centred
finite-difference discretisation giving

ûn+1
i =

(
x̂ni+1 − x̂ni−1
x̂n+1
i+1 − x̂

n+1
i−1

)
ûni (73)

Boundary values may be specified by Dirichlet boundary conditions.
In the case of similarity the exactness of the node positions and

the invariance of the approximate mass ensure that the exactness of
the nodal solution values is maintained in time at nodes. If the nodal
values are exact at time t0 they remain exact for all time.

Note that in the finite difference scheme the discretisations (68)
and (73) of the two forms of conservation used are equivalent only
approximately.

5.4.2 Finite-element solution retrieval

In the L2 case, for mass-conserving problems of the form (50), using
(60) the piecewise-linear solution U(x, tn+1) is obtained from U(x, tn)
through∫ bn+1

an+1
Wi(ζ

n+1)U(χ, tn+1)dχ =

∫ bn

an
Wi(ζ

n)U(χ, tn)dχ, (74)

where ζn = χ/(tn)β, ζn+1 = χ/(tn+1)β, which generates U(x̂, t) via
(61).

The finite-element solution Un+1(x) is then obtained from (74) via
(61) in the form

M(X̂(t))Un+1 =M(X̂(tn))U(tn)) (75)
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where M(X̂(t)) is a mass matrix and U = {Ui}.
In the case of similarity the exactness of the nodal positions and

the invariance of the distributed mass-fractions (27) ensure that the
L2 projection property of the finite element solution is maintained in
time.

5.5 Algorithms

We now summarise these algorithms.

5.5.1 The finite-difference algorithm

A scale-invariant finite-difference algorithm for scale-invariant mass-
conserving PDE problems of the form (67) (where β is the scaling
power for x) with zero net flux boundary conditions is as follows:

Algorithm 1

Given nodes x0i and nodal values u0i sampled from an initial con-
dition at time t0, then at each time tn ≥ t0,

1. Obtain the velocity vni from (68) using a quadratic interpolation
of p(u)i values

2. Advance x̂ni to x̂n+1
i using (71)

3. Retrieve un+1
i from (73)

The algorithm is scale-invariant with the same invariants as the PDE
problem and possesses the S-property in the l∞ norm. A sufficiently
small time step is required such that step 2 is stable.

Boundary conditions on u can be imposed in step 3.
A similar algorithm appears in the literature [7, 5, 20, 21, 24, 10]

although the time step there is always the explicit Euler scheme rather
than that of (71).

5.5.2 The finite-element algorithm

A piecewise-linear finite-element algorithm for scale-invariant mass-
conserving PDE problems of the form (50) (where β is the scaling
power for x) with zero net flux boundary conditions is as follows:
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Algorithm 2

Given nodes X0
i and U0, the L2 projection of the initial condition

u(x, t0), at time t0, then at each time tn ≥ t0,
1. Obtain the piecewise-linear velocity V n from (69)

2. Advance the nodes Xn
i to Xn+1

i using (72)

3. Retrieve Un+1
i using (75)

The algorithm is scale-invariant with the same scaling invariants as the
PDE problem and possesses the S-property in the L2 norm, modulo
the projection error (56). A small enough time step is required for the
time step to be stable.

Boundary conditions on U can be imposed in step 3 but care is
required that the family of test functions Wi(x, t) remains a partition
of unity (see e.g. [19, 27]).

It is known that the matrix in the reduced form of equation (69)
is awkward to invert numerically since the entries oscillate in sign and
the matrix B(Un) is poorly conditioned

A similar algorithm appears in the literature [1, 2, 3, 4, 9, 27]
although the time step there is always the explicit Euler scheme rather
than that of (71) and the velocity is obtained indirectly through a
velocity potential rather than from (69), avoiding the ill-conditioning
of the matrix B(Un).

6 Numerical illustrations

6.1 A nonlinear PDE problem

We illustrate the behaviour of the errors in the finite element and finite
difference algorithms for the example of a nonlinear diffusion problem
governed by the porous medium equation PDE

ut = ∂x{u2(∂xu)} = ∂x{u∂x(u2/2)}, (a(t) < x < b(t)), (76)

(in which f [u] = u2∂xu and p(u) = ∂x(u2/2), where u = 0 on the free
boundaries a(t), b(t) (so zero net mass flux), which is mass-conserving
and scale-invariant with β = 1/4.

The initial time is t0 = 1 and the initial domain is (−1 < x < 1).
We consider the two initial conditions,

(a) u(x, 1) =
1

2
(1− x2)1/2+ (77)
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where the suffix + indicates the positive part, taken from the self-
similar solution [8, 26], and

(b) u(x, 1) =
1

2
(1− x2)1/2+ +

1

2
(1− x2)+ (78)

a non self-similar initial condition with the same compact support that
does not generate a waiting time.

6.2 Finite differences

In the finite difference algorithm of section 5.5.1 the first step is to
obtain the velocity approximation vi from (68) where for the PDE
(76) p(u) = u2/2 and so

vni = −ui(∂xu)ni = −{∂x(u2/2)}ni
which requires an estimate of the derivative ∂x(u2) at each node. For
this estimate to be exact at the nodes in the case of similarity it
is sufficient to differentiate the quadratic interpolant through nodal
values of p(u)i, i.e. u2i /2, at adjacent nodal values.

Time-stepping is performed using (71) at each node i, and the
approximate solution un+1

i retrieved from (73).

6.2.1 Case (a)

In the initial data case (a), for values of N ranging from 5 to 160, it is
found that, as expected, taking a single time step of h results in the
errors in both the relative l∞ norm of the solution and the relative
boundary position being at the level of rounding error. After one time
step the solution coincides with the self-similar solution at t1 = 1 +h,
still proportional to the source term, so the velocity (68) at t = t1 is

v1i = {∂x(u2/2)}1i
The derivative is again obtained from the quadratic interpolant through
nodal values (u2/2)1i at adjacent nodal values.

Proceeding in this way, the solution at each time step is exact
for multiple time steps, exhibiting the same property as a single time
step (provided that h chosen to ensure stability). Thus, after 100 time
steps (with h = 1/N2 chosen to ensure stability) the errors in both the
relative l∞ norm of the solution and the relative boundary position
are found to be of the order of rounding error, for numbers of nodes
ranging from 5 to 160.
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6.2.2 Case (b)

In the more general case (b), with N ranging from 10 to 80 the errors
in both the relative l∞ norm of the solution and the relative boundary
position when compared the solution for 160 nodes (taken to be a very
accurate solution) are shown in Table 1. The time step taken to avoid
instability is h = 1/N2.

N ∆t Relative error eN(u) Relative error eN(x)
10 0.01 1.2× 10−2 2.6× 10−3

20 0.0025 5.5× 10−3 9.0× 10−4

40 0.000625 2.4× 10−3 3.0× 10−4

80 0.00015625 8.7× 10−4 7.3× 10−5

Table 1: Relative errors eN (u) in the l∞ norm of u and eN (x) in the boundary
position, at t = 2, when compared with the solution for 160 nodes (taken as a very
accurate solution) for the PME (76) when the initial condition is (78).

6.3 Finite elements

In the finite-element algorithm of section 5.5.2 the velocity V n is given
by (69) where in this case bni is defined from (70) by

bni = −
∫ bn

an
(∂χWi)

n(U2Uχ)ndχ, (79)

omitting the projection error (56). Since the functions Wi , U are
piecewise-linear, the integrand is piecewise quadratic and the integra-
tion in (79) can be carried out exactly using a composite Simpson’s
Rule.

Time-stepping is performed using (72) and the piecewise-linear
approximation U(x, t) retrieved from (75).

The finite-element solution is prevented from being exact in the
case of similarity by the presence of the projection error (56) in the
calculation of the velocity, which is reflected in the results. With
N = 20, after one step of h = 0.01 the relative L2 error in the the
solution is approximately 0.002 and the relative error in the position
of the boundary 0.001. Thereafter the build-up of error is very slow,
which is not surprising since the major part of the error comes from
disregarding the projection error (56). After 1000 time steps of 0.01
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(chosen to ensure stability) the relative L2 norm of the solution is
approximately 0.008 and the relative l∞ norm of the boundary 0.0004.
If the exact velocity is used instead of the velocity computed from (69)
the errors reduce to the level of rounding error.

Comparative results are given only for the initial condition case
(a) where, with N ranging from 10 to 80, errors are shown in Table 2.
The time step taken to avoid instability is h = 1/N2.

N h Relative error eN Relative error XN

10 0.01 1.3× 10−2 1.8× 10−3

20 0.0025 8.0× 10−3 5.0× 10−4

40 0.000625 4.3× 10−3 2.5× 10−4

80 0.00015625 2.2× 10−3 8.7× 10−5

160 0.0000390625 1.1× 10−3 3.1× 10−5

Table 2: Table of relative errors eN in the L2 norm of U , and eN(X) in the
absolute value of the boundary position, at t = 2, in the case of initial data
(a) for the finite-element algorithm.

7 Summary

In this paper we have studied the invariance of scaling symmetry in
the evolution of one-dimensional time-dependent scale-invariant mass-
conserving PDE problems. It was shown that, under local conserva-
tion of mass, initial conditions that coincide with self-similar solutions
are propagated exactly in time, while under distributed conservation
of mass, piecewise linear L2 projections of initial conditions that co-
incide with the piecewise linear L2 projections of self-similar solutions
are propagated as piecewise linear L2 projections exactly in time.

The steps in the proof were then adapted for general initial condi-
tions in the case of first-order-in-time flux-driven problems, with the
aim of obtaining a general procedure that possesses the S-property,
i.e. exact propagation of a self-similar solution or its L2 projection. A
deformation velocity was constructed and used to move the nodes via
a symmetry-preserving scheme. The solution was then post-processed
algebraically from the Lagrangian form of the conservation.

A finite-difference algorithm based on this procedure was con-
structed for a subclass of problems possessing the S-property in the
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l∞ norm when the velocity is calculated by a special interpolation. A
piecewise-linear finite-element algorithm was also described possess-
ing the S-property in the L2 norm, but subject to a projection error.
Numerical illustrations verifying these results were shown for a non-
linear porous medium equation problem with a constant total mass,
exhibiting results in accordance with the theory and showing the levels
of accuracy in the propagation of relative errors for a non self-similar
initial condition.

The S-property can be regarded as a yardstick for confidence in
numerical schemes in the case of nonlinear scale-invariant problems,
similar to the way in which standard schemes on fixed grids for linear
problems based on Taylor series expansions are constructed so as to
be exact for polynomial solutions of given degree.

One outcome of this paper is the scale-invariant finite-difference
Algorithm 1, for mass-conserving PDE problems of the form (67),
possessing the S-property in the l∞ norm, when the initial condition
is sampled from a self-similar solution at the nodes and the velocity is
interpolated in a particular way. (The corresponding scale-invariant
finite-difference Algorithm 2 does not achieve the same accuracy (in
the L2 norm) due to a projection error.) Comparisons with self-similar
solutions are a favourite testing ground for numerical schemes: in this
paper Algorithm 1 propagates the solution at the nodes exactly, thus
preserving a discrete scaling symmetry.
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