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Abstract

The Payne-Whitham model is a macroscopic traffic flow model, usually

known as the two equation Payne’s model, incorporating two independent

parameters denoted by c0 and τ .

It is implemented by producing an adjoint model, derived from the lineari-

sation of the Harten, Lax and van Leer scheme (HLL).

The purpose of this dissertation is to find the value of these parameters which

give the optimal solution when using the model. This involves calculating the

cost function, J , and minimising its gradient using data assimilation meth-

ods.

The results show that the system was insensitive to τ but demonstrated

good resilience for c0.
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1 Introduction 1

1 Introduction

1.1 Background

Much work has been done, particularly over the past thirty years, on traffic

flow problems generally based upon a stochastic approach. Just by surfing

the web, many studies based on varying theories may be found, among the

most popular are those derived from Lighthill Whitham and especially H J

Payne.

However, when the traffic density becomes high, the model can be considered

as a continuum process (i.e. suitable for motorways or busy roads) but it

must be remembered that such theory will not be accurate for low density

traffic flow.

The purpose of this dissertation is to further the work begun by Danila Volpi

in her dissertation ‘Estimation of parameters in traffic flow models using data

assimilation’ 2009 [1], University of Reading, which was based upon Roe’s

numerical scheme using a finite difference method. The current dissertation

uses an HLL (Harten, Lax van Leer) numerical scheme as an alternative to

Roe for numerical modelling of the traffic flow and applies Data Assimilation

techniques to estimate the parameters of the model.

1.2 Overview

Traffic problems are a serious global concern with pollution such as experi-

enced in Mexico city, Los Angeles and traffic jams in most urban centres.

These problems are set to increase given the forecast in growth of traffic in

the coming decades.

Figures from the Department for Transport for the period 1994 - 2010 show a

steady overall increasing number of licensed vehicles (excluding motor cycles
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Figure 1: Graph from the Department for Transport [2]

and heavy goods). Although the current economic downturn is reflected in

the last two years (see figure 1) the long term prediction is still more vehicles

on the road in the UK and across the world generally. One recent estimate

suggests an additional 5.7 million cars on the UK roads by 2031, a growth of

21% (Living Streets [3]).

This places increased pressure on the existing road infrastructure in addi-

tion to problems caused by pollution and traffic emissions linked to health

issues and general atmospheric pollution.

These pollution problems are increased by traffic jams/queues, slow mov-

ing traffic which stops and starts and even bus lanes in urban environments

where busy roads have their lanes reduced. All this has contributed to an

economic loss to the country in terms of reduced output and wasted resources.

This highlights the necessity for optimum road useage to ensure free flow-
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ing traffic which will reduce pollution and economic cost towards a minimum.

Traffic modelling is an important part in the solution to these problems

as an attempt at understanding the effects of lane reduction on traffic flows

and in controlling traffic speeds to provide optimum flow.

This dissertation aims to address these types of problems. It will be imple-

mented using traffic flow modelling techniques that are solved numerically

to estimate empirical parameters. These parameters have in the past been

chosen by researchers in the light of experience and directly affect the results

of the model although they remain essentially constant (in time and space).

Four dimensional variational analysis with a data assimilation approach, will

be used to obtain improved estimates of these parameters.
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2 Traffic Flow Models

2.1 Choice of the model

Apart from having stochastic qualities, three categories of simulation models

for traffic have been developed:

• Microscopic models represent individual vehicle movements such as

their velocity and position. Although precise, they are computationally

very expensive when modelling a large number of vehicles.

• Mesoscopic models represent vehicle movements as groups sometimes

referred to as platoons, generally comprising of 3 to 7 vehicles.

• Macroscopic models represent traffic flow in terms of aggregate mea-

sures such as density, space-mean-speed, and flow rate. They aim to

describe the general system as opposed to each individual vehicle and

so are less accurate but more cost effective.

The current document will be concerned with the Macroscopic category, with

formulae and concepts originating in meteorology and fluid dynamics being

used. The basic formulae are found in a paper titled ‘Numerical Simulation of

Macroscopic Continuum traffic Models’, authors Chin Jian Leo and Robert

L. Pretty [4] of the University of Queensland, Australia dated 13 November

1990, to which further references will be made.

2.2 Lighthill Whitham Traffic Flow Model

M. J. Lighthill was a specialist in fluid dynamics, who together with his then

PhD student, G. B. Whitham, in 1955 formulated a model, generally known

as the LW model, to simulate macroscopic traffic flow.

It is probably the simplest form of a macroscopic traffic flow model com-

prising of just one equation which treats the traffic as a continuum. The
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model can be represented essentially by the continuity equation:

ρt + qx = 0.

By defining q = ρv we can obtain the equation:

ρt + (ρv)x = 0, (1)

where,

• ρ(x, t) is the traffic density (vehicles per km)

• q(x, t) is the traffic flow (vehicles per hour),

• v is the mean traffic speed (km per hour) and has to be prescribed as

a function of ρ.

The LW equation (1) allows solutions which were considered too simplistic

to represent the required traffic scenario. A better model is given below by

Payne.

2.3 Payne-Whitham Model

Limitations were soon found with the LW model, mainly because there was

only one state variable, traffic density, which Payne overcame in 1971 by

adding a second differential equation including a mean speed-density rela-

tionship and introducing terms taking account of drivers anticipation, traffic

flow relaxation and changes in traffic volume (vehicles joining or leaving the

vehicle stream).

The LW continuity equation (1) is supplemented with the momentum equa-

tion which takes the intricate speed-density relationship in traffic into ac-

count which, along with the homogenious equation above, is known as the
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2-equation Payne’s model,

(ρv)t + (ρ(v2 + c2
o))x =

ρ(U(ρ)− v)

τ
, (2)

where,

• v(x, t) is the space mean speed (km per hour),

• τ is the relaxation constant,

• c2
0 is a positive constant,

• and U(ρ) is the equilibrium speed-density relationship.

In this equation (2) there are two parameters, τ and c0, which are indepen-

dent from time and space, but clearly have a direct impact on the system.

These are the two parameters with which this paper is concerned and will

be endeavouring to estimate their ideal values to produce the most accurate

forecast possible.

In matrix form equations (1) and (2) can be written as(
ρ

(ρv)

)
t

+

(
0 1

c2
o − v2 2v

)(
ρ

(ρv)

)
x

=

(
0

ρ(U(ρ)−v)
τ

)
, (3)

and so the homogenous form i.e. no relaxation is as follows:

ut + A(u)ux = 0, (4)

where matrix A(u) =

(
0 1

c2
o − v2 2v

)
and the right hand term of equation

(3) is the source term.

It can be shown that equation (3) is hyperbolic if the matrix A(u) has real
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eigenvalues and is diagonalisable, or if it’s eigenvalues are distinct real (J C

Strikwerda [5]).

The eigenvalues of matrix A(u) are:

λ1 = v + c0, λ2 = v − c0

and their corresponding eigenvectors are:

e1 =

(
1

v − c0

)
, e2 =

(
1

v + c0

)
.

Note that λ1 and λ2 are distinct real eigenvalues and hence that the system

is hyperbolic. A basic feature of systems with hyperbolic equations is the

characteristic curves along which there is a constant velocity. It is when these

characteristic curves cross that the solutions break down and because each

characteristic has a different velocity the resulting solution comprises of two

waves, moving with different velocities. The waves can be either a shock or

a rarefaction type.

A shock wave is used to represent a changing discontinuity in the model so-

lution, which cannot be handled by the original partial differential equations.

A rarefaction wave occurs as a result of a discontinuity, it fans out and

fills up the x, t plane where the characteristic curves fail to.

Numerical schemes are successfully used to solve hyperbolic systems such

as that represented by (3) but it is important that a suitable physical solu-

tion is chosen to replicate the discontinuity for the correct wave type. Failure

to do so will result in the speed of the discontinuity being wrong and misrep-

resenting actual events. For example, if there is a traffic light change to red
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and the scheme fails to capture the shock wave, then it may show vehicles

continuing through the red light, which should not, and probably would not,

happen in reality.

The numerical schemes considered for use in this project are discussed in

sections §3 and §4.
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3 Numerical Schemes- Roe’s Algorithm

3.1 Introduction

Roe’s algorithm (P L Roe [6]) is one of the most basic Riemann approxima-

tions. It is a well established scheme for aerodynamics which can be used to

solve a simple form of a macroscopic traffic model, the Lighthill-Whitham

1-equation model (LW model). Beginning with this, the LW model is essen-

tially the continuity equation (1),

ρt + (ρv)x = 0,

where ρ(x, t) is the traffic density measured in vehicles per km, and ρv is the

traffic flux, given in vehicles per hour.

3.2 The Theory

Equation (4) is a continuous function which is very difficult to solve and

cannot be done analytically. In order to solve it numerically, Roe linearises

the homogenious form in each interval (xi−1, xi), replacing A(u) by matrices

Ã(ui−1,ui) which, for any adjacent states uL,uR, the following three condi-

tions are satisfied:

1. Hyperbolicity: Ã(uL,uR) is diagonalisable with real eigenvalues, λ

2. Consistency: Ã(uL,uR)→ A(u) as uL and uR → u

3. Conservation: f(uL)− f(uR) = Ã(uL,uR)(uL − uR)

where f(u)x = A(u)ux

It is necessary to first obtain an Ã and then diagonalise it, resulting in two

scalar equations, one per eigenvalue.

Further details of the scheme are not given as this will not be the scheme
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used in this work. However it did provide the starting point used for the HLL

scheme and also was the scheme used by Danila Volpi [1] and is included here

for comparison.

3.3 Programming Roe

A fortran program was written and using 100 space discretisations, ∆x =

0.01, 200 time intervals with ∆t = 2.5.10−5, τ = 5 and c0 = 50, the fol-

lowing graphs were produced showing the density-space and velocity-space

relationships at the final time step.

Figure 2: Density-space relationship at the final timestep.

Figure 3: Velocity-space relationship at the final timestep.
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A drawback to Roe’s method is that is does not check if the solution is entropy

satisfying, and so could be incorrect and contain unphysical discontinuities.

To deal with this an entropy fix must be added, which will ensure that the

solution obtained is correct.
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4 Numerical Schemes- Harten, Lax and van

Leer

4.1 Introduction

Part of the data assimilation process is to obtain what is known as the tangent

linear model which involves linearising the Roe Riemann solver. However Roe

has absolute value signs in the numerical flux formula which are difficult to

linearise. Another Riemann solver developed by Harten, Lax and van Leer,

known as the HLL scheme (Harten et al [7]), does not have this limitation

and will be used instead. HLL has the advantage of being a simpler approx-

imation and is a good scheme to use from the conservation law perspective.

The HLL model formulated in 1983 by A. Harten (a PhD student of Lax), P.

D. Lax and B. van Leer (specialist in Fluid dynamics) is generally considered

to be a more straightforward solution to the Riemann problem, present in the

LW and Payne-Whitham models. Although it is an approximate solution,

it does provide an efficient computation, a fairly robust result and does not

require an entropy fix.

4.2 Scheme

A fortran program was written to perform the following HLL calculations at

each value of x within each time step.

They were then incorporated into the HLL scheme defined below:

hi− 1
2

=


fi−1 (0 ≤ λL

i− 1
2

)

fHLLi− 1
2

(λL
i− 1

2

≤ 0 ≤ λR
i− 1

2

)

fi (λR
i− 1

2

≤ 0)
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where

fHLLi− 1
2

=
λR
i− 1

2

fi−1 − λLi− 1
2

fi + λL
i− 1

2

λR
i− 1

2

(ui − ui−1)

λR
i− 1

2

− λL
i− 1

2

and were used for the calculation of the state vector u:

u(j, i) = u(j, i)−
(

∆t

∆x

)
· (h(j, i+ 1)− h(j, i)) + ∆t · s(j, i),

where j is the state vector index.

4.3 Theory of the HLL Scheme

The HLL scheme is used to solve equation (3), as described below.

u =

(
ρ

ρv

)

λL = ṽ − c0, λR = ṽ + c0

where ṽ =
√
ρL.vL+

√
ρR.vR√

ρL+
√
ρR

f =

(
f1

f2

)
=

(
ρv

ρ(v2 + c2
0)

)

fL1 = (ρv)i−1, fR1 = (ρv)i

fL2 = ρL · (v2
L + c2

0), fR2 = ρR · (v2
R + c2

0)

s =

 0

ρi.

(
Ucap− (ρv)i

ρi

)
τ


Ucap = tanh

(
1

ρi
− 2

)
+ tanh(2)
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Where,

• u is a state vector

• i represents spacial points from 0 to N along the direction of flow in

the computational grid

• ρ is the traffic density

• v is the mean speed

• λ are eigenvalues of the matrix A(u) defined in §2.3

• f is the traffic flux

• L and R signify the left and right states respectively

• s is the source term

• Ucap is the equilibrium speed-density relationship, as in §2.3.

4.4 Results

Figure 4: Density-space relationship at the final time step.
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Figure 5: Velocity-space relationship at the final time step.

The graphs produced appear almost identical to those for Roe. Since the HLL

method is much simpler and entropy satisfying, no entropy fix is required and

so will be suitable for the remaining stages of the project.
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5 Data Assimilation

‘A data assimilation system consists of three components: a set of observa-

tions, a dynamical model, and a data assimilation scheme where the goal is

to minimise a cost function with the constraints of the model equations and

their parameters.’(A Robinson and P Lermusiaux [8])

It is an iterative process, in two senses, one using time steps where ob-

servations are joined with corresponding forecasts from the scheme, (in our

case the HLL scheme) for input to the cost function. The other is in the

minimisation process where the cost function is minimised to produce the

best values for the system parameters forming the parameter vector, p.

The approach is based on an augmented state vector, z, comprising of the

constants c0 and τ plus the state variables ρ and ρv. That is:

z = (c0 τ ρ ρv)T

=

(
p

u

)

The data assimilation begins with an initial state x0, and incorporates ob-

servations (current and past) into a numerical model in order to produce a

model state, known as the analysis, which most accurately represents the

current state of the system.

The model uses the observations in time iterations, i.e. observations across

the whole time window can be used (where the time window is given between

(t0, . . . , tn)). The analysis occurs at t0 and best represents the actual true

state and can be used to make future predictions, such as traffic forecasts for

a road closure.
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5.1 Four Dimensional Variational Assimilation (4D−Var)

4D−Var is a model based on the minimisation of an associated cost function

which measures the difference between the observations and the forecasts

made, weighted by the accuracy of the measurements taken. This project

will use 4D−Var to estimate the state parameters τ and c0.

5.1.1 Useful Notation

• 3D−Var, Three-dimensional variational analysis

• 4D−Var, Four-dimensional variational analysis

• Truth, xT , The actual true state, e.g. the true temperature of a room

• Analysis, xa, The analysis is our best estimate of this truth given the

information available

• Background, xb, Prior estimate of the truth before the observations are

assimilated, also known as the forecast

• x0, State at the initial time t0

• tk, Time at kth time step

• xk, State at time tk

• Observations, y, Observations over a time interval (t0, tk)

• Cost function, J , A function of the observation and the background

measurements that is minimised to obtain the best estimate of the

truth

The reason it is called 4D−Var is because it incorporates the three spatial

dimensions with time. Without incorporating time, this would be 3D vari-

ational assimilation which only uses each observation once at the time it

occurs and then discards it. (N K Nichols [9] )
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5.1.2 Error Handling

Errors undoubtedly arise in observations which can be caused by numerous

reasons, for example inaccuracies in taking the measurements or as a result of

using faulty apparatus. If the errors are not dealt with then this will result

in an unreliable analysis and so all errors must be minimised for the final

analysis.

Observation errors are often correlated especially if they are the result of

measurements taken using the same apparatus. These error correlations can

be represented in error covariance matrices for calculation purposes. The

background error covariance matrix B (defined only for t0), and the observa-

tion error covariance matrix R are known but can be hard to produce when

they are formed from multiple sources.

With a large number of observations these matrices are very expensive to

invert as B is of size n · n and R is of size p · p where n is the size/length of

the state vector and p is the number of observations. (E Kalnay [10])

5.2 Generic Cost Function

As previously mentioned, 4D−Var is defined as the minimisation of the fol-

lowing cost function which measures the difference between the observations

and the forecasts, weighted by the accuracy of the measurements, with the

general formula given by:

J(x) = (x− xb)
TB−1(x− xb) + (y− h(x))TR−1(y− h(x)). (5)

So our analysis can be written as:

xa = minxJ(x).
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In this project the only measurements taken are for the state vector variables,

i.e. the velocity and the vehicle density, with the equivalent background term

excluded as is explained in §5.3. Hence the cost function is given by:

J(p) =
n∑
i=0

(yi − hi[xi])
TR−1

i (yi − hi[xi])

where hi is the observation operator.

The cost function ensures that the analysis does not deviate too far from

the observations and forecasts which are usually quite reliable. By defini-

tion, the cost function is subject to the strong constraint:

x(k) = m(tk; t0; p; x0) ∀k, (6)

where m(tk; t0; p; x0) is the function starting from the initial time, t0, to tk.

For the first time step, k = 0, x(0) is the value of the initial state and it

is then used to update the forecast using the iterative equation:

xa = x(k+1) = x(k) + δx(k), (7)

where k goes from (0, 1, ..., r), r is the maximum number of time steps.

δx(k) is an increment of x(k).

The procedure is repeated until a specified number of time steps have been

performed or certain convergence criterion are satisfied (A Lawless, S Grat-

ton, N Nichols [11]). We expect the forecast to produce estimated values for

τ and c0 that give a better representation of the system on succeeding runs.

The final value of x is defined as xa.
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5.3 Cost Function as applied

For simplicity the background term of the cost function has been removed

in the application of this dissertation. The removal is permitted if enough

observations exist, although it is also sensible to do where the background

values are not known sufficiently accurate. Time permitting, we could ex-

periment with including background values, however, as is said it is simpler

to start without it.

Hence, the cost function (5) becomes:

J(p) =
n∑
i=0

(yi − hi[xi])
TR−1

i (yi − hi[xi])

=
n∑
i=0

(yi − hi[xi])
2R−1

i

=
n∑
i=0

[
(ρoi − ρi)2R−1

ρ + (voi − vi)2R−1
v

]
where

• yi is the observed value of xi

• hi is the observation operator

• xi ≡

(
ρi

vi

)
• ρi is the value of ρ at position i

• vi is the value of v at position i

• ρoi is the observed value of ρ at position i

• voi is the observed value of v at position i



5.4 Minimisation of the Cost Function 21

• R−1
ρ is the observation error covariance matrix for ρ

• R−1
v is the observation error covariance matrix for v

This adaption of the cost function is calculated in the HLL scheme.

5.4 Minimisation of the Cost Function

The minimisation of the cost function is the method used to solve the param-

eter estimation problem, i.e. to find the values of the parameters c0 and τ

which produce the least misfit between the forecast and observational values.

To achieve the minimisation of the cost function, the adjoint model was

expanded to obtain the gradient of the cost function. The values produced

by this process were passed to the computer package CONMIN (D F Shanno,

K H Phua [12]) which calculated the actual minimisation values.

The gradient of the cost function is required with respect to the initial pa-

rameter values, p0, and is given by:

∇J(p0) = −2
n∑
i=0

(
∂xi
∂p0

)T
HT
i R
−1(yi − hi(xi)) (8)
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where, (
∂xi
∂p0

)
=

(
∂(mi−1(xi−1))

∂p0

)

=

(
∂(mi−1(xi−1))

∂pi−1

)(
∂(mi−2(xi−2))

∂p0

)

=

(
∂(mi−1)

∂pi−1

)(
∂(mi−2)

∂pi−2

)(
∂(mi−3(xi−3))

∂p0

)

=

(
∂(mi−1)

∂pi−1

)(
∂(mi−2)

∂pi−2

)
...

(
∂(m0)

∂p0

)

= Mi−1Mi−2...M0

= M.

So equation (8) becomes:

∇J(p) = −2
n∑
i=0

(Mi−1Mi−2...M0)THT
i R
−1(yi − hi(xi))

= −2
n∑
i=0

MTHT
i R
−1(yi − hi(xi))

where

• p =

(
c0

τ

)
, the parameter vector,

• M is the linearisation of the non-linear model m,

• H is the Jacobian of the observation operator h,

• (Mi−1Mi−2...M0)T is given by the adjoint model.
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For further details on the adjoint model, see section §7.

Perturbations δc0 and δτ of c0 and τ are allowed where δc0 and δτ are ε%

(1 ≤ |ε| ≤ 10) of the initial values assigned to c0 and τ respectively. The

new values (c0 + δc0) and (τ + δτ) are used by the HLL scheme to calculate

a new value for the cost function J(p), p =

(
c0 + δc0

τ + δτ

)
.

The same values of the perturbations are used in the adjoint model to cal-

culate the gradient of the cost function evaluated at τ and c0 using the new

values of the perturbations δc0 and δτ .

For example,

δτn =
∂J

∂τ

∣∣∣∣
t=n

represents the gradient of J with respect to τ at time n.

It is this gradient and the corresponding cost function which are used in

the minimisation to obtain the optimal parameters values.
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5.5 Data Assimilation for Parameter Estimation

Figure 6: Example of 4D−Var assimilation in a numerical forecasting system,
graph from [13].

In the graphical representation of the 4D−Var approach, Figure 6, the blue

line is the previous forecast and the red is the corrected forecast after the

model has been run. It shows that the model is minimising the distance

between the forecast trajectory and the observations. This distance is mea-

sured by the cost function, J(p), which calculates the weighted sum of the

squares of these distances. 4D−Var is used re-iteratively to minimise the

cost function with respect to p, the parameter vector.

By finding the minimum value of this sum we are able to obtain the required

values for τ and c0.
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6 Tangent Linear Model

6.1 Introduction

The Tangent Linear Model is essentially the Jacobian of the nonlinear model

operator and is therefore derived directly from the HLL model (A Lawless

[11]) by keeping the statements of variables themselves unchanged and then

adding the related derivatives of these statements. It is required as an in-

termediate stage to obtain the adjoint model, however note that any logical

comparisons remain as in the HLL model. This stage involved the lineari-

sation of the HLL model, for further background theoretical details see N

Nichols [14].

6.2 Theory of the TLM

6.2.1

A typical linearisation model is of the form

xi = mi(xi−1)

= mi−1mi−2...m0(x0)

= m(x0, ti, t0)

where m is the non-linear model and x0 is the state at the initial time t0 (E

Kalnay [15]).

If the model has initial parameters represented by the vector p, then

xi = m(x0,p, ti, t0),

where p =

(
c0

τ

)
in this project.

This project is concerned with using observations to make forecasts of fu-
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ture positions and what appear to be random fluctuations in the constants,

i.e. the relaxation and anticipation constants when observing real traffic

events. This is achieved by including a randomly generated value for δp in

the model. Hence,

xi + δxi = m(x0,p + δp, ti, t0). (9)

Applying a Taylor series expansion to (9) gives:

xi + δxi = m(x0,p, ti, t0) + δm
δp
δp + higher order terms

⇒ δxi ≈ δm
δp
δp, where δm

δp
is the TLM represented by M(x).

It should be noted that this approximation holds best if m is linear, as

higher order terms are zero, while non-linear m will produce higher order

terms in δp2, δp3... resulting in less reliable results. The less linear m is, the

less accurate the results are likely to be.

6.3 Implementation

A fortran program was written to perform these calculations for each value

of x for each time step.

6.3.1 General Example

The tangent linear model was obtained by linearising the nonlinear forward

in time HLL code line by line. To code this, every line with a variable in it

must be differentiated with respect to each variable in that line.

More explicitly, any line of code in the HLL can be written as:

Z = f(X)
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where

X =


x1

x2

...

xn


where x1 to xn are the variables required to obtain Z.

Then the tangent linear code for this is:

δZ =

(
∂f

∂x1

)
δx1 +

(
∂f

∂x2

)
δx2 + ...+

(
∂f

∂xn

)
δxn.

(W Yang and M Navon [16])

6.3.2 Coding Example

In the HLL model code, u is given by:

u(j, i) = u(j, i)−
(

∆t

∆x

)
· (h(j, i+ 1)− h(j, i)) + ∆t · s(j, i).

The corresponding TLM code is:

δu(j, i) = δu(j, i)−
(

∆t

∆x

)
· (δh(j, i+ 1)− δh(j, i)) + ∆t · δs(j, i).

It is important to also retain the original lines of HLL code as some of them

will still be needed in calculations.

6.4 Correctness Testing Results

Human error is highly likely to occur when doing such code manipulations

as it is so easy to make a mistake. There exists a test for the correctness of

the TLM which involves calculating and plotting the relative errors for ρ and
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v. Both plots should tend to zero.

The non-linear model (HLL) is run twice, once with unperturbed values for

τ and c0 giving m(p), and once with perturbed values for τ and c0, giving

m(p + δp). The perturbation vector is given by δp =

(
δc0

δτ

)
. Following

this, the tangent linear model is run once with the perturbed τ and c0 to

give Mδp.

The total perturbation, m(p + δp)−m(p), is then compared with it’s linear

component, Mδp. (Y Li et al [17]) This is performed by calculating the

relative error as shown below.

The relative error is given by:

‖m(p + δp)−m(p)−Mδp‖
‖Mδp‖

· 100

where, ‖x‖ =

√
N∑
i=1

x2
i is the L2 norm.

Once this was calculated, the logarithmic relative error was plotted against

decreasing perturbation sizes, α, where α = 100, 10−1, 10−2, 10−3, 10−4, 10−5

for the velocity plot, and from 100 to 10−6 for the traffic density plot. The

graphs obtained are shown below:
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Figure 7: A graph to show the correctness of the TLM after 200 timesteps
for traffic density.
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Figure 8: A graph to show the correctness of the TLM after 200 timesteps
for velocity.

As can be seen in figures 7 and 8 as α decreases, so do the relative errors.

For ρ, the relative error decreases over 6 orders magnitude and over 5 for v

(figure 8). Both graphs tend to zero which is the desired result and strongly

suggests that the TLM has been done correctly.

It should be noted that for very small perturbation sizes (10−8 and smaller),

the error began to increase but this was due to rounding errors in the program

and does not invalidate the model but is a limitation of the machine.
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7 Adjoint Model

7.1 Introduction

The adjoint model produces the gradient of the cost function which is an

intrinsic part of the minimisation process.

The adjoint variables represent the gradient of the cost function with respect

to the model variables. The TLM starts from the initial HLL values and

calculates the variation between the unperturbed and the perturbed values

for the tangent linear model at t = tmax; the adjoint model will start with

the final values produced by TLM and run backwards in both space and time

to estimate the initial state vector values i.e. at t = 0.

7.2 Theory of the Adjoint Model

In order to obtain the adjoint of a linear model, it must be presented in the

form xn+1 = Mxn. The adjoint is then x̂n = MT x̂n+1. Adjoint models are

very useful for computing the derivatives of a function which has numerous

input variables, and so is particulary good for parameter and/or state vector

estimation.

The Adjoint model was generated from the TLM model by ‘reversing’ the

logic/code and exchanging the derivatives on either side of statements; where

they did not exist, the statements remain unchanged.

7.3 Examples

7.3.1 General Example

For example, take the following linear model of two variables y, z with

yn+1 = αyn + βzn

zn+1 = ξyn + ζzn.
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This can be written as

(
y

z

)n+1

=

(
α β

ξ ζ

)(
y

z

)n

,

i.e. xn+1 = Mxn where x =

(
y

z

)
and M =

(
α β

ξ ζ

)
.

Then the adjoint model x̂n = MT x̂n+1 is as follows:(
ŷ

ẑ

)n

=

(
α ξ

β ζ

)(
ŷ

ẑ

)n+1

,

i.e.

ŷn = αŷn+1 + ξẑn+1

ẑn = βŷn+1 + ζẑn+1.

The adjoint of the TLM is effectively the transpose of the TLM. Implementing

this in the program is somewhat complicated as every line of the TLM code

with variables had to be altered and split into separate equations.

7.3.2 Code Implementation Example

Using the same example as in §6.3.2, the TLM code δu is given by:

δu(j, i) = δu(j, i)−
(

∆t

∆x

)
· (δh(j, i+ 1)− δh(j, i)) + ∆t · δs(j, i).

This can be written as:
δu(j, i)

δh(j, i+ 1)

δh(j, i)

δs

=


1 −∆t

∆x
∆t
∆x

∆t

0 1 0 0

0 0 1 0

0 0 0 1




δu(j, i)

δh(j, i+ 1)

δh(j, i)

δs

 ,

the adjoint model is:
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
δû(j, i)

δĥ(j, i+ 1)

δĥ(j, i)

δŝ

=


1 0 0 0

−∆t
∆x

1 0 0
∆t
∆x

0 1 0

∆t 0 0 1




δû(j, i)

δĥ(j, i+ 1)

δĥ(j, i)

δŝ

 .

Therefore the corresponding code for the adjoint model of δu (in TLM) is:

δû(j, i) = δû(j, i)

δĥ(j, i+ 1) = δĥ(j, i+ 1)−
(

∆t

∆x

)
· (δû(j, i))

δĥ(j, i) = δĥ(j, i)−
(

∆t

∆x

)
· (−1) · (δû(j, i))

δŝ(j, i) = δŝ(j, i) + ∆t · δû(j, i).

After all the timesteps have been completed, it is necessary to set δû(j, i)

equal to zero (Chao and Chang [18]) since the adjoint model is the reverse

process of the TLM and therefore should finish with the initial values of the

TLM.

7.4 Test of the Adjoint Model

The method of writing the adjoint Fortran code had the consequence that

mistakes could easily be made even though great care was taken. Testing

was very difficult because the code comprised mainly of lines of calculation

so a validity test was performed.

7.4.1 General Theory of the Validity Test

The inner product of two vectors x and y is given by:

〈x,y〉 =
n∑
i=0

xiyi = xTy
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where the triangular brackets denote the inner product.

The procedure for the validity test is as follows, where M is an operator

and MT is its adjoint.

1. We begin with a random perturbation δx.

2. Then, the TLM code is applied, giving Mδx.

3. The adjoint model is then applied to Mδx to obtain MTMδx.

4. Calculate 〈Mδx,Mδx〉.

5. Calculate
〈
δx,MTMδx

〉
.

6. Check that 〈Mδx,Mδx〉 =
〈
δx,MTMδx

〉
.

When this test was done, 〈Mδx,Mδx〉 and
〈
δx,MTMδx

〉
produced the same

value, from which it was concluded that the adjoint had been coded correctly.

(Lawless et al [19])
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8 Implementing the Minimisation

When the adjoint model had been obtained and verified, the gradient of the

cost function J was calculated and tested to ensure correctness.

The gradient, ∇J , of the cost function, as determined by the HLL scheme, is

calculated within the adjoint model. This value is then used in the gradient

test, described in §8.1, to ensure that the adjoint model is working correctly.

The gradient, ∇J , is given by equation (8).

The outputs from the adjoint model are δτ and δc0 where

δτn =
∂J

∂τ

∣∣∣∣
t=n

, δcn0 =
∂J

∂c0

∣∣∣∣
t=n

.

As explained in §5.4, δτn is the gradient of J with respect to τ at time n and

δcn0 the gradient of J with respect to c0 at time n.

To be confident that these values are the correct gradient calculations of J ,

the gradient test was applied.

8.1 Gradient Test

The HLL scheme calculates the cost function J(x,p) for given values of c0 and

τ . It then uses perturbed values of these parameters to produce a perturbed

value of J , given by:

J(x,p + αδp).

Using the Taylor expansion:

J(x,p + αδp) = J(x,p) + αδpT∇J(x,p) +O(α2).

Rearranging:

J(x,p + αδp)− J(x,p)

αδpT∇J(x,p)
= 1 +O(α).
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Now define

Φ(α) =
J(x,p + αδp)− J(x,p)

αδpT∇J(x,p)

where α takes the values 1, 0.1, 0.01, ..., 10−11 and δp =

(
1√
2

1√
2

)
.

For values of α that are small, but quite not zero, Φ(α) should show a con-

stant value close to 1 (Navon et al [20]). Figure 9 clearly shows Φ(α) = 1

over an interval of 6 orders of magnitude. Φ’s lower limit is restricted by the

accumulation of rounding errors arising in the computer used.

Figure 9: A graph showing Φ(α) against α.
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Figure 10: A graph showing (Φ(α)− 1) against α.
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9 Results

The purpose of the project is to determine the optimal values for τ and c0

which produce the closest match between the forecast and observed measure-

ments.

To do so, the HLL scheme and the adjoint model are combined with the com-

puter module CONMIN to minimise the cost function, J , and the modulus

of it’s gradient, ∇J , for all specified time steps. To verify that 4D−Var is

suitable to obtain the parameters, it is necessary to investigate the effects

of altering the initial ‘guess’ values of τ and c0, together with changing the

size of the time window, t, and adjusting the amplitude of the noise on the

observations, represented by the observation error covariences (σρ and σρv).

For testing purposes, a random number generator was used to generate fluc-

tuations of the u values to produce the observation values used by the cost

function.

Although ∇J is one of the factors of the minimisation process, it should be

noted that it is not possible to solve exactly for ∇J = 0, which is the reason

a user specified convergence attribute, EPS, is embedded within CONMIN.

Note: in CONMIN, EPS imposes convergence when

‖∇J‖ ≤ β ·max{1, ‖p‖},

where β is the value of the EPS attribute.

9.1 Verification

The figures below are graphical representations of J and ‖∇J‖ against the

CONMIN iteration number. Figure 11 clearly shows J decreasing and then

converging to a value after three iterations. Whereas Figure 12 illustrates

‖∇J‖ decreasing steadily and approaching zero after seven iterations. These
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two graphs demonstrate the minimisation process and affirm that CONMIN

has been implemented correctly.

Figure 11: A graph to show J against the iterations.

The data for the graphs was produced using the values:

ctrue0 = 50 cguess0 = 55

τ true = 5 τ guess = 4.5

σ = 1 · 10−5

and the time window, t = 3.75 · 10−3.
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Figure 12: A graph to show ‖∇J‖ against the iterations.

9.2 Running the Model

As mentioned above, the effects of altering pguess, t and σ will be explored

to see how well the model can attain the best fit parameters. This must be

done systematically so the effect of each change can be seen. For all of the

following results the true parameter values were:

ctrue0 = 50, τ true = 5.

One item of information produced by CONMIN, the number of iterations

(ι), merits comment here. This value represents the number of iterations

made by CONMIN to obtain the estimates provided by the minimisation

routine, or as a result of the CONMIN convergence process. It gives a direct

correlation with the processing required to provide a solution from the ‘guess’

values. Generally this value tended to increase as the time window increased,

but even this was not consistent as the results in Table 9 show. Contrary

to expectations, large values of the guessed values did not always produce

increased number of iteratons, but as can be seen in Table 9, produced quite
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low iteration numbers.

9.2.1 Varying c0

In the results below the superscripts g, e and t stand for guess, estimate and

true values respectively, and ι is the CONMIN iteration number.

It is expected that when cg0 and τ g are given values with a greater difference

from their true values, the minimisation will take longer to process, i.e. more

iterations will be required to produce a close estimate. If they deviate too

far, then the model might not produce close values.

cg0 10 20 40 50 55 60 80 100
τ g 4.5
t 5 · 10−3

σ 10−6

ce0 50 50 50 50 50 50 50 50
τ e 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000
J 10447.3 10447.3 10447.3 10447.3 10447.3 10447.3 10447.3 10447.3
∇J 1113.6 24162.6 7919.5 932.8 5551.7 3906.1 10738.4 4876.2
ι 20 11 13 13 15 10 14 9

Table 1: c0 varying with σ = 10−6

Table 1 shows that varying cg0 when the observations are almost perfect has

little effect on obtaining the optimum values of the parameters as they both

approached their true values. This shows that convergence has occurred in-

dependent of the original guess value for c0. It also shows that since the

values of ∇J are far from zero, convergence has occurred in CONMIN before

the minimisation process was completed, a consequence of the value of the

EPS parameter and the small covariance values.
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cg0 10 20 40 50 55 60 80 100
τ g 4.5
t 5 · 10−3

σ 0.7
ce0 49.443 49.443 49.443 49.443 49.443 49.443 49.443 49.443
τ e 124469.6 190869.8 161542.0 167884.9 188998.3 216759.4 169437.1 136860.9
J 12546.3 12546.3 12546.3 12546.3 12546.3 12546.3 12546.3 12546.3
∇J 0.8 0.6 0.7 0.7 0.6 0.4 0.7 0.8
ι 32 29 27 26 28 33 29 29

Table 2: c0 varying with σ = 0.7

This is a general point concerning the results, that the solution may be

reached when the specified level of convergence is obtained, irrespective of

whether minimisation has been completed.

When the same values are used with less perfect observations, the model

still manages to reach a close value for c0, of 49.443. However this change

has caused τ e to have extremely large values (see Table 2) which do not ap-

pear to correlate with the values of c0. However, J converges to 12546.3 and

∇J tends to zero suggesting that minimisation has occurred.

9.2.2 Varying τ

Varying τ g had no effect on the value of ce0 in the tests conducted as can

be seen in Tables 3 and 4. In each of these cases, a good value of ∇J that

approached zero was recorded, although the values of τ e were far from the

true value especially so for the higher value of σ.

From this, it can be concluded that minimisation was achieved giving a good

value of c0 despite τ varying and hence the process appeared to be highly

insensitive to the parameter τ (for reasonable values).
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cg0 55
τ g 3 4 5 6 7 10 15 30
t 5 · 10−3

σ 0.01
ce0 50.01 50.01 50.01 50.01 50.01 50.01 50.01 50.01
τ e 48.92 48.29 48.29 48.28 48.29 48.29 48.29 48.29
J 10447.8 10447.8 10447.8 10447.8 10447.8 10447.8 10447.8 10447.8
∇J 0.051 0.017 0.045 0.158 0.028 0.005 0.084 0.037
ι 29 24 21 22 22 25 22 16

Table 3: τ varying with σ = 0.01

cg0 55
τ g 3 4 5 6 7 10 15 30
t 5 · 10−3

σ 0.7
ce0 49.443 49.443 49.443 49.443 49.443 49.443 49.443 49.443
τ e 158542 131612 187058 99929 162814 157938 96639 123660
J 12546.3 12546.3 12546.3 12546.3 12546.3 12546.3 12546.3 12546.3
∇J 0.7 0.8 0.7 0.9 0.7 0.7 0.3 0.8
ι 30 27 28 28 27 30 28 24

Table 4: τ varying with σ = 0.7

9.2.3 Varying t

The project uses a linear model to simulate a non-linear model problem

and with a relatively small time window, t = 1.25 · 10−3, the problem ap-

proximates to a linear solution which will generate meaningful values for J .

However with a longer time window, it is less likely that it will be as well

approximated by a linear model, because J could have more than one local

minimum which were formerly not apparent, but by increasing t they could

emerge.
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Despite expecting the time interval to have an effect on the results, Ta-

ble 5 shows that the model attained very good estimates for the parameters,

regardless of t. Table 6, with a larger value of σ, produce similar values for

c0 and the cost function, however τ fluctuated widely and the gradient to a

lesser extent.

It should be noted that as t increases, since δt remains constant throughout,

more observations are used in the cost function and hence in the minimisation

calculations.

cg0 55
τ g 4.5
t 0.00025 0.00125 0.0025 0.00375 0.005 0.00625 0.0075 0.0125
σ 10−6

ce0 50 50 50 50 50 50 50 50
τ e 5.007 5.001 5.001 5.001 5.001 5.000 5.000 5.000
J 4.8 · 102 2.5 · 103 5.1 · 103 7.8 · 103 1.0 · 104 1.3 · 104 1.6 · 104 2.7 · 104

∇J 2.6 4.3 · 106 8.9 · 10 1.7 · 106 5.6 · 103 1.2 · 107 1.4 · 107 4.4 · 106

ι 11 31 11 28 27 18 30 20

Table 5: t varying with all other parameters remaining constant, using σ =
10−6.
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cg0 55
τ g 4.5
t 0.00025 0.00125 0.0025 0.00375 0.005 0.00625 0.0075 0.0125
σ 10−2

ce0 49.98 49.99 50.00 50.01 50.01 50.01 50.01 50.01
τ e 2201185.5 8.9 3898948.0 491.8 50.0 23.5 16.7 11.6
J 6.4 · 102 3.1 · 103 5.3 · 103 7.8 · 103 1.0 · 104 1.3 · 104 1.6 · 104 2.7 · 104

∇J 0.83 222.45 13.45 486.30 4.84 643.37 465.09 43.67
ι 27 13 34 35 29 20 20 23

Table 6: t varying with all other parameters remaining constant, using σ =
10−2.

9.2.4 Varying σ

The impact of varying the observation error covariance matix, R = σ2I, ap-

plies directly to the observation values, y. The nearer σ is to zero, the closer

the observations are to the true state of u and it would be expected that

the model would produce parameter estimations close to their true values.

Conversely, as σ increases, the observations deviate further from u, and the

model is likely to yield less close estimates of pt.

Table 7 supports this reasoning. It can clearly be seen that for σ = 10−6,

pe = pt, but as σ increases, the estimates for both c0 and τ deteriorate as

expected.

The data in this table further supports the statement made previously about

convergence occurring prior to minimisation as it can be seen that c0 has

good values inspite of the large values for ∇J .
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cg0 55
τ g 4.5
t 5 · 10−3

σ 10−6 10−4 10−3 10−2 10−1 100 2 5
ce0 50.000 50.000 50.001 50.009 49.938 49.185 48.237 44.023
τ e 5.000 5.045 5.493 48.290 1211698 123999.7 23747 163.2
J 10447.3 10447.3 10447.3 10447.8 12158.0 12563.6 12563.6 12425.6
∇J 5551.7 64.3 2.5 0.0 4.6 0.5 4.8 0.4
ι 15 13 14 28 35 28 28 14

Table 7: σ varying with all other parameters remaining constant.

9.2.5 Further Investigations

Further investigations were conducted, some of which are included in Tables

8 and 9 below. The tests involved varying two or more parameters at the

same time and using more extreme values for the parameters. This tests the

model’s resilience when using exaggerated values.

The first observation from Table 8 is that c0 was estimated accurately ir-

respective of the values of c0, τ or σ, within the given ranges. τ also approx-

imated well for small σ even though it’s initial value deviated significantly

from the true value. However for larger values of σ, as τ g approached it’s

true value, the estimated value became highly inaccurate.

This agrees with the previous comments about the insensitivity of τ which

receives further support from the results in Table 9, where extreme values

of τ g, providing that σ ≤ 1, did not prevent the attainment of very good

values for ce0. For higher values of σ (> 1), as σ increased, the values for cg0

deteriorated despite good values for ∇J and an increasing time window.
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cg0 80 74 68 62 56 50
τ g 3 3.4 3.8 4.2 4.6 5
t 5 · 10−3

σ 10−6 10−5 10−4 10−3 10−2 10−1

ce0 50.000 50.000 50.000 50.001 50.009 49.938
τ e 5.000 5.004 5.045 5.493 49.289 1238234
J 10477.3 10477.3 10477.3 10477.3 10477.8 12158.0
∇J 11939.6 116.7 17.5 0.2 0.1 10.5
ι 12 14 15 16 22 31

Table 8: Varying three parameters.

cg0 80 80 70 70 55 55 55 101
τ g 2 · 103 10−1 5 · 103 1 105 105 105 105

t 0.00625 0.00625 0.00625 0.01 0.01 0.01 0.01 0.005
σ 0.01 0.1 1 2 5 9 0.1 0.1
ce0 50.01 49.95 49.26 48.60 44.36 38.43 49.97 49.94
τ e 2 · 103 1.9 · 105 5 · 103 8 · 102 105 105 105 105

J 13373 15098 15611 21640 23658 22892 23887 12158
∇J 176.16 0 1.02 4.29 0.20 0.09 67.83 0.37
ι 5 44 5 30 4 6 4 3

Table 9: Varying various combinations of the parameters.
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10 Summary

The advantage of using 4D−Var is that it uses each observation in the time

window at every iteration, i.e. the observations are treated at the correct

time. This makes the forecast produced highly accurate and it incorporates

all the available information into the model. However it does therefore re-

quire all the observations over the whole time window to be available before

the analysis can be calculated which can delay the availability of xa. When

dealing with real data this may become a problem.

Naturally, there are limitations to using the adjoint model due to limits

on the predictability of traffic flow. The model can’t predict a spontaneous

major event, such as a crash, but can only model the effects that this will

have (R Errico [21]).

Due to the nature of the method used for the adjoint model, coding and in

particular testing was time consuming requiring patience and care to avoid

errors. This took more time than was expected and so delayed the project

from advancing.
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11 Conclusion

Many other tests were run apart from those results included in section §9 and

in most cases a good estimate value for c0 was obtained. However, the values

for τ were often very far from the true value as was ∇J from the expected

value of near zero. Even when ∇J was near zero, τ still did not approach

it’s true value.

We explain the result of τ varying and having marginal affect on the other

values by saying the system is τ insensitive.

We can further explain the failure of ∇J to tend to zero in all cases by

the convergence factor in CONMIN, that resulted in the process completing

with good (convergent) values for c0 and the cost function before minimisa-

tion of ∇J had been achieved. With a more powerful and accurate computer

it is possible to increase the machine accuracy parameter and adjust the EPS

value for CONMIN which would allow convergence to occur at a later stage in

the processing, thereby allowing more opportunity for minimisation to occur.

The programs, although tested as well as could be in the time allowed, are

still likely to contain errors which further testing could eradicate if time

permitted. Also more tests could be made with different combinations and

magnitudes for the parameters used by the model to improve the perfor-

mance.

The model exhibited resilience to a wide range of guess values (for cg0 and τ g),

generally achieving a good estimate for c0. Good resilience was also recorded

in the test for values of the covarience factor σ ≤ 1.

It was also concluded that τ had insignificant influence on the minimisa-

tion of J and hence in estimating the state variable.
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It had been hoped to use real data collected from the M25 motorway but

this stage was not reached because of time restriction, but it is anticipated

that this will be done following the completion of this dissertation.
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12 Appendix A- Glossary

Anticipation: the changes made by drivers to changing traffic conditions

around them. Used in Payne’s equations.

Continuity equation: differential equation that describes the conserva-

tion of a conserved quantity.

Convection: changes in the mean traffic velocity caused be vehicles joining

or leaving the flow. Used in Payne’s equations.

Cost function: measures the bias between the observations and the model.

Data Assimilation: is the incorporation of observational data into a nu-

merical model to produce a model state which most accurately describes the

observed reality.

EPS: is the user supplied convergence parameter to CONMIN.

Hyperbolic: a system of partial differential equations is hyperbolic if for

xp + A(x)xq, A(x) is diagonalisable and has real eigenvalues.

Insensitive Parameter: ability of a model or system to be unaffected by

widely ranging values of the parameter.

Relaxation: the tendency of traffic flow to approach an equilibrium ve-

locity. Used in Payne’s equations.

Stochastic process: a process whose behaviour is essentially non-deterministic,

that is the system’s subsequent state is a combination of the process’s pre-

dictable actions and a random element.
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Tangent Linear approximation: An assumption used in applications of

tangent linear models and adjoint models that the evolution of small per-

turbations in nonlinear models may be approximated by tangent linear (and

adjoint) equations for finite time intervals (ref: 1).

TLM: Tangent Linear Model. A model, comprising tangent linear equa-

tions, that maps a perturbation vector, δx(t1) = Mδx(t0), from initial time

t0 to forecast time t1. Where, M is the tangent linear operator and x is the

model state vector.

Traffic flow model: formulates the relationships between traffic flow char-

acteristics
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13 Appendix B

13.1 Data Flow Diagram

13.2 Program Outlines

13.2.1 Introduction

All programs were written in Fortran using the Plato development applica-

tion, a brief description of their function and the data input/output files is

given below. A Control file is maintained of the initial values used by HLL

together with other parameter values that are required to be passed between

programs.
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13.2.2 Roes

The first program of the unlinearised model from which the HLL program

was developed.

13.2.3 HLL 2files

The Fortran implementation of the HLL model starts from initial values of

the state vector and produces an output file of u at the final time step. The

constants c0 and τ are then randomly perturbed and the model re-run. The

cost function is calculated for each condition.

Output:

Control file output file containing parameter values

HLL lin state output file of containing values of u at each x position for each

time step

HLL 01 output file of final values of u using unperturbed values

HLL 02 output file of final values of u using perturbed values

HLL observs output file of containing values of observations values at each

x position for each time step

13.2.4 TLM

The program performs the TLM processing using the equivalent HLL values

of u at the start of each ‘x’ step. Produces a file of the δu values for the final

time step.

Input:

Control file containing parameter values (and perturbed state vector values)

HLL lin state containing initial all values of unlinearised u (to be used at the

start of each ‘x’ step)

HLL observs containing values of observations values at each x position for
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each time step

Output:

TLM 01 containing final time step values of δu

13.2.5 ADJ

The program performs the Adjoint model processing, but in the reverse order

to processing by HLL and TLM. (i.e. starting at the final time and working

backwards to the start time, and within each time step beginning with the

greatest x value and working backwards to the smallest.) Again the equiva-

lent HLL values of u are used at the start of each ′x′ step (HLL values being

accessed in reverse order to which they were produced) together with the

final time step values of δu from TLM for the first time step only.

The program includes the calculation of the inner products using the output

of TLM and ADJ, to verify the correct working of the system.

Calculates inner product 1 = (δc0)2+(δτ)2+(δu)2 (using the TLM final delta u

file values). Equivalent of (Mδx).(Mδx).

Calculates inner product 2 = δτ.δτ̂ + δc0.δĉ0 only (since the initial per-

turbations are zero).

Equivalent of δx.MTMδx.

Where

• δτ is the perturbed value calculated and used by HLL, used for TLM

and the initial value for ADJ. Similarly for δc0.

• δτ̂ and δĉ0 are final values calculated by ADJ.

If the system is functioning correctly, then inner product 1 should equal inner

product 2.

The results are displayed on the monitor.
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The program includes the calculation of the gradient of the Cost function

for use by CONMIN as detailed below:

∇J = 2 · (δĉ0 + δτ̂)

Input:

Control file containing parameter values

HLL lin state containing all values of unlinearised u (to be used at the start

of each ‘x’ step)

TLM final delta u containing final time step values of δu.

HLL observs containing values of observations values at each x position for

each time step

Output:

Control file updated to contain final values of δĉ0 and δτ̂

Results of inner products calculations.

13.2.6 Merge err

Compares the values of δu produced from the difference in values between u

on HLL 01 and HLL 02 and the δu values from TLM using a Relative Error

calculation.

Input:

HLL 01 final values of u using unperturbed values

HLL 02 final values of u using perturbed values

TLM 01; TLM values of δu

Output to terminal the Relative errors of ρ and v.
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13.2.7 CONMIN

CONMIN is a computer subroutine that finds the values of c0 and τ that

produce a minimisation of the cost function. In summary, it is called from a

small Fortran program and then repeadily calls HLL and ADJ to calculate

the J and ∇J respectively until convergence of the values is achieved.

13.3 Control file values

Record 1: N , c0, τ , perturbation factor

Record 2: t, δt, δx

Record 3: perturbed value of c0, perturbed value of τ (from HLL)

Record 4: observational error covariance for ρ, observational error covariance

for v, Cost function value (all from HLL)

Record 5: δĉ0, δτ̂ (from ADJ)
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