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Abstract

Until recently, methods of triangulating a domain relied on geometrical con-
straints, e.g. on the prescribed position of the nodes on the interior of the region.
However for the interpolation of functions on the domain such geometrically gen-
erated triangulations can produce poor representations of the underlying data.
Grids which can well represent underlying data can be achieved by the use of a
data dependent grid generation technique.

To improve the quality of representations, methods are presented which gener-
ate data dependent triangulations by reconnecting the edges in the triangulation
of a fixed set of nodes, by moving the nodes with a fixed connectivity and by
generating nodes and triangles concurrently in a triangulation front procedure.

Results of employing each of these methods independently are presented and
a strategy involving combinations of them developed. This leads to a general
procedure which produces good data-representing triangulations.

The addition of geometric criteria to the reconnection and repositioning pro-
cedures shows that, if required by the numerical solution technique, geometrical
constraints, e.g. minimum triangle area, can also be accommodated.

Although this work is carried out in the context of the generation of a grid to
well represent initial data it has applications in the more general area of function

interpolation.
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Chapter 1

Introduction

The solutions to many mathematical models of physical processes contain local
transient features, for example shocks in the supersonic flow past an aerofoil,
or the steep fronts present in semiconductor process modelling. In general such
mathematical models can not be solved analytically and so numerical solution
techniques must be employed. FEarly computational techniques were based on
finite differences on a regular stencil of points. Such techniques, which are em-
ployed on quadrilateral grids, have been supplemented more recently by the finite
element procedure which may be employed on triangular grids. Initially numerical
solution techniques were based on a fixed computational grid which meant that
the fine resolution of transient features required a fine grid over the whole region.
For large scale problems this led to very wasteful, computationally expensive,
procedures.

Recently another set of techniques has gained in popularity. These are adap-
tive techniques where the grid on which the numerical scheme is solved evolves in

conjunction with the numerical solution of the problem being modelled. The ac-



curacy of the representation of the initial data therefore has a major effect on the
quality of the solution of the numerical scheme. These techniques have evolved
for both quadrilateral and triangular meshes. The quadrilateral meshes are usu-
ally used in conjunction with finite difference schemes, while triangular grids are
usually used for finite element, or finite volume, methods. These schemes require
a good initial grid to produce accurate results. One technique used to generate
initial grids is to start with a globally coarse mesh and to refine the subcells
of the mesh where refinement is required. This can lead to very complicated
data structures and an increase in the computational complexity of the problem.
Other techniques which have since evolved are to cluster the nodes in regions
where the initial data has a highly transient feature and if necessary to change
the connectivity of a mesh at certain points during the solution procedure.

The aim of this work is to investigate and develop techniques which can be
used to generate grids which well represent underlying data and which can there-
fore be used as initial grids for adaptive techniques. The main area of study is
triangular grid generation although some of the techniques developed are appli-
cable to quadrilateral grid generation. Although this work is carried out in the
context of the generation of a grid to well represent initial data it has applications
in the more general area of function interpolation.

There are three possible components to such techniques which are investigated
here. These are the generation of nodes, the connection and reconnection of nodes
to form triangles and the movement of nodes. Each of these components is inves-
tigated separately. The connection and reconnection is studied first, after which

the nodal movement is considered and finally the generation of nodes is studied.



Strategies for combining them to form a complete grid generation procedure are
then developed.

The connection, and reconnection, of nodes to form triangles has been studied
in the literature as part of the scattered data representation problem (e.g. Franke
(1979)) and so results from this research area are introduced and studied. The
movement of nodes has been used as a post processor where grids have been
constructed and the nodal positions are “smoothed” so that the triangles are
nearly equiangular. The generation of nodes has usually been performed largely
in a geometric fashion so that the mesh points conform to geometric constraints.
Triangulation fronts have been used to introduce nodes which are positioned in
order that triangles generated by connecting the nodes are nearly equilateral (e.g.
Cavendish (1974)). Refinement has also been used so that nodes are placed at
the centre of triangles which have too large an area.

The order in which the strategies and procedures mentioned above are inves-
tigated is as follows.

In the next chapter we review the literature concerned with the generation
of geometrical grids. These grids can be comprised of either triangles or quadri-
laterals. In Chapter 3 we review some of the methods which are currently used
for generating data dependent grids. The grids which are considered are again
triangular or quadrilateral, although the 1-D case is also studied as this provides
information for the nodal positioning on the boundaries of the region.

Chapter 4 is devoted to the presentation of the test functions and the sets of
nodal positions on which the procedures will be tested. Also presented in this

chapter are the measures which will be used to evaluate the quality of the data



representation by the triangulation and the geometrical aspects of the triangula-
tion.

In Chapter 5 we describe the procedures which can be implemented to generate
triangular grids using nodal reconnection. The procedures of Dyn, Rippa and
Levin (1990) are presented and then a new technique, based on that proposed by
Sweby (1987), is outlined. The effect of combining geometrical constraints into
these procedures is also shown.

In Chapter 6 two new procedures for the repositioning of nodes in a trian-
gulation with fixed connectivity are presented. The first of these considers the
edges in a triangulation as springs and attempts to position the whole system in
equilibrium. The second is based on the use of error estimates to position the
nodes so that each triangle in the triangulation has the same error. Again the
introduction of geometrical constraints is investigated.

In Chapter 7 methods of generating the nodal positions for an initial triangu-
lation are presented and the use of data dependent criteria for these procedures
is investigated. Finally results which show the effect of combining the procedures
presented in the previous two chapters with the techniques detailed in Chapter 7
are given.

In the final chapter we summarise the work done in this thesis and suggest

possible areas of further research.



Chapter 2

Grid Generation Techniques

In this chapter various techniques of grid generation which have evolved to fill
the need to cover a general spatial region with a computational grid are surveyed.
The different techniques which generate either quadrilateral or triangular grids are
reviewed. The strategies which are described in this chapter use only geometrical
constraints to generate the grids, while data dependent grid generation, where the
representation of the data upon the grid is also taken into account, is described

in Chapter 3.

2.1 Quadrilateral Grid Generation

Until recently numerical schemes used to approximate mathematical models of
physical situations were predominantly finite difference schemes which, to produce
the required accuracy, utilise a fine uniform mesh of nodes, (Ames (1972)). With
the increasing geometrical complexity of regions on which problems are posed, e.g.
fluid flow around aircraft bodies and aerofoils, and the increased mathematical

complexity of problems to be solved, e.g. high speed fluid flow round an obstacle,



changes in both solution and meshing strategy are required. Owing to large
derivatives of the solution variables occurring over small regions in such problems,
it is no longer viable to completely cover the whole region with a fine regular mesh
to obtain the desired accuracy for the smallest feature. This would lead to an
excessive number of points in regions which do not require such a fine grid for
accuracy, and the computational cost of solving the problem would be prohibitive.

This problem can be overcome by the use of general quadrilateral grids which
have the same inherent structure as uniform square grids, e.g. nodes can be
easily labelled and thus neighbours easily found, but the quadrilaterals of the
grid do not have to have right angles or straight edges. The main idea behind
most quadrilateral grid generation is that for a quadrilateral region in physical
(x,y)-space it is possible to produce a transformation into computational (£,n)-
space onto a uniform grid with nodes at integer values of ¢ and 5 as illustrated

in Figure 2.1.

% 3

Figure 2.1: Transformation to a regular grid

The advantage of such a principle is that irregular domains may easily be



gridded by transforming them into computational space and overlaying a regular
grid onto a now regular domain. This grid can then be transformed back into
physical space and the differential equations approximated on it, or alternatively
the differential equations themselves can be transformed into (&,n)-space and
solved there.

There are two main strategies for quadrilateral grid generation; algebraic tech-
niques and differential equation techniques. The differential equation techniques
generate the grid as a solution of a differential equation which is used to map be-
tween (x,y) and (&,n)-space. Since the majority of practical problems are solved
on finite regions, elliptic grid generators are appropriate since unlike parabolic and
hyperbolic equations they require data to be prescribed on the whole boundary,
(Thompson, Warsi and Mastin (1985)).

The simplest elliptic grid generation technique is one in which the boundary
nodes of the physical region are specified and then used as boundary data for a

pair of Laplace equations

v2€ = fxx + fyy =0 (21)
V277 = Mgz + Nyy = 0 (2'2)

which are then solved over the interior of the region to position the remaining
nodes.

In practice the dependent and independent variables in these equations are
interchanged to enable x and y to be found in terms of £ and 5. The grids pro-
duced by these equations are determined solely by the positioning of the boundary

nodes, however control functions can be added to the right-hand side to enable



influence to be asserted over the positioning of the internal nodes, i.e.
VQf = Lo + &y = Pla,y) (2.3)

VI = aw + 0y = Q) (2.4)
where P and () are functions which will control the grid features required e.g.
smoothness, orthogonality and the positioning of grid lines in regions of interest.

These methods are complicated by the fact that P and () can be difficult to
choose before commencing the grid generation and that calculating their values
during the generation can be computationally expensive.

Equations such as (2.3) and (2.4) are discretised using finite differences and the
resulting algebraic system solved using iterative methods. An extensive survey of
such numerical grid generation techniques has been made by Thompson et al.

Algebraic grid generation methods are based on interpolation of physical po-
sitions (x,y) on the computational (£,7) grid. The coordinates of the boundary
nodes are specified and interpolation between them used to determine the inte-
rior nodes. The simplest interpolation is linear, which produces equidistant grids,
however higher order interpolation can also be used by the introduction of ficti-
tious knots (i.e. they are not nodes of the final grid), their position being used
to control the placement of nodes within the region. Transfinite interpolation is
used for multi-dimensional problems to blend one dimensional interpolation in
the separate computational coordinate directions.

For further details on these methods see Eiseman (1987) or Thompson et al.
Such methods can be fast but orthogonality, smoothness and the control of grid
features are difficult to implement and can make the method computationally

expensive.



A different class of grid generators contains those based on variational prin-
ciples, known as variational methods. Variational methods are such that some
measure of the grid quality is represented by an integral involving the computa-
tional variables, ¢ and 7. There can be any number of such integrals associated
with the grid, all representing different qualities. Once such integrals have been
formulated, it is possible, by the use of the variational Euler equations, to produce
equations for the grid positions (z,y) in terms of the computational variables
(&,m). The integrals can be weighted so as to heighten the effect of particular
quality measures, (2.5). The Euler equations are discretised and the resulting
difference equations solved iteratively using a technique such as Gauss-Seidel.

Brackbill and Saltzmann (1982) first suggested this method and used the

following measures of grid quality, in computational coordinates :-

Smoothness, I, = [pl[(VE*+ (Vn)HdV

Orthogonality, I, = [p[(VENVRD)?dV

Weighted volume, [, = [pwJdV
where J = z¢y, — x,y¢ , is the Jacobian of the transformation, and w = w(x,y) is
a weight function used to control distribution of the grid, e.g. to enable clustering
to a line or point.

The measure of grid quality to be optimised is then,

Q=1,+)I,+AI, (2.5)

where A, and A, are weights chosen to produce a grid with desirable properties.
Such variational methods are becoming increasingly popular in the field of

computational fluid dynamics where the increased complexity of 3-dimensions is



easily within the capacity of modern computers, see e.g. Hawkins and Kightley
(1989).

An alternative approach to such variational methods has been advocated by
Kennon and Dulikravich (1986). In their approach, once the integrals of grid
quality have been formulated, rather than using variational principles to produce
the variational Euler equations, the grid functional is discretised directly. The
discretisation produced is then solved iteratively as before. The idea of direct
minimisation was pursued by Kumar and Kumar (1988) who reformulated the
measures of grid quality and solved the equations in a pointwise fashion.

One application is the scattered data-set problem, where at most one data
point is required in any quadrilateral, close to its centre. Farmer, Heath and
Moody (1991) look at this problem and present a method which gives good results.

In the scattered data set problem, data is given at a small number of points,
m, and a quadrilateral grid of size n; by n;, (n; x n; > m), is to be fitted to the
region; data points should be positioned close to the centre of their surrounding
quadrilateral and with at most one data point positioned in each quadrilateral.
The criteria of grid smoothness and orthogonality are also included in the funec-

tional to be minimised, which has the form,

G = f + Z Z/(Zm — Cm)2 + ZﬂNz,](l — Ni,j) (26)
m 7,7
where :-
e f is a measure of smoothness and orthogonality.

e m is the number of data points with position zy,.

® ¢y, is the centre of the quadrilateral in which node m is positioned.

10



e NN, is the number of points in the (7, 7)th quadrilateral.

The functional is calculated for an initial grid and then mesh points are moved
on a local basis until a minimum of the functional is found.

Most of the main techniques of geometrical quadrilateral grid generation have
been outlined in this section and in the next section some methods of geometrical

triangular grid generation are surveyed.

2.2 Triangular Grid Generation

With the increased complexity and irregularity of domains on which numerical
problems are solved, grids comprising solely of triangles have become increasingly
popular. This is because it is easier to fit irregular boundaries using triangles
rather than quadrilaterals. Triangular grids are now used in many fields including
surface representation, Computer-Aided-Design, semi-conductor modelling and
fluid dynamics.

There are two main strategies for constructing geometrically based triangular

grids. These are :-

1. Given a complete set of nodes, triangulate them,

2. Given a set of boundary nodes, generate interior nodes and triangles

at the same time.

When such geometrically based triangulations have been produced they can

be post-processed in a geometrical manner. This post-processing can consist of
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keeping the nodal connections fixed whilst moving the nodes or changing the
connectivity while keeping the nodes fixed.

The first procedure is the oldest and most commonly used; usually a set of
nodes is generated by some means, and then a triangulation is produced which
possesses some desirable property, such as equiangularity. There are many ways
of achieving this, one of the most popular being the Delaunay triangulation tech-
nique, (Delaunay (1934)). A Delaunay triangulation is the dual of the Voronoi
tesselation (also known as a Dirichlet or Thiessen tesselation), see Dirichlet (1850)
or Voronoi (1908), which divides the regions into tiles. Fach tile encloses a data
point and the tile defines a region of the plane which is nearer to its interior node
than to any other node.

The Delaunay triangulation is then constructed by joining nodes whose tiles
have common edges (see Figure 2.2). The dual property of the Voronoi tesselation
and Delaunay triangulation is such that given a Delaunay triangulation one can

construct a Voronoi tesselation and vice-versa (Green and Sibson (1978)).

Figure 2.2: A Voronoi tesselation and its associated Delaunay triangulation

12



Delaunay also demonstrated that this triangulation could be defined in an-
other manner. His formal definition stated that in n-dimensions the circum-
scribing n-dimensional hypersphere of the n-dimensional grid element contains
no points other than those defining the element. In 2-dimensions this means that
the circumcircle of a triangle, i.e. the circle which passes through all three ver-
tices of the triangle, contains no other nodes. This definition can however lead to
a degenerate case if n+2 or more nodes lie on the boundary of the n-dimensional
hypersphere; in such a case these nodes can be triangulated by any of the possible

connections (see Figure 2.3 for the 2-dimensional case).

Figure 2.3: Degenerate case of Delaunay

Next some properties of the Delaunay triangulation are described and methods
by which Delaunay triangulations can be produced are reviewed.

In Lawson (1977) it is shown that given any initial triangulation it is possible
to produce a triangulation with a maximum-minimum angle criterion. This prop-
erty ensures that in any convex quadrilateral formed by two adjacent triangles,
the interior diagonal, see Figure 2.4, is chosen so that the minimum angle in the

two resulting triangles is maximised.
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Figure 2.4: The two possible triangulations of a convex quadrilateral

The resultant triangles are said to be “locally equiangular” and if all strictly
convex quadrilaterals, (see Figure 2.5), possess this property then the whole tri-

angulation is said to be “globally equiangular”.

Figure 2.5: Non-convex and convex quadrilaterals

Sibson (1978) proved that a globally equiangular triangulation is unique (sub-
ject to degeneracy) and that it is in fact the Delaunay triangulation.

The Delaunay triangulation is widely used due to this “locally equiangular”
property, since it is known (see e.g. Strang and Fix (1973)) that triangulations
which possess this property result in well-conditioned stiffness matrices for the
Finite Element Method applied to self adjoint problems.

Techniques which can be used to generate Delaunay triangulations are now
reviewed. There are two main techniques which can be used to produce a De-
launay triangulation from a pre-generated set of nodes; the diagonal swapping
technique and the insertion polygon technique, although there is also another

14



technique for producing Delaunay triangulations which requires only boundary
nodes to be supplied and then proceeds to generate interior nodes and triangles
in an enrichment manner.

The first technique for use on a pre-generated set of nodes is that of diagonal
swapping. This is based on a theorem by Lawson (1972) which states that given
any initial triangulation it can be transformed to any other triangulation by a
finite number of diagonal swaps, (see Figure 2.4). These diagonal swaps are only
applicable if two triangles with a common edge form a convex quadrilateral (see
Figure 2.5).

The diagonal swap procedure first requires the generation of artificial nodes to
aid in the procedure. These artificial nodes are generated in such a way that they
are well distanced from the convex hull, €2, of the convex region to be triangulated

(see Figure 2.6).

A A,

A, As

Figure 2.6: Positions of the artificial nodes

The artificial nodes are triangulated and then the Local Optimisation Proce-

dure, as suggested by Lawson (1977), is used. The procedure is as follows:-

15



(a) The next node in the node list is placed in the triangulation and then
connected to the vertices of the existing triangle in which it lies (see Figure

2.7).

Figure 2.7: Insertion of a node into a triangulation

(b) Convex quadrilaterals, formed by adjacent triangles in the triangulation,
are checked so that if swapping the interior diagonals, (see Figure 2.4),
increases the minimum angle in the two triangles then they are swapped.

This is repeated until no further swaps can be made in the triangulation.

(c) If there are more nodes to be inserted then return to step (a), otherwise
all triangles which contain artificial nodes are removed and the remaining

triangles form a Delaunay triangulation.

The other method which can be used is the “insertion polygon” method,
(Mock (1985)), which is based on the original circumcircle property noted by
Delaunay. This again starts with artificial nodes being generated and nodes
being inserted into an existing triangulation one at a time. The procedure is as

follows:-

(a) For the new node, examine the circumcircle of each existing triangle and

flag those triangles for which the node is inside the circumcircle.

16



(b) The flagged triangles are removed from the triangulation leaving a polygon
surrounding the new node. The new node is then connected with neigh-
bouring vertices on the boundary of the polygon to form the new triangles

(see Figure 2.8).

(c¢) The procedure returns to (a) if all nodes have not yet been inserted, other-
wise all triangles which contain artificial nodes are removed and the triangles

remaining form a Delaunay triangulation.

Figure 2.8: Node insertion by the insertion polygon technique

Both of the above methods can be used once a Delaunay triangulation has
been produced and extra nodes are to be added. In this case artificial nodes
are only required if the extra nodes lie outside the convex hull of the previous
triangulation.

For non-convex regions the procedure varies slightly. The convex hull of the

non-convex region is found and artificial triangles are produced so that the regions

17



inside the convex hull but outside the non-convex region are filled by triangles.
These triangles are designated as fixed and as such cannot be modified during
the node insertion procedure. At the end of the node insertion procedure these
artificial triangles are then removed and the resulting triangulation is that of the
non-convex region.

The other method of producing a Delaunay triangulation is the enrichment
technique, Frey (1987). In this, a set of boundary nodes is generated so that
the boundary of the region is well-represented. Interior nodes are then produced
and triangulated until a final triangulation satisfies some user defined property,
such as the number of triangles in the triangulation. This enrichment approach
is usually data dependent, however Frey produced a property which results in
Delaunay triangulations.

Frey’s method is as follows :-

(a) Having generated a set of boundary nodes, produce a Delaunay triangula-

tion using just these nodes.

(b) Each triangle is then checked, in order of size, largest to smallest, to see if
it can be refined. The test that Frey used is that the circumcentre of the
triangles circumcircle must be inside the triangle. If such a test is satisfied
then the triangle doesn’t need refinement. If the triangle fails this test then
a new node is placed at the centroid of the triangle, three new triangles
being produced (as in Figure 2.7) and the resulting triangulation is then
modified using diagonal swapping (as outlined above) so that a Delaunay

triangulation is achieved.

18



(c) Step (b) is then repeated until either:-

1. All triangles have areas less than a specified tolerance, or
2. No triangles fail the test, or

3. A preset number of triangles have been produced;

The procedure then terminates.

This ends our review of the purely Delaunay based generation techniques.
Triangular grid generation techniques which produce grids with other properties
are now considered.

The Local Optimisation Procedure of Lawson (1977) used in Delaunay diag-
onal swapping can also be used to reconnect edges according to other criteria,
such as that of the Minimum Weight Triangulation(MWT), (also known as the
“optimal” triangulation), Watson and Philip (1984). In this procedure the cri-
terion used for diagonal swapping is that the shortest interior edge of a convex
quadrilateral must be chosen. This means that the sum of the edge lengths in
the triangulation is a minimum. Figure 2.9 shows how this criterion can produce
non-Delaunay triangulations. Delaunay’s method selects the dotted line, MWT

the solid line.

Figure 2.9: MWT and non-MWT triangulations

MWT has the property that near neighbours are connected, however as can

19



be seen from Figure 2.9, triangles with small angles can be produced.

An alternative set of techniques are those generally known as triangulation
front techniques, which can be used either on a pre-generated set of nodes to
generate triangles or to generate the nodes concurrently with the triangles.

In the first case the problem is to generate the nodes in a “reasonable” manner.
The two main approaches are as follows :-

1) A set of boundary nodes is produced and then, using information given by
the user, a random set of interior nodes is generated. The nodes are generated in
such a way that the minimum spacing between them can be pre-defined by the
user, Cavendish (1974).

2) A regular set of boundary nodes is generated, and then interior nodes are
generated by spacing them equally between the pairs of boundary nodes, (Lo
(1985)).

Once a complete set of nodes has been generated the procedure to generate
the triangles commences. The aim is to produce triangles which are as close to
being equilateral as possible. This can be done by examining a measure of the
triangle’s equiangularity. Many such measures can be constructed, but only two
of them are presented here.

The first measure is that defined by Cavendish (1974):-

For a general triangle AABC, let 6 be the length of the longest side of AABC,
3 be the distance between that side and the opposite vertex (see Figure 2.10),
and v4pc = %.

If AABC is equilateral then y4pc = @, so a measure of the deviation, «,

from being equilateral, of AABC, is a = |yapc — % . Thus the larger the value

20



Figure 2.10: Cavendish’s measures
of a, the further from being equilateral the triangle is. The decision as to which
triangle to form from a base line is based on choosing « as small as possible,
while making sure that the triangles which are generated by the new edges do
not produce triangles with large values of a.
The second measure is that proposed by Lo (1985) :-
Given all possible triangles that can be chosen, we select that which has the

minimum measure « , where for AABC,

B 4/3. area of AABC

T AB* L AC? 4 BC? (2.7)

The factor of 4v/3 is such that for an equilateral triangle, a =1. Lo also suggested
methods for dealing with odd geometrically shaped regions, such as a sector of a
circle.

Approaches for generating nodes and triangles concurrently in a triangulation
front framework are now presented. These approaches vary in that the number of
fronts from which new triangles and nodes can be created is different, see Sadek
(1980) and Peraire, Vahdati, Morgan and Zienkiewicz (1987). The two approaches
could almost be called “single” and “multiple”, and for an explanation of this it

21



is necessary to look at the two approaches and see how they vary.

The “single” approach is as follows :-

(a) A set of boundary nodes is generated and the front set up.

(b) A new triangle is generated from a baseline in the front. If a new node is
used the position of the new node is stored. Once this has been carried out for
all base lines on the original front, there is a layer of triangles one triangle thick
round the boundary, (see Figure 2.11) and then a new front is set up and step

(b) is repeated until the whole region is covered in triangles.

Figure 2.11: Grid after one layer

The positioning of the new nodes is determined by the magnitude of the angle
between any two adjacent base lines and the number of triangles that will be
formed using the given node on the current level. The general criterion used is
to obtain almost equiangular triangles, Sadek (1980). This can be called “single”
since only one triangulation front is allowed at one time.

The “multiple” procedure is such that rather than confining triangles to be
produced in layers, the front elements can be looked at in any order and if neces-

sary, more than one triangulation front can exist at one time, see Peraire, Vahdati,
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Morgan and Zienkiewicz (1987). This splitting of fronts can be caused when a
new node should be created near an existing node in the front and rather than
having two nodes in very close proximity the triangle is deformed slightly and

two fronts are formed (see Figure 2.12).

front « proposed front 2 front 1

\

/% position

\, of node %

/
7/ \\
/
7/ \\
7 \,

Figure 2.12: Front splitting

Finally a technique which was originally used as a post processor for trian-
gulation front grids but can also be used on any triangulation is presented. This
technique is called “smoothing” and is used on completed triangular grids to pro-
duce triangles with “better” properties, e.g. equiangularity. This technique was
originally used when poor triangles were produced by grid generation and needed
modification. The original technique is Laplacian smoothing, Cavendish (1974),
whereby each data point is moved to the centroid of the polygon formed by all
the triangles surrounding it (see Figure 2.13).

Clearly, this idea can also be treated in a different framework, in which each

edge of the triangulation is viewed as a spring with negligible original length and
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Figure 2.13: Centre node moved by Laplacian smoothing

a spring constant of unity. The complete framework of springs is then iteratively
solved to an equilibrium position for all the interior nodes, the boundary nodes
being treated as fixed. This approach is pursued in Chapter 6. This idea can
also be extended to deal with the placement of boundary nodes, see Thacker,
Gonzalez and Putland (1980).

The main methods of producing geometrically based grids have now been
outlined and in the next chapter a review is made of how these techniques are
modified to produce data dependent grids. Also included in the review are other

techniques which have been used to produce data dependent grids.
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Chapter 3

Data Dependent

Grid Generation Techniques

In this chapter techniques of grid generation which have evolved to fulfil the need
for good representations of functions on computational grids are surveyed. The
functions to be represented may be presented as data sets, where if it is wished
to obtain values other than at the data points this is done via interpolation.
Alternatively one may wish to generate a computational grid which well represents
initial data restricted onto it in preparation for use of an adaptive numerical
scheme to solve differential equations upon that grid. Such adaptive differential
equation solvers permit the computational grid to evolve in tandem with the
solution and may themselves be suitable for the initial grid generation, perhaps
using an artificial time technique. Alternatively separate grid generation methods
may be used, and it is such techniques which are now reviewed, many of which
work by improving an existing representation by adjustment of the underlying

grid.
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There are three different classes of data dependent grid techniques where the
shape and position of the grid elements depends not only on the geometry of the
region but also on the value of the underlying data at each grid point. The classes

are -

1. Data dependent grid generation where the grid produced depends
solely on the data and the data points. This can be split into two
categories :- modifying a geometrically generated grid or producing a

grid from scratch.

2. Adaptive grid techniques :- a P.D.E is solved and then the grid on
which it was solved is adapted so that the grid follows features of the

solution.

3. Adaptive P.D.E solvers whereby the P.D.E is solved on a grid and in so
doing a new grid is produced on which the new solution is presented,
e.g. Moving Finite Elements, Miller and Miller (1981). The grids
produced by the techniques in classes 1 and 2 can form initial grids for

this class of techniques.

It is primarily the first class which is of interest, however many techniques of
this class belong also to class 2.

In this chapter the representation of a function f(x) on a 1-dimensional grid is
initially considered and then grid generation in 2-dimensions, using both quadri-

laterals and triangles is reviewed.
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3.1 1-dimensional Grid Generation

One of the main tools used in 1-D data dependent grid generation is that of
equidistribution, De Boor (1973). In this technique, some measure which monitors
the representation of the function, f(x), is calculated and is then used to position
the nodes. This measure, w(x), which in general is a function of f(x) and/or
its derivatives, is also known as a weighting or grading function. The basis of
equidistribution is to equally distribute the measure in the intervals between

adjacent nodes, i.e.

41 1 b
/ * w(x)dx = constant = N/ w(x)dx (3.1)

where ¢ = 29 < 11 < 29 < ... < xy_1 < ¥y = b are the nodal positions.

Examples of the measures w(x) which can be employed are arc-length, solu-
tion gradient or even local truncation error of a solution if used as an adaptive
technique.

Equidistribution is used by Pereyra and Sewell (1975) to produce meshes for
boundary value problems in O.D.E’s, using a measure based on local truncation
error of the solution. They discuss two distinct procedures which use equidistribu-
tion. The first is the minimisation of the error using a fixed number of nodes, the
second is a strategy for inserting extra nodes into an existing grid in order to pro-
duce a truncation error less than a specified tolerance in every interval [, z;11].
White (1979) considers a specific solution measure to be equidistributed, namely
arc-length, while Ablow and Schechter (1978) introduce what they call a campy-
lotropic coordinate which is based effectively on equidistributing arc-length and

a measure of the gradient of the solution curve. They show that using such a
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coordinate, a solution can be well approximated by using only a tenth the number
of points used previously. Such methods can produce good grids with respect to
the solution, e.g. improve approximationion error, but the resulting grids will
sometimes possess wildly fluctuating step sizes which can cause inaccuracies in
the finite difference approximations. To deal with such a problem Kautsky and
Nichols (1980) produced a scheme which not only attempted to equidistribute a
weight function but also constrained the ratio of adjacent step sizes.

Carey and Dinh (1985) extended equidistribution work to a more general
form by introducing a formula for an “optimal” grading (weight) function for
interpolating a function with the error calculated in some specified semi-norm.
By the use of Fourier series to obtain an error estimate and a variational approach
to optimise the semi-norm, they show that for a piecewise polynomial interpolant

of degree k£ in the H™-semi-norm, the optimal weight function is :-
w = [uFHD ]z (3.2)

e.g. for linear interpolation, k=1, in the Ly-norm, m=0, this gives
w(x) = (Upy)? . (3.3)

This result, however, is only an asymptotic result and as such is most accurate
for large numbers of nodes, N.

Equidistribution of mesh points can also be obtained in 1-D by solving a
second-order differential equation, (see Anderson (1985)), which may be derived
as follows. A positive weight function, w(x), is to be equally distributed over all

grid intervals. i.e.

/I“r1 w(x)dx = constant (3.4)

B
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or

Az;w; = constant. (3.5)

If this process is considered as a transformation from a uniform grid in computa-
tional £-space to the equidistributed grid in x-space, we have x(&), with integer

values of ¢ defining the nodes. (3.5) can be rewritten as
rew = constant (3.6)

where the derivative, by the Mean Value Theorem, is evaluated at some interior
point of the interval.
The grid is usually obtained by solving a second-order differential equation,

which is obtained by differentiating (3.6) with respect to £.
l’ggw —|— l’gwg = 0 (37)

This equation is rewritten giving the equation which is solved, using finite differ-
ences and an iterative solver, to obtain the mesh point positions in physical space

as

l’gg —|— l’g% = 0 (38)

It is also possible to solve (3.6) using simple numerical quadrature to directly
find the nodal positions. Let the node number ¢ = £, = N-1, where N is the

number of nodes, when x = z,,, and let £ =0 at x = 0, then

€1
T Joudt (3.9)

Tmax Ofmax %df

Either of the above procedures leads to a set of equidistributed nodes with respect

to the weight function w.
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Other work has considered the least squares approximation of functions in
1-dimension. In this case, rather than use the actual interpolant, a best fit to the

curve in the least squares sense is calculated (see Figure 3.1).

best least squares fit interpolant

Figure 3.1: Alternative representation strategies : Thick line is function, dotted

line is approximation

Chui, Smith and Ward (1977) showed the existence of such approximations
for a continuous function and that such a best least squares approximation among
discontinuous linears with adjustable nodes is continuous, and Loach and Wathen
(1991) introduce algorithms, also with variable nodes, for finding the best least
squares approximation, using continuous polynomials, by dynamic programming.
Baines and Carlson (1990), Baines (1991) formulated the problem in a variational
framework using discontinuous linears with variable nodes and produced an algo-
rithm for finding the best continuous linear least squares approximation almost
everywhere.

Having looked at nodal positioning in 1-D, data dependent grid generation
in 2-D is considered, first using quadrilaterals, and then in Section 3.3 using

triangles.
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3.2 Data Dependent Quadrilateral Grid

Generation

In this section techniques of generating quadrilateral data dependent grids are
reviewed. Many of the techniques presented in this section originated as adaptive
P.D.E solvers and are basically post-processors (grid modification procedures),
although there are some pure grid generators for solving problems such as func-
tion approximation and some of the techniques are extensions of the geometric
techniques outlined in Section 2.1.

Coming in the last category is the extension of elliptic grid generation tech-
niques, described in Section 2.1, to a data dependent framework. Anderson (1985)

showed that by choosing specific functions P and @ in (2.3) and (2.4), namely

a 1 Jdwy
v 1 Jws
= - ——= A1

where « and v are constants, J = z¢y, —2,ye and wy and w, are weight functions,
then the resulting elliptic grid generator is equivalent to equidistributing a chosen
weight function along the curvilinear coordinate lines (see (3.8)). Anderson also
shows that a reasonable choice of weight function is one that is gradient based.
In the category of grid modification strategies are nodal movement and grid
refinement. Grid refinement is the splitting of a quadrilateral into 4 equally
sized, similarly shaped, quadrilaterals. The region in question is usually refined
by considering some measure on the original region to check whether it exceeds
a specified tolerance. If this is the case, then the region is refined (see Verwer

and Trompert (1991)). This can be beneficial for grid generation as efficient data
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structures enable the rapid transfer of data from level to level of the grid. How-
ever, if a differential equation is to be solved on the mesh then this refinement
to non-conforming meshes, where small elements meet the border of large ele-
ments (see Figure 3.2), can cause difficulties in the solution procedure, one such
problem being that the interpolation to higher levels of grid points can introduce

computational inaccuracies.

Figure 3.2: Quadrilateral refinement

Nodal movement is another grid modification strategy and it has been em-
ployed by Gnoffo (1982) and Catherall (1988), in a manner such that the edges in
a grid are treated as springs. The springs are assumed to have negligible original
length and the associated spring constant is usually based on some measure of
the solution along the edge of the grid element. Catherall (1988) uses the solution
gradient along a grid line as a measure of each spring constant. This approach can
also be extended to triangular grids, as has been explained in Chapter 2, where
smoothing, as employed by Cavendish (1974), is equivalent to a spring constant
of unity.

Moving away from post-processors of adaptive P.D.E solutions, the category
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of data dependent grid generation is reviewed. One application is the function
approximation problem where a function is to be well represented. Farmer, Heath
and Moody (1990) look at this problem and present a method which gives good
results.

For the function approximation problem, where ideally the function value does
not vary too widely over each individual grid cell, a measure of deviation from the
average value on each call is required. If w(x,y) is the function to be interpolated

then the measure of deviation v;; on the (¢, 7)th quadrilateral is

vij = | [wz,y) — wa] dedy (3.12)

cell

where w,, 1s defined as

_ fcell w(x7 y)dl’dy

Wey = 3.13
fcell dl’dy ( )

and the functional to be minimised is
V=F+9> v, (3.14)

]
where f is a measure of smoothness and orthogonality.

Once the functional has been calculated for an original grid then the mesh
points can be moved. This is done in a local manner, i.e. the point is moved inside
some part, (Jy ,of the surrounding patch of quadrilaterals (see Figure 3.3). This
is achieved by transforming (), onto the unit square and then choosing a point
inside the unit square using random numbers. This point is then transformed
back onto (), and this is taken as the new nodal position.

The new functional is calculated for the new nodal position and if the value
of the functional decreases, then the new point is accepted and the procedure is

repeated with another mesh point. This continues until no nodal movements are
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Figure 3.3: Region (), formed from a patch of quadrilaterals

accepted, i.e. the functional does not decrease, for a number of consecutive sweeps
through all the nodes. This numerical minimisation technique can be improved to
find global minima rather than local minima by the use of “simulated annealing”,
Kirkpatrick, Gellatt and Vecchi (1983), whereby nodal positions which increase
the value of the functional are accepted at first but become less likely to be chosen
as the procedure continues.

Having reviewed data dependent quadrilateral grid generation, data depen-

dent triangular grid generation is now surveyed.

3.3 Data Dependent Triangular Grid

Generation

Many of the techniques used for producing data dependent triangular grids are
either modifications of those techniques which produce data dependent quadri-
lateral grids or extensions of those which produce geometrically based triangular

grids. Again, many techniques are based on the adaption of existing grids, al-
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though some can be used to generate a data dependent grid from scratch.

As noted in Section 3.2, it is possible to treat the edges in a triangulation
as springs with spring constants dependent on some function of the data and
then, having produced a system of equations for the positions of the nodes, it
is possible to solve them iteratively or in a pointwise fashion, Catherall (1988),
Gnoffo (1982).

It is also possible to use enrichment, see Section 2.2, on an existing triangular
grid, although this can introduce problems if certain methods of refinement are
used. The usual refinement technique on triangles is to introduce a new node at
the centroid of the existing triangle, Frey (1987), (see Figure 3.4) but this can
then cause the introduction of triangles with small angles even if the original
triangle is equilateral, e.g. after 2 refinements of a (60°,60°,60°) triangle you get

three (150°,15°,15°) triangles and six (105°,60°, 15°) triangles.

Figure 3.4: Refinement of triangle at the centroid

Another refinement technique is to place a point at the mid-point of each side
of the triangle, although this requires local operations to connect the new nodes

to neighbouring vertices in existing triangles to produce a valid triangulation,

Lohner, Morgan and Zienkiewicz (1986), (see Figure 3.5).

35



Figure 3.5: Refinement of triangle at edge midpoints

A further method based on refinement is that of Thacker, Gonzalez and Put-
land (1980), although in this case rather than introducing new nodes into a tri-

angulation, nodes are removed from a fine equilateral mesh as follows :-

1. An extremely fine equilateral mesh is placed over the region.

2. For each node, n;, the surrounding patch, P, of triangles, T}, see Fig-
ure 3.6, is checked to see if some measure is altered by more than a
specified small tolerance if the central node is removed and the patch

re-triangulated in a specified manner. If it is not then the central node

is removed.

3. It a node is removed then the grid is reformed on the patch in a spec-
ified consistent manner, see Figure 3.7, and the next node is checked.
Every time a specified number of nodes have been removed then the
grid is smoothed using Laplacian smoothing, see Section 2.2, to make

the triangles more equiangular. This continues until the measure lies
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within specified close limits on each patch of triangles.

&P

Figure 3.6: Patch of triangles surrounding n;

Figure 3.7: Grid reformulation after node deletion

Another method of producing data dependent triangulations is to extend the
idea of diagonal swapping, see Section 2.2, to a data dependent framework. In this
a cost is assigned either to each triangle or to edges between adjoining triangles.
If, by swapping the interior diagonal of convex quadrilaterals, some function
of the cost or costs is decreased then the diagonal is swapped. This idea of
a triangulation with an associated cost was suggested by Lawson (1972) and
employed later by Dyn, Rippa and Levin (1990) to try and improve the results of

interpolating an underlying function on a triangular grid using linear interpolants.
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Dyn et al. present several different methods by which the cost associated
with an edge, or a triangle, in a triangulation can be defined. The methods
employ the underlying data at the points in two manners. For an edge, the cost
associated with the edge is usually defined in terms of the coefficients of the linear
interpolants on the triangles with the common edge. The cost on a triangle is
usually defined in terms of the data values at the vertices and the vertex positions.
Further detail is given in Chapter 5 where their work is considered and extended.

A final procedure is one which does not require an initial, geometrically based
grid to be generated before it is reformed in a data dependent manner. Instead
a data dependent triangulation is generated directly. Mavriplis (1990) uses a
“stretching” factor, which is based on a vector solution measure, to map nodes
into a transformed space from physical space. The vector has magnitude, s, and
direction #, with s > 1 and |0| < 7. Mavriplis attempts to position the nodes so
that they are approximately equidistant from each other in all space directions
on a control surface in transformed space. In physical space, distance, d, is given
by :-

d* = Az* + Ay’ (3.15)
while in transformed space, distance, §, is given by :-
& = Aa® + Ay* + AZ° (3.16)
where Az is defined as
Az = (Awsing — Aycosd)(s — 1) (3.17)

These expressions for the transformed directional increments can be used to po-
sition the nodes, triangulate them in a Delaunay manner (see Section 2.2) in
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transformed space and then transform the triangulation back to physical space.
D’Azevado and Simpson (1989) show that for a convex quadratic function of

two variables
fley) = a* + dy* e +dy+e M, A >0 (3.18)

the maximum interpolation error in the [, norm can be minimised by using a

At
xz@f, y =1 (3.19)

and then performing a Delaunay triangulation of the points in the transformed

transformation

(&,n)-space and transforming the triangulation back into (x, y)-space. This result
can be used on any general strictly convex, or concave, function, since calculating
the Hessian of the function at a point gives a local transformation which can be
used to position nodes. Rippa (1991) proves that the Delaunay triangulation used
on the transtformed variables is in fact the optimal triangulation for this problem.

This concludes the overview of grid generation techniques and in the follow-
ing chapters the application of these techniques, and extensions of them, to the

problem under consideration is explored.
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Chapter 4

Test Problems, Data Sets

and Result Monitors

The main objective of this research is to produce data dependent triangular grids
which, when underlying functions are interpolated on them, give better represen-
tation of the data than the aforementioned geometric grid generators. To this end
it is necessary to be able to test the grid generation methods on a range of test
functions and, where grid points must be specified, with different distributions
of data points. The test problems considered are chosen so that the performance
of the grid generation methods can be evaluated both on underlying functions
which are poorly represented by geometric methods and a smooth function which
is well represented by any reasonable geometric grid.

Once the data dependent triangulations have been produced it is then nec-
essary to be able to assess the grids produced. These “grid monitors” not only
measure the associated interpolation errors but also the geometric properties of

the triangulations, thus enabling comparisons with geometrically generated tri-
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angulations. These comparisons, for example of angles and aspect ratios, allow
checks on statements such as “long thin triangles are bad for interpolation”. The
monitors, together with the test problems, are introduced in this chapter.

In Section 4.1 the test functions are outlined, described and depicted, while
in Section 4.2 the data sets are presented and their origins detailed. Finally,

in Section 4.3, the performance monitors are presented and their significance

described.

4.1 The Test Problems

The test problems are comprised of sets of nodes and functions. The test functions
presented here are taken from various sources. Some are taken from Dyn, Rippa
and Levin (1990), who present a number of functions to test the methods of grid
generation they employ, some are from D’Azevado and Simpson (1989) while
others are those encountered or devised during the course of this research. All
the test functions were used in the testing of the techniques produced in later
chapters, although not all the functions are shown in the graphical results. The
functions may be grouped into classes exhibiting similar features.

The first group of functions includes those functions which change value
rapidly in the vicinity of some line but do not have discontinuous derivatives.

They can be thought of as smooth ramps.

(tanh(9y — 92) + 1)
9
(tanh(9y 4+ 92 — 9) + 1)
2

SRl =

SR2 =

SR3 = 1+tanh(—3¢(x,y)) where g(z,y) = (.595576(y +3)> — 2 — 1)
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All these functions are tanh functions. SR1, which has contours parallel to the
line y = =z, see Figure 4.1, was denoted as F2 by Dyn et al., while SR2 has
contours at right angles to those of SR1. SR3 has contours which are curves

g(x,y) = constant, as shown in Figure 4.2, and was labelled F8 by Dyn et al.
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Figure 4.2: Function SR3
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Another group of test data functions have “hill” like features whereby the

data values rise in a continuous fashion from the edge of the unit square to the

centre of the unit square where they attain their maximum value.

SH1

SH?2

SH3

SH4

FPunctions SH1 and SH2

3
o~ S a=1)P+(u-15)°
N 3
1 1 1
= jeos’(ml(e =5+ (5= ")
V64— 810 — )+ (y — 3
N 9

1
2

are gaussian hills of different degrees of slope. Function

SH3 is a smooth hill centred at (%, %), while function SH4 is part of a sphere

above the unit square. Functions SH1, SH2 and SH4 were called F4, F5 and F6

respectively by Dyn et al, and all four are depicted in Figures 4.3 to 4.6.
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Figure 4.3: Function SH1
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The next group of functions consists of those which have three (or more) local

extrema on the unit square.

3

Ml e —6_%((97;_2)24_(91/_2)2) _I_ §6_41_9(973+1)2_11_0(9y+1)
4 4
1 —L((92=7)2+(9y—3)? L ((ow—1) —7)2
TP T(CE y=3)2) _ L —((90—4)*+(9y-7)%)
% + cosd.4y

M2 =

6(1 + 3z —1)?)
Function M1 is 2 “mountains” with a small “hollow”, while function M2 is a

“saddle”, with 2 “mountains” overlooking a “valley”. Functions M1 and M2 were

called F1 and F3 by Dyn et al, and are depicted in Figures 4.7 and 4.8.
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The next group of functions are those which are purely polynomials in = and

Pl x? + y2
P2 = 2%+ 100y2
P3

(1= 5% = 5)° + 10002y (1 = ) (1 = )

Functions P1 and P2 are 2nd degree polynomials as used by D’Azevado and
Simpson (1990), while P3 is a convex polynomial function. Function P4 is a

polynomial of degree 12 with 3 raised corners and a small rise in the centre of

the unit square, and was called F9 by Dyn et al. All four functions are shown in

Figures 4.9 to 4.12.
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The final group of functions consists of those with discontinuous derivatives.

These are:-

e

N

0<(y—v)<1

2(y — )

<

r <

14+COS(4nr)

otherwise

DD1 =

2.1z = 0.1

where

3
2

Tty >

1
2

T+ y <

% otherwise

T+y—

DD2 =
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cos?(ws) s <

N

DD3 =
0 otherwise
h Jir b b
whnere S = xr — — — =
2 Y73

Function DD1 is a flat ramp down to a plane which has a “mountain” on it
and was labelled F7 by Dyn et al. (see Figure 4.13). Functions DD2 and DD3
are, respectively, a flat ramp and dome sitting on a circular cylinder raised out
of a flat plane. Both were suggested by Reeves (1991) and are shown in Figures

4.14 and 4.15 respectively.
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Figure 4.13: Function DD1
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Figure 4.15: Function DD3
Having described all the test functions which were used, the data sets with
51

which these were tested are now detailed.



4.2 Data Sets

The data sets used here to produce original triangulations are either regular sets
of points or modifications of the scattered data sets presented by Franke (1979).
The regular set of data points, see Figure 4.16, was used to test the effect of

reordering the points in a data set. The smaller of Franke’s data sets, 33 points,

Figure 4.16: 81 Regular data points relative to unit square

is unchanged, see Figure 4.17, while the larger of Franke’s data sets is modified,

Figure 4.17: 33 data points relative to unit square
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see Figure 4.18, so that points outside the unit square or within a small tolerance
of the unit square’s perimeter are moved onto the perimeter, since, unlike Franke,
the aim is to triangulate a region rather than a scattered data set (see Appendix

A for lists of the points used in Franke’s data sets).

Figure 4.18: 100 data points relative to unit square

For the production of points and triangles from the triangulation front pro-
grams one set of vertices was used. This set was the vertices of the unit square.
Having depicted the data sets, the next section presents the performance

monitors.

4.3 Result Monitors

There are many ways in which the triangulations produced can be judged to
decide if they represent data well and if they possess qualities which are desirable
to the user, e.g. for an elliptic problem treated by the Finite Element Method a

triangulation with small angles might lead to to a poorly conditioned system (see

Strang and Fix (1973)).
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The accurate representation of data on the triangulation can be checked in
many ways. Dyn, Rippa and Levin (1990) check the data representation by
looking at the error between the underlying function and the interpolant at the
grids points of a superimposed 33 by 33 regular grid. The values found are
then used to measure the quality in three ways, root mean square error (RMS),
maximum error and mean error. Other methods of measuring accuracy include
looking at the Ly-error of the whole triangulation or looking at the maximum
error on each triangle (D’Azevado and Simpson (1989)).

The geometric quality of the triangles and the triangulation can be checked by
looking at various monitors which include aspect ratio, skewness, size of angles,
uniformity of triangles and number of triangles meeting at a point (see Catherall
and Fitzsimmons (1991)). Lo (1985) introduces an alternative aspect ratio to
check the acceptability of the triangles which could be produced during his moving
front procedure. If the objective of a grid generation procedure is to have a
regular grid of close to equiangular triangles then the maximum, minimum and
average of these geometrically based quantities can be used to determine the
overall quality of the triangulation, or to show which triangles do not conform to
such an objective.

Given a triangle, ¢, with sides of length s; > sy > s3 and opposite angles
of 81 > 60, > 605 respectively, the geometric properties of the triangle can be
considered in many ways.

Skewness is defined as the departure from equiangularity of a triangle, and is

defined for each triangle, ¢, as

13
=323

o4



Uniformity (expansion ratio) can be described as follows :- Given a triangle
of area A with neighbouring triangles of area B, C and D, the uniformity of the

central triangle is defined as

This gives a measure for each triangle of whether the size of triangles in the grid
is smoothly increasing, or decreasing, in the vicinity of the given triangle.

The Aspect Ratio of a triangle is a monitor of the overall shape of a triangle.
Two measures of this have been defined. The first, presented by Catherall and
Fitzsimmons, is based on a measure presented by Cavendish (1974) in the execu-
tion of his triangulation front procedure, while the second is that of Lo. The two
measures are as follows:-

Cavendish’s Aspect Ratio is defined for a triangle, ¢, with longest side s; and

perpendicular distance & from this side to the third vertex of the triangle as

\/531
2h

2s51nf,ys1nb;

V3sinb,

arc(t) =

Lo’s Aspect Ratio is defined as

4v/3area of triangle
3% + 3% + 3:2))
2/3sinbysinbysinls

stn20y + sin20y + sin20s

arpo(t) =

The numerical factors are such that a (60°,60°,60°) triangle has an Aspect
Ratio of 1 in both definitions.

The numerical value of the Ly—error of a triangulation is calculated using the
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following formula

Ly — error = \IZ:/E (u(zx,y) — Fr)2dxdy. (4.1)

The integral is calculated by using 13 point Gaussian quadrature on a trian-
gle. Although this might be regarded as an excessive number of points they are
sometimes necessary for the accurate calculation of the error.

All these measures of triangle quality can be presented in either numerical or
graphical form. The ideal balance of these monitors will depend on the specific

situation and so in general the individual values will be reported.
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Chapter 5

Grid Generation

Using Node Reconnection

In this chapter various criteria which can be used to implement reconnection
of the nodes in a triangulation are presented. These criteria all depend on the
underlying data function in order to evaluate the cost function upon which the
node reconnection is based.

The general idea behind these criteria is that some measure, based on the
interpolants or the data values, can be calculated for each edge of a triangulation.
It is hoped that, if the sum of these measures is decreased by reconnection, the
interpolant on the resultant grid gives a better representation of the underlying
data than does the original grid.

The motivation behind some of the data-dependent node reconnection criteria
is that a smoothly varying interpolant is best suited for approximating a smoothly
varying function. The motivation for the other reconnection criteria is either

to extend ideas from 1-dimensional, or geometrical grid generation, into a data
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dependent framework. For the criteria based on smoothness, by introducing
a measure of smoothness across each edge in the triangulation, based on the
interpolants on the triangles adjacent to the edge, the “smoothest” interpolant
can be found and the corresponding triangulation may be considered to give the
best data representation. This idea was originated by Lee (1982) who introduced
the idea of “steepest ascent” of the interpolant on a triangle. Lee used this to
show that for a smooth function (i.e. with no derivative discontinuities) it was
possible to triangulate a quadrilateral so as to minimise the interpolation error, by
minimising some weight function of the steepest ascents of neighbouring triangles.
However if a ridge occurs in the function then a better representation is obtained
if the weight function is maximised in the vicinity of the ridge.

It is necessary to note that the grids produced which give good results for
data representation may be unusable in practical situations due to the very small
angles in the triangles generated. Such possible geometrical constraints can be
introduced into the nodal reconnection procedure and in Section 5.7 the geometric
constraints are detailed and their implementation is discussed. The results of
using such additional constraints is shown in graphical and numerical results.

Firstly the notation which will be used is presented and following on from this,

the criteria are outlined, and finally the implementation details are presented.

5.1 Notation

Before considering the various criteria which are presented, the notation which
will be used is established.

Referring, where applicable, to Figure 5.1 the notation is, following that of Dyn,
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Figure 5.1: Boundary of region and triangles in region

Rippa and Levin (1990) :-
Q is the region.
Qg 1s the convex hull of €.
N is the total number of data points in €.
Npg is the number of points on Qp.

V is the set of data points,
v; = (@5,1), t=1,...,N.
F is the Data Set. If f is the underlying function being considered then
Fi= f(xiy), t=1,...,N.
The number of triangles, T}, in a triangulation is
t=2(N—-1)— Np.
The number of edges in a triangulation is
e=3(N—-1)— Npg.
The triangulation, 7', is the union of all triangles, i.e.

T =U_T;, T.NT, =0, i#j.
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fr is the interpolating polynomial to the data on the triangulation, with

fr=U_f,

fz:azw—l_bzy—l_cm(x?y)ETz Zzlvvt

where f; is the local interpolating polynomial on triangle 7.

W is the array of the augmented set of data points.

VVZ':(J}Z',yZ',FZ'), izl,...,N.

||z|| is the Euclidean norm of the m-vector z, i.e

2] = /=7 + 23+ ...+ 22

Having presented the notation used in this chapter on nodal reconnection, it
is now possible to introduce the criteria used to compare triangulations.

Since different triangulations will be compared a notation is needed to indicate
the result of the comparison. Thus if a triangulation 7' is preferred to 7" in the
sense of some cost function value (see below), this is denoted by T' < T

The sense in which triangulations are judged is as follows, referring where

necessary to Figure 5.2.

Vi

Figure 5.2: Quadrilateral formed by two triangles
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Let e = 7;0; be an internal edge of a triangulation T' and let T} and 75 be the
two triangles sharing the common edge, e.

Suppose that
f1:P1($79)2G1$+bly‘|‘Cl (:z:,y)ETl

f2:P2($79)2G2$+52?J+02 (51?7?1) S D

are the linear interpolating polynomials on triangles T and T, respectively.

For each interior edge, e of the triangulation 7', a real cost function s = s( fr, €)
is assigned, dependent on the criterion being used.

Let N and N’ be real vectors of size ¢, with the components ordered in a
non-increasing manner. i.e. from largest to smallest. Ordering schemes on R?
are defined such that to say that N < N’ means that the triangulation 7" which
produced N is better than the triangulation 7" which produced N', or N < N’ =
T<T.

The ordering schemes considered are:
1. Ordering by the Ly norm
g
Ry(N) =2 |Ni|
=1

and N < N'if R (N) < R, (N).

2. Ordering by the Ly-norm

RAN) = || 3N

and N < N'if Ry(N) < Ry(N).
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3. Ordering “lexicographically”.
N < N’ if the vector N is “lexicographically” not greater than N’

i.e. remembering that the vector components are stored in a non-
increasing manner, compare N and N’ component by component.

if Ny < N, then N <N’

if Ny > N, then N > N’

otherwise check Ny, N, N3, Ns, ..., Ny, N,.

if N;=N,, i=1,...,¢ then N=N.

Having outlined methods of determining an ordering for a set of vectors, in
the next section the concept of data dependent triangulations is introduced. The
definition of an optimal triangulation for a given criterion is presented using the

ordering of triangulations previously defined.

5.2 Data Dependent Triangulations

In this section the definition of an “optimal triangulation” is given, following
Rippa (1991), and a local optimisation procedure which he used to attempt the

generation of such a triangulation is introduced.

Definition 5.1 An optimal triangulation of a region ), given a fixed set of nodes,

with respect to a given criterion is the triangulation T such that
™ <T

for every triangulation T of Q).
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From this definition it can be seen that the optimal triangulation with respect
to a criterion need not be unique.

An optimal triangulation of ) always exists since there are a finite number
of triangulations of ). However, it may be difficult to obtain this optimal tri-
angulation in practice since it is quite possible to reach a local minimum of the
cost function associated with the criterion instead, although this situation can
be alleviated by the use of a numerical optimisation technique such as Simulated
Annealing (see Section 5.6).

Let T' be a triangulation, e an internal edge of T', and ) a quadrilateral formed
by the two triangles having e as a common edge. It () is strictly convex then there

are two possible ways of triangulating @ (see Figure 5.3).

Figure 5.3: Two triangulations of a convex quadrilateral

Definition 5.2 An edge e is called locally optimal if T < T" where T' is obtained

from T by replacing e by the other diagonal of ().

This leads to

Definition 5.3 A locally optimal triangulation of Q is a triangulation T in which

all edges are locally optimal.
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A data dependent triangulation of a fixed set of nodes V. depends on either
the data vector F (if it is a scattered data interpolation problem), or the under-
lying function (if it is a function approximation problem), and so the preferred
triangulation cannot be the same for all data sets but varies depending on the
data vector or the function.

The optimisation procedure used to construct the triangulations is based on
the Local Optimisation Procedure (LOP) suggested by Lawson (1977), which can

be written in algorithmic form as follows :-

1. Construct an initial triangulation 7 of Q and set T« T,
2. It T is locally optimal - end the procedure, else go to step 3.

3. Let e be an internal edge of T which is not locally optimal and let @)
be the strict convex quadrilateral formed by the two triangles having
common edge e. Swap diagonals of (), replacing e by the other diagonal

of Q, therefore transforming 7 to T".

4. Set T « T" and go to step 2.

This means that after every edge swap occurs, the resulting triangulation
is strictly lower in the ordering than the previous one. Since the number of
triangulations is finite then the LOP converges after a finite number of edge swaps
to a locally optimal triangulation. However it is necessary to mention again that
there is no guarantee that the locally optimal triangulation is the globally optimal
triangulation.

In the next section the various data dependent criteria under investigation are

described.
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5.3 Criteria for Producing Triangulations

In this section data dependent criteria for nodal connection are introduced. The
data dependent analogies of the geometric triangulation procedures described in
Section 2.2 which have the properties of MAX-MIN angle and minimum sum of
edge lengths are described. Next the recent work of D’Azevado and Simpson
(1989) is presented which uses the Delaunay triangulation in transformed space
to obtain a data dependent triangulation. The data dependent criteria categories,
nearly C'' (NC1) and near-planar, from Dyn, Rippa and Levin (1990) are then
described followed by a criterion based on equidistribution, (Sweby (1987)). Some
illustrative results for all these criteria are presented as they occur throughout
the chapter and tables of numerical results follow in Section 5.4.

First, however, some results for the non-data dependent Delaunay and MW'T
procedures are presented, (see Section 2.2) so that comparisons can be made

between them and the data dependent criteria outlined later.

5.3.1 Results for the Geometrical Criteria

We present the Delaunay triangulations of the data sets here to demonstrate the
nearly equiangular triangles which are produced by the Max-Min angle property.

Figure 5.4 shows the Delaunay triangulation of the 33 point data set, and
Figure 5.5, the Delaunay triangulation of the 100 point data set. Both show large
numbers of nearly equiangular triangles in the centre of the region. However it
is noted that near to the boundary edges, triangles with small angles appear due
to the scarcity of nodes on the boundary.

At this point it is necessary to remind ourselves that we are effectively con-
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Figure 5.4: The Delaunay Triangulation of the 33 Point Data Set

Figure 5.5: The Delaunay Triangulation of the 100 Point Data Set

cerned in this chapter with the triangulation of a fized set of nodes (the scattered
data problem) rather than initial grid generation wherein extra nodes can be in-
serted or nodes moved to improve the function representation. This means that
in some cases the poor representations are due to a lack of nodes in a region of
interest, rather than a fault of the triangulation; this problem will be addressed
in later chapters. Note however that, although the haphazard placement of the

nodes within the unit square may seem far from satisfactory, the situation may
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well mimic the behaviour when a geometric grid is generated for a more com-
plicated geometry and a function then represented on it. It is therefore still
constructive to see the improvements that can be made by nodal reconnection
alone.

We also see how Delaunay deals with a regular pattern of nodes, (Figure 5.6),
where a regular grid of triangles is produced. Note however, the direction of
connection of this regular framework of triangles depends on the order in which
the nodes are introduced in the node insertion procedure. Figure 5.7 shows how
a change in the ordering of the nodes can produce a totally different pattern of
triangles due to the degeneracy property of the Delaunay procedure (the circum-

circle of any triangle has 4 nodes on its circumference in the finished grid (see

Section 2.2)).

Figure 5.6: The Delaunay Triangulation of the 81 Point Data Set

Figures 5.8 to 5.16 illustrate the failure of the Delaunay triangulation to well
represent data. Figures 5.8 to 5.12 show the representation of the underlying

function obtained, with linear interpolants on the triangles, when the grid for
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ordered 81 Point Data Set

Figure 5.7: The Delaunay Triangulation of the re

the 33 data point set shown in Figure 5.4 is used. Figure 5.8 shows that for a

function with a preferred direction the Delaunay triangulation can produce very

poor representations of the region where there is rapid change in function value.

This is particularly evident when compared with Figure 4.1, which shows the

actual contours.

Q)

X777 Dz -
Wi RS <77 N/
RS o

L A e A

Figure 5.8: Representation of SR1 by Figure 5.4
Figure 5.9 again shows the poor representation in regions of rapid change,
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although the poor representation at the ends of the ramp is due in part to the
small number of boundary nodes, whilst the poor representation of the mountain
is due in part to the lack of points in the region of the mountain. In comparison
with Figure 4.13, which shows the actual function and contours, Figure 5.9 shows
the smearing of the bottom of the ramp towards the mountain and the differences
in the contours in the ramp and mountain. On a finer regular grid these problems

are not as pronounced, see Figure 5.14.

(11)

|

(0,0)

Figure 5.9: Representation of DD1 by Figure 5.4

Figures 5.10 to 5.12 show the representations given by the Delaunay triangu-
lation in Figure 5.4, of some of the other test functions. These can be compared
with the actual functions and contours which are shown in Figures 4.3, 4.9 and

4.10 respectively.
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Figure 5.11: Representation of P1 by Figure 5.4

Having looked at representations given by a small number of nodes, we now

move on to the larger data sets.

The representation of functions, given by the regularly patterned Delaunay

triangulation of 81 points, see Figure 5.6, can be informative. Figure 5.13 shows

that if the triangles are aligned with the contours of the function then a good
representation of a rapidly changing function is possible, while Figure 5.14 shows
that the mountain can be well represented if there are data points near its centre
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Figure 5.12: Representation of P2 by Figure 5.4

and that the bottom and top of the ramp can be poorly represented if the triangle

edges do not align exactly with the functions contours.

Figure 5.13: Representation of SR1 by Figure 5.6

The results of having more nodes
pattern can be seen in Figures 5.15 and 5.16. Figure 5.15 shows that even with

function can still be poorly represented, i.e the contours are still not straight

more triangles in the Delaunay triangulation



(11)

Figure 5.14: Representation of DD1 by Figure 5.6

lines, while Figure 5.16 shows that even with more points in the region of the

mountain, unless there is at least one point very close to the centre of the region,

the representation of the mountain can still be poor.
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Figure 5.15: Representation of SR1 by Figure 5.5

Having presented the results of the Delaunay triangulation, we now move on
to the other geometrical procedure, the Minimum Weight Triangulation (MWT).
The grids produced by the MWT criterion for the 33 and 100 data point
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Figure 5.16: Representation of DD1 by Figure 5.5

sets are displayed in Figures 5.17 and 5.18 respectively. These enable us to view
the minor differences in triangulations produced by the geometrical criteria. By
comparing Figures 5.4 and 5.17, we see that, near the boundaries, the long, thin
triangles which are produced by the MWT criterion. While in Figure 5.18, when
compared to Figure 5.5, we see long, thin triangles being formed in the centre of
the region. The function representations for these grids are very similar to those
shown in Figures 5.8 to 5.12 and Figures 5.13 and 5.14, so we will not reproduce
them here.

This completes the presentation of the results of the geometric triangulation

criteria and we can now introduce the data dependent extensions of these criteria.
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Figure 5.17: The Minimum Weight Triangulation of the 33 Point Data Set

Figure 5.18: The Minimum Weight Triangulation of the 100 Point Data Set

5.3.2 Data Dependent Extensions
of the Previous Criteria

The data dependent extensions of the MWT and the MAX-MIN angle property
are detailed here, as is the work of D’Azevado and Simpson (1989) who show
that for a certain class of functions it is possible to construct an L,-optimal

triangulation by using the Delaunay triangulation in transformed space.
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The 3-D MAX-MIN Angle Criterion

This criterion is a data dependent extension of the Delaunay Triangulation.
Rather than trying to maximise the minimum angle in a set of triangles with
vertices given by V. this criterion attempts to maximise the minimum 3-D angle
in a set of triangles with vertices given by W. i.e. the triangles are formed in
3-dimensional space rather than 2-dimensional space. It is possible to think of
the Delaunay MAX-MIN angle criterion as the projection of an angle of W onto

V. The calculation of the 3-D angle is aided by recalling that

l11k) = .
sk = [ = [T =W

Q)

T

(0,0)

Figure 5.19: The 3-D MAX-MIN Angle Triangulation for SR1 (33 Points)

Comparing Figure 5.4 to the grid in Figure 5.19 we can see that for smoothly
varying functions there may be only slight differences between the 3-D MAX-MIN
angle triangulation and the Delaunay triangulation. However, looking at the grid

in Figure 5.20 we can see that in general it is possible to have major differences in
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triangulations. The abysmal representation of the mountain is due to the lack of
points near the centre of the mountain and the fact that points on either side of
the mountain are on the same triangle. The numerical results in Table 5.3 show

that the Ls-error increases with respect to that of the Delaunay triangulation.

(1

Q

L

(0,0)

Figure 5.20: The 3-D MAX-MIN Angle Triangulation for DD1 (33 Points)

MWT-3D

This is the data dependent extension by Dyn, Rippa and Levin (1990), of the
MWT where attempts are made to minimise the sum of the 3-D lengths of the

edges of all the triangles, with vertices given by W, in a triangulation, i.e.

Min Z Z \/(flii—flfj)2+(yi—yj)2‘|‘(Fi_Fj)z-

TLeT g€ly
Hence MW'T works on a projection of W onto V.
The MWT-3D triangulation for Function SR1 is unchanged from that of the
geometric MWT, but the MWT-3D triangulation for Function DD1, as shown
in Figure 5.21, exhibits major differences from that of the geometric MWT, as
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shown in Figure 5.17. These differences occur in the ramp, where the triangles
are starting to lie along the ramp, rather than across it, thus giving a better
representation of the feature, and in the mountain, where again, it is possible to
have two nodes on either side of the mountain in a triangle thus creating a break

through the mountain.

(1)

Figure 5.21: The MWT-3D Triangulation for DD1 (33 Points)

These results can be improved by the use of a factor to increase the dependency

of the value on the function value, i.e.

MWT-3D (mod) = Min 3 30 /(s — 2) + (i — y;)? +w(F; — F})2.

TreT 1,5€Tg
We can see in the figures below how, with large values of w, this modification
can improve the results previously obtained. Figure 5.22 shows that the trian-
gles are starting to lie along the contours of the function, with the result that the
contours are bunching closer together. Figure 5.23 shows an even greater improve-
ment of representation than that in Figure 5.21, since, although the mountain is
still poorly represented, the ramp is represented in an improved fashion, with less
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smearing at the top and bottom. The numerical results show that the addition

of the factor w decreases the errors associated with the representations shown in

the figures.
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Figure 5.23: The MWT-3D (mod) Triangulation for DD1 with w = 10 (33 Points)

Having presented the data dependent extensions of geometric criteria it is now

possible to introduce a truly data dependent criterion which uses the Delaunay

triangulation in a transformed space.
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D’Azevado and Simpson’s Transformation

The ideas of D’Azevado and Simpson (1989) are presented and an investigation
made to see how these ideas can be applied in an node reconnection framework.
The problems which may be encountered on a global basis in this work are anal-
ysed and the benefits of local techniques are discussed.

D’Azevado and Simpson showed that for a general, strictly convex, bi-variate

quadratic polynomial,
f(z,y) = Ma? + Ay? + lower order terms, A1, Ay > 0, (5.1)

it is possible to introduce a change of coordinate variables such that, in the
transformed space, the triangulation which minimises the error in the L,-norm,
1 < p < o0, of the interpolant, is a Delaunay triangulation. These results can
be extended to all strictly convex, bivariate functions by looking at the Hessian
matrix of the function.

In its original form this is a totally global method of grid generation, whereby
the triangulation is produced by the use of the Delaunay triangulation on a set
of data points, which produces a unique solution (notwithstanding degeneracy).

The basis of the method is that for the function
g(z,y) = 2 + y* + lower order terms (5.2)

the optimal triangulation to reduce the error in any norm is the Delaunay tri-
angulation, Rippa (1991). Thus if the function (5.1) is transformed into the
function (5.2) in a transformed space, a Delaunay triangulation, (in transformed
space) of the points associated with the function (5.1), will produce the optimal

connectivity for the non-transformed points.
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D’Azevado and Simpson look at the error on each triangle FE(z,y) and note
that, if linear interpolants are used, the error contour F(x,y) = 0 is a circum-
scribing ellipse of the triangle. The equation of this ellipse can be found and it is
then possible to calculate the maximum error on the triangle, which occurs either
at the centre of the ellipse, if it lies inside the triangle, or at the mid-point of the
longest side of the triangle otherwise. It is possible to transform the ellipses into

circles by the use of the transformation

52\/711‘, 772\/723;-

D’Azevado and Simpson demonstrate that decreasing the diameter of the circum-
circles in transformed space minimises the maximum interpolation error for (5.2)
using linear interpolants. They also show that minimising the diameter of the cir-
cumcircles is equivalent to the Delaunay circumcircle property, (see Section 2.2),
and thus a Delaunay triangulation in transformed space will give the connectivity
for the triangulation with the minimal L -error in untransformed space. This has
also been shown by Rippa (1991) who proves that the Delaunay triangulation is
L,-optimal for the function h(x,y) = z* + y*. This can be seen by comparing
Figure 5.24, the triangulation which minimises the Lq-error of the Function P1
= 2?4+ 9%, with Figure 5.5, the Delaunay triangulation of 100 data points. These
triangulations are identical and so Rippa’s result is verified (in the case p = 2).

Figures 5.25 and 5.26 show the results of using D’Azevado and Simpsons
transformation on the Function P2 = 2% 4+ 100y%. The result of the procedure
is to produce a large number of long, thin triangles oriented along the contours,
and in so doing it decreases the mean interpolation error and the Ls-error by
approximately 50%.
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Figure 5.24: The minimal Ls-error Triangulation for P1 (100 Points)

Once again, the triangulations in Figures 5.25 and 5.26 are exactly the same

77
e,
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as those which minimise the Ls-error for P2. They also show that long, thin

triangles can improve the data representation.
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Figure 5.25: The D’Azevado and Simpson Triangulation for P2 (33 Points)

These results work very well for strictly convex functions but if the function

0, then in many cases the data sets

is only just convex with values of Ay or Ay

will not transform to data sets where the same geometric properties apply, i.e.
vertices do not transform to vertices but to interior points, or the transformation
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Figure 5.26: The D’Azevado and Simpson Triangulation for P2 (100 Points)

is not injective. For example, for Function P3 = (1 — 2)* + 5(1 — y)* the points

We overcame these global problems by looking at the problem in a local frame-
work. Thus rather than looking at a problem in a global sense and triangulating
all the nodes in transformed space, it is necessary to look at two neighbouring
triangles which form a convex quadrilateral and then map their vertices to a
transformed space and, provided that they form a convex quadrilateral, it is then
possible to check the circumcircle or the MAX-MIN angle criterion in the trans-
formed space in case a diagonal swap can be made. The connectivity can then
be changed and the modified connectivity used in the untransformed space.

For positive definite functions this procedure works in exactly the same way
as the global procedure and for positive semi-definite functions it produces valid
triangulations, as can be seen in Figure 5.27, which also shows that the local

triangulation procedure can produce triangles oriented along the contours of the



underlying function. This local technique means that for non-strict convex funec-
tions it is possible to improve the quality of data representation. However for
many functions, such as DD1, even this “local” technique is not guaranteed to
work as it is unable to cope with regions where Ay = 0 and Ay = 0, (the ramp)
or where A\; and A, have different signs (the mountain). In these cases the trans-

formation concept is not a viable proposition.

(©,0)

)\

(11) (0,0)

(1"
Figure 5.27: The “Local” D’Azevado and Simpson Triangulation for P3 (33

Points)

The next section details truly data dependent criteria which are not extensions

of geometric criteria.

5.3.3 Nearly C'!' Data Dependent Criteria

The following criteria, from Dyn, Rippa and Levin (1990), are based on the
premise that if the surface produced by the interpolating function is as smooth as

possible then the errors in interpolating the underlying function will be reduced,
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Lee (1982).

The description of the criterion used will be in the form of letters to abbreviate
the name and a number to indicate which vector ordering scheme was applied.
The results shown are comparable to those produced by Dyn et al; results for all
other combinations were obtained but are not shown. Unless specifically shown

the grids are oriented with (0,0) in the bottom left hand corner.

Angle Between Normals (ABN)

The Angle Between Normals cost function seeks to measure the angle between
the normals to the planes produced by the piecewise linear interpolant in R®.
Let n(V and n® be the normal vectors to the two planes P, and P, respectively

which meet at an edge, i.e.

a;
: 1
AU —
Vai+ b +1
—1

The cost function is the acute angle § between these two vectors,
i.e. s(fr,e) =0 = cos™' A, where

ajas + byby + 1

A= .
Jai + 0+ 1 a3+ b3+ 1

This criterion is the closest to the idea of steepest ascent, Lee (1982) and it
should provide smoothness even near edges of the domain 2. The smoothness of
the representation can be seen in Figure 5.29 where the triangulation produced
using the ABN cost function and the 2-norm for vector ordering for the 33 point
data set is displayed. The triangulation comprises of many long, thin triangles
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Figure 5.28: Angle § as Found for Criterion ABN

along the ramp’s face and these triangles have the effect of bunching the contours,
which are straight (especially when compared to the Delaunay triangulation (see
Figure 5.8)). The numerical errors show a 50% decrease in the Ls-error and an

even greater decrease in the mean interpolation error.

an

T

(0,0)

Figure 5.29: The ABN-2 Triangulation for SR1 (33 Points)

This smoothness can also be seen in the ABN-2 triangulation of the 100 data

point set for Function SR1 (Figure 5.30). However, even though the contours are
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straight and bunched together, the actual triangulation does not comprise of as
many long, thin triangles as might be expected. This is due to the order in which
the nodes are reconnected and the solution to this problem will be discussed later,
in Section 5.5.2. Also, in this case it can be seen that even though there are more
nodes on the boundary of the region the representation of the function on the
boundary is not as good as might be wished, even though it is improved. This is
borne out by the lack of change in the maximum interpolation error which almost
certainly means that the error occurs on the boundary. The other numerical errors

both decrease by about 50%.

an

(0,0)

Figure 5.30: The ABN-2 Triangulation for SR1 (100 Points)

Figure 5.31, which shows the ABN-2 triangulation of 33 data points for Func-
tion DD1, shows that even with a small number of nodes it is possible to produce
a better representation of certain features. The ramp is well represented, with
triangles lying on its face, while the representation of the mountain is greatly im-

proved over previous representations, see Figures 5.9, 5.20, 5.21 and 5.23. Figure

86



5.31 also shows the improved representation near the edges of the domain. The

numerical results show that this is one of the best representations of DDI.

an

=

Figure 5.31: The ABN-2 Triangulation for DD1 (33 Points)

Another criterion of Dyn et al based on the concept of underlying smoothness

is:

Jump in Normal Derivatives (JND)

This cost function is a measure of the jump in the normal derivatives of P; and

P, across the common edge, e, i.e.

s(fr,e) = |ng(ar — ag) + ny (b — by)|

nl’
where n = is a unit vector in the perpendicular direction of the edge e,

n=-——- where m=uv;+ (A—1)v, — vy,

(U]‘ — U,V — UZ')

(v; — vi,v; — o)

A=

87



This however does not seem to be related to the idea of steepest ascent and so for
smooth functions the Angle Between Normals criterion is better as can be seen
in Figures 5.32 and 5.33. Figure 5.32, when compared to Figure 5.29, shows that
the different criteria can produce different grids for the same function, e.g. note
the extra small triangles in Figure 5.32. The numerical errors show that there
is only a slight difference between ABN-2 and JND-1 but the ABN-2 errors are

smaller.

a1

Figure 5.32: The JND-1 Triangulation for SR1 (33 Points)

Figure 5.33 again shows the difference in grids, when compared to Figure 5.31,
but also shows that the representations can be very different in regions such as
that containing the mountain.

This leads on to the next category of criteria which try to give some measure of
how close the planes formed in R?, by the interpolants on neighbouring triangles,

are to being co-planar.
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Figure 5.33: The JND-1 Triangulation for DD1 (33 Points)

5.3.4 Near Planar Criteria

These criteria, from Dyn, Rippa and Levin (1990), relate to cost functions defined
on interior edges of the triangulation, and attempt to give some measure of how
near to being planar two triangles, T} and T, with a common edge, e, are.
Figure 5.34 gives a visual representation of how each of the near planar criteria

are calculated.

D

Vi

1

Figure 5.34: Distances as calculated by the near-planar criteria
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Plane-fit (PF)

The plane-fit criterion measures the error between the linear interpolants P, and
P, interpolated at the other vertices Vj, Vj respectively, in the quadrilateral @)

and the actual function values [, F} respectively.

s(fr,¢) = |[h]]

where

| Pi (1, 1) — 1]
h =

|P2(=’1?k7 yk) - Fk|

Intuitively this gives a measure of how far from being planar the planes are
and operates best on smooth functions which do not have large second derivatives.
The results for this criterion, Figures 5.35 to 5.37, reinforce these intuitive
comments. Figure 5.35 shows that for a function with large second derivatives,
the representation is poor, and the triangles do not follow the contours. The

numerical results highlight this problem.

an

(0.0)

Figure 5.35: The PF-2 Triangulation for SR1 (33 Points)
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Figure 5.36 shows that for Function DD1, which has derivative discontinuities
in certain regions (the top and bottom of the ramp), the Plane-Fit criterion is
unable to cope and smears out the sharp features. The numerical results show
an improvement over Delaunay but not as much improvement as for other data
dependent criteria.

Figure 5.37 shows that for a smooth function with small second derivatives, i.e.

Function SH1, there is an improvement in the function’s representation (compared

to Figure 5.10).

an

Figure 5.36: The PF-2 Triangulation for DD1 (33 Points)

The other near-planar criterion is outlined below and as can be seen from
Figure 5.34, it is an alternative measure of how close to planar two neighbouring

triangles are.
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Figure 5.37: The PF-2 Triangulation for SH1 (33 Points)
Plane-Dist (PD)

The Plane-Dist criterion measures the perpendicular distance between the ex-

tended planes P, and P, and the points w; and wy respectively.

s(fre) = |

Dist(Py, F)
h =

Dist(P,, F)

where

_ |Pm(xn7yn) — Fn|

Dist(Py, ;) =
vai + 62 +1

This has the same advantages and disadvantages as the Plane-Fit criterion as

can be seen from Figures 5.38 and 5.39. Both figures shows that the Plane-Dist
criterion produces different grids to the Plane-Fit criterion, by comparison with

Figures 5.35 and 5.36.

In both near planar criteria, the norms used are those which correspond with
the vector ordering norm, with the infinity norm corresponding to the lexico-
graphic ordering.
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Figure 5.38: The PD-1 Triangulation for SR1 (33 Points)
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Figure 5.39: The PD-1 Triangulation for DD1 (33 Points)

The final criterion presented is that of equidistribution.

5.3.5 Equidistribution

This criterion seeks to minimise a cost function along the edges in the triangu-
lation by swapping and was first proposed by Sweby (1987). The integral of the
weight function, see below, is calculated using quadrature on a small number of
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points. The underlying motivation has been outlined in Section 3.1 and is that,
in 1-D, the behaviour of the underlying function u can be monitored by looking
at the integral of some monitor function w of u over an interval [a, b], see (3.1).

The monitor function, w, is some positive function of u or its derivatives which
allows monitoring of its behaviour and can be used to position nodes to minimise
errors.

As described in Section 3.1, Carey and Dinh (1985) derived an expression for
the “optimal” weighting function, (3.2), which can be used to produce a cost
function for nodal reconnection. Using (3.2), taking linear interpolants and the

Ly-norm, we see that in 1-D the monitor function, w, is
w(@) = (ug,)*?

whilst in 2-D, the directional analogue is

w = (cos’Ouy, + 2cosfsinfu,, + simz&uyy)z/5

Yi — ¥
T; — Iy

where tanf =

The 2-D cost function, S, is then

S(fTve) = /U] wdSv

which is calculated on each edge in the triangulation and by using the local
optimisation procedure the triangulation which minimises the sum over all the
edges is found.

In the test cases, wy;, Uy, and u,, could all be evaluated exactly and so calcu-
lating f;7 w ds was easily achieved using Gaussian quadrature.

This criterion works well for smooth functions as can be seen in Figure 5.40.
The grid produced for Function SR1 contains long, thin triangles parallel to the
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actual contours. The numerical errors show the large decrease in the Ly-error

and mean interpolation for this representation.

a1

Figure 5.40: The Equidistribution Triangulation for SR1 (33 Points)

a0

/2

Figure 5.41: The Equidistribution Triangulation for DD1 (33 Points)
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For Function DD1 the representation is not as good, since we again come
across the problem of two connected nodes being on either side of the mountain.

Another problem is that the whole of the region, except the mountain, has a sec-

ond directional derivative of zero, so the connectivity depends entirely on whether
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or not edges with equal cost are swapped or not. The numerical errors highlight

this with the increase in the Ls-error.

5.4 Tables of Numerical Results

The tables of numerical results are now presented so that it is possible to see
which triangulations have the smallest errors. The tables which follow show
the numerical errors and the geometrical measure associated with the different
representations already presented. The errors and measures are calculated as
outlined in Section 4.3.

Table 5.1 shows the numerical errors for the triangulations of SR1 by the 33
point set in this chapter. In comparison with the Delaunay triangulation the
following results stand out; the ABN-2 triangulation shows a significant decrease
in the Ly-error and the mean interpolation error. Equidistribution works just as
well as ABN-2 for this function; while other of the reconnection criteria improve
the results, but not to such a degree as ABN-2 or equidistribution. Table 5.2
shows the geometric measures for SR1 with 33 data points. These show that the
Delaunay triangulation has many nearly equiangular triangles, the mean skew-
ness is small, and that the ABN-2 triangulation is comprised of many long, thin

triangles, the mean aspect ratio is small.
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Errors for SR1 (33 points)

Method Lo — error | mean interpolation | max interpolation | Figure
x 1072 x 1072 x 1072

Delaunay 2.37108 1.60364 7.51542 5.8

ABN-2 1.15505 0.61040 6.38080 5.29

MWT-2D 2.36341 1.60113 7.51542

MWT-3D (w=1) 2.35635 1.58545 7.51542

MWT-3D (w=10) 2.04891 1.38536 6.68127 5.22

MAX-MIN 3D 2.35838 1.58658 7.51542 5.19

JND-1 1.18125 0.62807 6.38080 5.32

PF-2 1.72252 1.05734 7.14728 5.35

PD-1 2.00543 1.28186 7.73203 5.38

Equidistribution 1.15780 0.61451 6.38080 5.40

An alternative ABN-2 | 1.60637 0.88416 6.66938 5.44

An alternative PD-1 1.15945 0.61802 6.38080 5.46

Simulated Annealing

ABN-2, G1, (1, fo 1.15505 0.61040 6.38080 5.51

Simulated Annealing

ABN-2, G1, (', f5 1.1728 0.65087 6.38080 5.52

Table 5.1: Numerical errors for SR1 (33 points)
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Geometric measures for SR1 (33 points)

Method Angles Skewness AR (Lo) | Figure
min, max | mean, max | mean, min
Delaunay 6.48, 153.4 | 28.0, 62.3 | 0.660, 0.188 5.8
ABN-2 0.58, 177.0 | 53.2, 78.0 | 0.301, 0.017 | 5.29
MWT-2D 2.73, 172.9| 30.0, 75.2 | 0.654, 0.067
MWT-3D (w=1) 2.72, 172.9| 30.4, 75.2 | 0.646, 0.067
MWT-3D (w=10) 2.73, 1729 | 4.7, 75.2 | 0.591, 0.067 | 5.22
MAX-MIN 3D 6.48, 153.4 | 28.0, 62.3 | 0.659, 0.188 | 5.19
JND-1 0.89, 177.0 | 49.8, 78.0 | 0.356, 0.024 | 5.32
PF-2 2.73, 172.9 | 44.2, 75.2 | 0.440, 0.067 | 5.35
PD-1 1.85, 172.9 | 44.6, 75.2 | 0.438, 0.054 | 5.38
Equidistribution 0.58, 177.0 | 55.2, 78.0 | 0.298, 0.017 | 5.40
An alternative ABN-2 | 0.58, 177.0 | 50.2, 78.0 | 0.342, 0.017 | 5.44
An alternative PD-1 0.57, 177.9 | 52.3, 78.6 | 0.336, 0.016 | 5.46
Simulated Annealing
ABN-2, G1, C4, fo 0.48, 177.9 | 54.0, 78.6 | 0.300, 0.014 | 5.51
Simulated Annealing
ABN-2, G1, (1, f3 0.78, 177.0 | 48.6, 78.0 | 0.358, 0.023 | 5.52

Table 5.2: Geometrical measures for SR1 (33 points)
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Table 5.3 shows the numerical errors for DD1 using the 33 point set. When
compared to the results for the Delaunay triangulation, the ABN-2 triangula-
tion gives an improvement in results as does the JND-1 triangulation. It can
also be noted that some of the triangulations increase the numerical errors e.g.
equidistribution and MAX-MIN 3D.

Table 5.4 shows the geometrical measures for DD1 using the 33 point data
set. It is possible to see the introduction of long, thin triangles by many of the

reconnection procedures.
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Errors for DD1 (33 points)

Method Lo — error | mean interpolation | max interpolation | Figure
x 1071 x 1072 x 1071
Delaunay 1.20728 6.86570 6.78551 5.9
ABN-2 1.01215 4.31671 6.73873 5.31
MWT-2D 1.20603 6.89342 6.78551
MWT-3D (w=1) 1.22882 6.16923 6.78551 5.21
MWT-3D (w=10) 1.11246 4.81425 6.78551 5.23
MAX-MIN 3D 1.32738 6.54446 8.81535 5.20
JND-1 1.02777 4.56247 6.73873 5.33
PF-2 1.10078 5.73231 6.73873 5.36
PD-1 1.04093 4.34577 6.78551 5.39
Equidistribution 1.23639 6.60126 6.78551 5.41
An alternative ABN-2 | 1.01215 4.31671 6.73873 5.45
An alternative PD-1 1.01012 4.26698 6.56733 5.47
An alternative ABN-2 | 1.01215 4.31671 6.73873 5.48
An alternative PD-1 1.04093 4.34577 6.78551 5.49
Simulated Annealing
ABN-2, G1, (4, fo 1.00156 4.09598 6.73873 5.53

Table 5.3: Numerical errors for DD1 (33 points)
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Geometric measures for DD1 (33 points)

Method Angles Skewness AR (Lo) | Figure
min, max | mean, max | mean, min
Delaunay 6.48, 153.4 | 28.0, 62.3 | 0.660, 0.188 5.9
ABN-2 0.33, 178.4 | 47.8, 79.0 | 0.382, 0.009 | 5.31
MWT-2D 2.73, 172.9| 30.0, 75.2 | 0.654, 0.067
MWT-3D (w=1) 2.73, 172.9| 35.8, 75.2 | 0.566, 0.067 | 5.21
MWT-3D (w=10) 2.40, 173.4 | 41.2, 75.6 | 0.485, 0.060 | 5.23
MAX-MIN 3D 1.24, 176.6 | 34.8, 77.7 | 0.572, 0.031 | 5.20
JND-1 0.33, 178.4 | 46.8, 79.0 | 0.393, 0.009 | 5.33
PF-2 1.68, 172.9 | 42.7, 75.2 | 0.463, 0.047 | 5.36
PD-1 0.24, 179.2 | 474, 79.4 | 0.365, 0.006 | 5.39
Equidistribution 6.48, 153.4 | 30.8, 62.3 | 0.621, 0.188 | 5.41
An alternative ABN-2 | 0.33, 178.4 | 43.8, 79.0 | 0.423, 0.009 | 5.45
An alternative PD-1 1.36, 172.9 | 43.9, 75.2 | 0.428, 0.040 | 5.47
An alternative ABN-2 | 0.33, 178.4 | 47.4, 79.0 | 0.373, 0.009 | 5.48
An alternative PD-1 1.36, 171.9 | 46.4, 74.6 | 0.374, 0.040 | 5.49
Simulated Annealing
ABN-2, G1, (4, f, 0.33, 178.4 | 46.4, 79.0 | 0.399, 0.009 | 5.53

Table 5.4: Geometric measures for DD1 (33 points)
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Table 5.5 shows that for SH1, the reconnection criterion PF-2 improves the
numerical errors when compared with those produced by Delaunay.

Table 5.6 shows the numerical errors and geometrical measures for SR1 when
the larger data sets are used.

Table 5.7 shows the numerical errors and geometrical measures associated
with the Delaunay triangulations of 81 and 100 points.

Table 5.8 shows the improvement that the D’Azevado and Simpson triangu-

lations can make in the the case of P2.

Errors for SH1
Method Ly — error | mean interpolation | max interpolation | Figure
x 1072 x 1072 x 1072
Delaunay (33 points) | 2.42616 1.46847 7.67019 5.10
PF-2 (33 points) 2.35113 1.40353 7.47289 5.37
Geometric measures for SH1
Method Angles Skewness AR (Lo) Figure
min, max mean, max mean, min
Delaunay (33 points) | 6.48, 153.4 28.0, 62.3 0.660, 0.188 5.10
PF-2 (33 points) 4.76, 164.5 34.2, 68.7 0.587, 0.137 5.37

Table 5.5: Errors and measures for SH1 (33 points)
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Errors for SR1
Method Lo —error | mean interpolation | max interpolation | Figure
x 1073 x 107? x 1072
Delaunay (81 points) 4.32505 2.25362 1.16866 5.13
Delaunay (100 points) | 7.57001 4.11860 3.83141 5.15
ABN-2 (100 points) 4.60538 2.03663 3.83141 5.30
Geometric measures for SR1
Method Angles Skewness AR (Lo) Figure
min, max mean, max mean, min
Delaunay (81 points) | 45.0, 90.0 20.0, 20.0 0.866, 0.866 5.13
Delaunay (100 points) | 10.2, 152.5 23.3, 61.7 0.740, 0.275 5.15
ABN-2 (100 points) 0.04, 179.7 54.0, 79.8 0.304, 0.001 5.30

Table 5.6: Errors and measures for SR1

Errors for DD1

Method Lo —error | mean interpolation | max interpolation | Figure
x 1072 x 1072 x 107!

Delaunay (81 points) 4.44908 1.62930 3.08566 5.14
Delaunay (100 points) |  5.87095 2.40301 4.54757 5.16
Geometric measures for DD1
Method Angles Skewness AR (Lo) Figure

min, max mean, max mean, min
Delaunay (81 points) | 45.0, 90.0 20.0, 20.0 0.866, 0.866 5.14
Delaunay (100 points) | 10.2, 152.5 23.3, 61.7 0.740, 0.275 5.16

Table 5.7: Errors and measures for DD1
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Errors for P2

Method Lo — error | mean interpolation | max interpolation | Figure

Delaunay (33 points) 2.00851 1.45028 6.25000 5.12

D’Azevado (33 points) 1.21345 0.74188 6.25000 5.25

Delaunay (100 points) 0.34984 0.28374 1.80730

D’Azevado (100 points) | 0.19832 0.12857 1.80730 5.26

Geometric measures for P2

Method Angles Skewness AR (Lo) Figure
min, max mean, max mean, min

Delaunay (33 points) 6.48, 153.4 28.0, 62.3 0.660, 0.188 5.12

D’Azevado (33 points) | 3.01, 170.5 44.6, 73.7 0.429, 0.091 5.25

Delaunay (100 points) | 10.2, 152.5 23.3, 61.7 0.740, 0.275

D’Azevado (100 points) | 1.48, 175.5 54.3, 77.0 0.299, 0.043 5.26

Table 5.8: Errors and measures for P2

All the criteria for data dependent nodal reconnection studied have now been

presented. However before considering nodal movement criteria it is beneficial to

study the implementation details which are presented in the next section together

with the differences which can occur due to different implementations; a numerical

technique for finding the global minima, namely Simulated Annealing, is also

detailed.
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5.5 Implementation Detalils

In this section the different strategies which were used to implement each criterion
are examined. The effect of different Local Optimisation Procedures, differences
caused by searching the lists of triangles in a different order and the use of a strict
or non-strict inequality in the swapping criterion are investigated, as well as the

use of Simulated Annealing.

5.5.1 Local Optimisation Procedures (LOP)

A local optimisation procedure (LOP) is used to check the total cost associated
with each triangulation and hence choose the triangulation with the lowest cost.
However this involves calculating the cost associated with all the edges in the
triangulation.

A truly “Local” LOP would check just the costs across the one edge e = v;v;,
which is to be swapped, and € = 17, the possible new edge, (see Figure 5.42)

and then keep the edge which has the smallest cost.

V.

Figure 5.42: Possible triangulations of a convex quadrilateral

However in the “global” LOP used by Dyn, Rippa and Levin (1990), a cost

vector 8 is set up so that the effect of changing from e to ¢’ is monitored across
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not only the internal diagonals but also the other four edges, v;v;, v;0;, T70; and
U;Ur, (see Figure 5.42). The resulting vectors S and S’, each with five elements,
are then compared using the specified vector Norm.

It should be noted that MWT, MWT-3D, MAX-MIN angle and equidistribu-
tion are already “Local” LLOP’s, and that PF and PD rely on a specified norm
since the cost function across an edge is a vector.

The difference in triangulations which result can be seen in Figure 5.43, when
it is compared with Figure 5.29. Both the triangulations are produced using the
same data dependent criterion and norm, but Figure 5.29 was produced using the
“global” approach of Dyn et al., while Figure 5.43 was produced using the “local”
approach. We can see that the “global” LOP produces better results than the
“local” LOP in this case and also in all the other cases tested. This shows that
it is better to consider the effect on the whole triangulation of reconnecting two

nodes rather than the effect on the common edge of the triangles.
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Figure 5.43: The ABN-2 Triangulation of SR1 using the “local” LOP (33 points)
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5.5.2 Differences in Triangle Searching

In searching for diagonals to swap, each triangle in the list is taken in turn and
neighbouring elements sought (i.e. those with a common edge). On finding a
neighbouring element the two are considered as forming a quadrilateral in which,
if appropriate, the diagonal can be swapped. If no swapping occurs, another
neighbour is sought, or if all neighbours have been considered without swapping
occurring then the next triangle is taken as a base. However, if swapping does
occur there are two options; either to take one of the newly formed triangles as a
base and continue searching for its neighbours or to jump to the next triangle in
the list.

The consequences of the different swapping routines can be that totally differ-
ent grids are produced with almost identical costs. This can be seen by comparing
the figures which follow with the corresponding figures earlier in the chapter. All
the previous figures have been produced by the procedure whereby one of the
newly formed triangles is used as a base. The figures which follow in this sub-
section use the procedure whereby an unchanged triangle is used as a base after
nodal reconnection.

Figure 5.44 shows the effect of the difference in triangle searching for the
ABN-2 triangulation of Function SR1. In comparison with Figure 5.29 it can be
noted that the representation of the ramp is poorer and that there are not as
many long, thin triangles. Figure 5.45 shows that the identical representation

can be achieved even with different triangulations (compare with Figure 5.31).
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Figure 5.44: An alternative ABN-2 Triangulation of SR1 (33 points)

i

Figure 5.45: An alternative ABN-2 Triangulation of DD1 (33 points)
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However, the different triangle searching procedure does not necessarily lead
to worse representations as can be seen by looking at Figures 5.46 and 5.47.
Figure 5.46 shows the PD-1 triangulation of SR1 and when this is compared to
Figure 5.38 the improvement in representation is clear to see as are the increased
number of long, thin triangles. Figure 5.47 also shows an improvement in rep-
resentation when compared to Figure 5.39, the PD-1 triangulation of DD1. The

numerical errors associated with both figures show a marked improvement over
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those associated with Figures 5.38 and 5.39.

an

Figure 5.46: An alternative PD-1 Triangulation of SR1 (33 points)
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Figure 5.47: An alternative PD-1 Triangulation of DD1 (33 points)

Having described the procedures which can be used to search for the next edge

to check, the methods which can be used to decide if nodes should be reconnected

are outlined in the next section.
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5.5.3 Swapping Strategies

As described in Section 5.2, an ordering on the set of triangulations can be defined
such that T < T"if S < S’ according to some vector ordering. From this definition
it is possible to produce two strategies to change the internal diagonals, e and
¢ with cost vectors S and S respectively. A sweep has occurred when all the
members of the list of triangles have been considered.

The strategies are :-

1. Change from edge e to edge ¢  if S is less than or equal to S’ in the
ordering, storing the number of swaps on each sweep and the number
of exact equalities on each sweep. When all swaps in a sweep are due
to equality then change the strategy and change only if S is strictly
less than 8, and keep this strategy until there are no swaps in a sweep

when the process terminates.

2. Change from edge e to edge ¢’ if S is strictly less than 8" in the ordering
and continue until there are no swaps in a sweep. Then do one sweep
where edge e is changed to edge ¢ if S is less than or equal to S'.
Then continue with the original strict inequality until there are no

more swaps on one sweep.

In many cases, these different swapping strategies produce almost identical
triangulations, but in some cases the triangulations are very different. Two such
triangulations which can be seen to be different are shown in Figures 5.48 and
5.49 (compare to Figures 5.31 and 5.39 respectively).

The different implementation strategies that can produce various triangula-
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Figure 5.48: An alternative ABN-2 Triangulation of DD1 (33 points)

tions have now been outlined and in the next section a numerical technique which
could produce global minima rather than different locally optimal minima is de-

scribed.

an

Figure 5.49: An alternative PD-1 Triangulation of DD1 (33 points)
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5.6 Simulated Annealing

This is a technique which is used to try and find global extremum in numerical

optimisation techniques rather than local extrema (see Figure 5.50).

Local
minimum Global

minimum
Figure 5.50: Function with global and local extrema

It is based on the idea, from statistical mechanics, that from a highly dis-
ordered state, i.e. at a high temperature, it is easier to produce the global ex-
tremum. A restatement of this is :- by taking, with a decreasing probability, a
step which makes the solution worse, it is possible that a better solution could
be achieved than that produced by taking improving steps only.

In statistical mechanics the number of changes of state is directly related to
the temperature at which the system is at, i.e. it is more likely to become more
chaotic, “worse”, at a higher temperature. In the numerical work this is tempered
by the fact that not all non-improving swaps will be made, so a random variable
is used to introduce the idea that only some swaps will be made. Account is
also taken of the length of time, (number of swaps), at the same temperature,
as in actuality the system cools, so some criterion to simulate this change in
temperature is introduced.

These components for the numerical method are known as :-
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1. The annealing schedule, ¢g(). This is the pseudo-temperature variable
which is originally set to a high value so all possible states can be
reached from an initial state. It then decreases so more ordered states
occur until the pseudo-temperature variable decreases to zero and only

“better” states are reached.

2. A randomness function, f(r). This gives a probability that a worse

state will be reached at any time.

3. Changing criterion, C,,. This changing criterion is set so that changes
in the annealing schedule occur regularly, so that the method does not

become computationally expensive.

All three of the above criteria can be user defined.

The procedure is as follows for edge swapping in a triangulation :-

1. Set up an initial triangulation, 7, with associated cost, I,.

2. Change the triangulation by swapping a diagonal to produce T, with

associated new cost [, if

I, < IO‘I'f(T) -g(t)

then accept swap.
3. If swap accepted, set I, = I, T, =T, . Return to stage 2.

4. It €, is satisfied then move to the next element in the annealing sched-

ule. Reset C,,.

(', 1s usually chosen so that when a certain number of edges have been checked
or a certain number of swaps made, then the next element in the annealing
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schedule is used.
Thus €, is chosen so that the number of edges checked is Ay, or the number of
actual swaps made is Ay, before progressing to the next element in the annealing

schedule. i.e.

Clz(AOZQXT,AlzT)
CQ - (AO :T,Al :N)
where T' is the number of triangles in a triangulation and N is the number of

interior points.

The choices of randomness function, f(r), with r € [0,1] are

filr) = r
faor) = —log(r)
fa(r) = L

f3(r) is proposed by Dueck and Scheuer (1990).
The annealing schedule is user, and problem, dependent. The two schedules

used had 20 different values :-

G1 = (.015,.014, ...,.001,0,0,0,0,0)

G2 = (.05,.03,.02,.016,.012, .01,.009, . ..,.001,0,0,0,0,0).

A few illustrative results now follow. It was found that using 5 did not give
as good results as (1, so it seems that the longer before changing the annealing
schedule the better. In most cases there was not a large difference between results
previously generated and those got by simulated annealing although in a number

of cases better representations were found by using Simulated Annealing.
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Figure 5.51, which was produced using G1, C'; and f;, shows that there can
be differences in triangulations, (compare to Figure 5.29), without a significant

change in representation.

an

(0,0

Figure 5.51: A Simulated Annealing ABN-2 Triangulation of SR1 (33 points)

Figure 5.52, which was produced using G1, C; and f;, shows that a better
triangulation is not guaranteed, but the result will be very close to any previous
result.
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Figure 5.52: A Simulated Annealing ABN-2 Triangulation of SR1 (33 points)

Figure 5.53, which was produced using G1, €| and f;, shows an improved
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triangulation which has been produced using the ABN-2 criterion on DD1. The
numerical results show this to be the best triangulation for DD1 using the 33

point data set.
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Figure 5.53: A Simulated Annealing ABN-2 Triangulation of DD1 (33 points)

In the next section we outline how geometrical constraints can be introduced

into the nodal reconnection procedure.

5.7 Geometrical Constraints

If the triangular grids produced are likely to be used in conjunction with a numeri-
cal solution method, then it may be necessary to take into account any constraints
that the numerical method introduces. These constraints may be required in or-
der that the system does not become ill conditioned or the accuracy deteriorate.
These constraints are usually geometrical in nature and might be that the angles
should not be too small, for the conditioning of the solution method, or that the
area of any of the triangles should not be too small, again for the conditioning of

the numerical method.
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These constraints can easily be introduced into a nodal reconnection procedure
in the following manner. When two neighbouring triangles, with a common edge,
are being considered for a nodal reconnection it is possible to insert a check to
ensure that neither of the two newly generated triangles has an area less than the
specified tolerance and that none of the angles in the two triangles is below the
specified minimum angle.

Usually the choice of these specified tolerances would be dependent on the
numerical method being employed, however for illustrative purposes, the toler-
ances are chosen so that the difference between the geometrically constrained
triangulations and the unconstrained triangulations is apparent.

Figure 5.54 shows the effect of using a tolerance of 0.005 for the area and 5°
for the minimum angle with the ABN-2 reconnection criterion. The triangula-
tion produced can be compared with that in Figure 5.29 as can the numerical
errors and the geometrical measures which are shown in Table 5.9. It is possi-
ble to see that the numerical errors are greater than those for the unconstrained
triangulation.

Figure 5.55 shows the effect of using a tolerance of 0.005 for the area and 3°
for the minimum angle with the ABN-2 reconnection criterion. The triangulation
produced can be compared with those in Figure 5.29 and Figure 5.54 as can
the numerical errors and the geometrical measures which are shown in Table
5.9. Again the numerical errors are greater than those for the unconstrained

triangulation.
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Figure 5.54: An ABN-2 Triangulation of SR1 with geometric constraints (33

points)

Figure 5.55: An ABN-2 Triangulation of SR1 with geometric constraints (33

Figure 5.56 shows the effect of using a tolerance of 0.005 for the area and 5°

for the minimum angle with the ABN-2 reconnection criterion. The triangulation

produced can be compared with that in Figure 5.31 as can the numerical errors

and the geometrical measures which are shown in Table 5.9. The numerical errors
118

points)



show a slight worsening over those produced by the unconstrained procedure.
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Figure 5.56: An ABN-2 Triangulation of DD1 with geometric constraints (33

points)

Figure 5.57 shows the effect of using a tolerance of 0.002 for the area and 3°
for the minimum angle with the ABN-2 reconnection criterion. The triangulation
produced can be compared with that in Figure 5.30 as can the numerical errors

and the geometrical measures which are shown in Table 5.9. It is possible to
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Figure 5.57: An ABN-2 Triangulation of SR1 with geometric constraints (100

points)
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see from these results that geometric constraints can be added into the nodal
reconnection procedure and that consequently the data representation changes.
This ends the chapter on grid generation by node reconnection and in the

next chapter grid generation by nodal movement is described.
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Errors for constrained triangulations

Method Lo — error | mean interpolation | max interpolation | Figure
x 1072 x 1072 x 1072
ABN-2 (SR1) (33 points) 1.1550 0.6104 6.3808 5.29
As above with constraints 1.2695 0.7416 6.3808 5.54
As above with constraints 1.2055 0.6821 6.3808 5.55
ABN-2 (SR1) (100 points) 0.4605 2.0366 3.8314 5.30
As above with constraints 0.4838 2.2129 3.8314 5.57
ABN-2 (DD1) (33 points) 10.121 43.167 67.387 5.31
As above with constraints 10.194 43.434 67.855 5.56

Geometric measures for constrained triangulations

Method Angles Skewness AR (Lo) Figure
min, max mean, max mean, min
ABN-2 (SR1) (33 points) | 0.58, 177.0 53.2, 78.0 0.301, 0.017 5.29
As above with constraints | 5.71, 156.8 42.1, 64.5 0.458, 0.169 5.54
As above with constraints | 3.22, 156.8 42.6, 64.5 0.452, 0.095 5.55
ABN-2 (SR1) (100 points) | 0.04, 179.7 54.0, 79.8 0.304, 0.001 5.30
As above with constraints | 3.47, 169.7 44.6, 73.2 0.436, 0.100 5.57
ABN-2 (DD1) (33 points) | 0.33, 178.4 47.8, 79.0 0.382, 0.009 5.31
As above with constraints | 5.04, 166.0 40.5, 70.6 0.461, 0.140 5.56

Table 5.9: Frrors and measures for constrained triangulations
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Chapter 6

Nodal Movement Criteria

In the previous chapter the effect on the representation of a function of reconnect-
ing the nodes of a triangulation, whilst keeping their position fixed, was investi-
gated. A complementary strategy, which is now investigated, is that of keeping
the nodal connectivity fixed whilst changing the positions of the nodes of the
triangulation. In this chapter various techniques which can be used to implement
nodal movement in a triangulation with a fixed connectivity are investigated.
The nodal repositioning by these techniques is based on criteria dependent on
the properties of the underlying data function to be represented, the aim being
to produce a set of data points, with a prescribed connection, which accurately
represents the underlying data, (e.g. initial data), when interpolated on the grid.

As mentioned at the start of Chapter 5 it is possible that geometric constraints
may have to be taken into account when generating the nodal positions. The pos-
sible constraints are the same as those discussed in Section 5.7, the introduction
of small angles and small triangles. It is possible to put these into the nodal

movement criterion as a check to see if the triangles generated are acceptable.
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Given an arbitrary initial grid there are many different methods which might
be used to redistribute the nodes towards an “ideal” grid with fixed connectivity.
Some methods involve smoothing, e.g. when solving a differential equation, using
the equation variables to smooth the grid, Palmerio et al. (1990). Others methods
strive to approximately equally distribute some measure of interpolation error
over all triangles. Here two such strategies which can be used to produce nodal
redistribution are outlined. The first is a movement criterion based on treating
edges in a triangulation as springs, with spring constants dependent on properties
of the underlying function to be interpolated on the grid, see e.g. Catherall (1988),
Lohner et al. (1986), Eisemann et al. (1987). The second procedure used is a
movement criterion based on approximately equalising the error of interpolation
on each triangle in the triangulation, based on error estimates derived from work
by Nadler (1985). This is akin to work done by Sewell (1972).

Both methods involve a local iterative technique, in which local patches of
triangles are set in equilibrium according to the corresponding criterion. This
process is then repeated over all such patches until global equilibrium is achieved.
The structure of this approach can be regarded as similar to a Gauss-Seidel
iterative process.

The details of the two different techniques are presented together with some
representative results, followed by details of their implementation and the presen-
tation of graphical results to demonstrate the difference on nodal position that
the manner of implementation can make. After the main body of results, tables of
the numerical errors in function representation achieved by the various techniques

are presented.
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6.1 Spring Analogy

For this technique the element edges are regarded as being comprised of “springs”.
The object is to place all of the “springs” in equilibrium; to this end local patches
of triangles are considered, each patch being placed in equilibrium. A global
iteration over all such patches then achieves the desired result.

Each node, v;, is surrounded by a patch of triangles, P formed by the p;
surrounding nodes, v;;, 7 = 1,...,p;, with node v; being connected to node v; ;

by edge ¢;. See Figure 6.1.

Figure 6.1: Patch surrounding a central node

For this movement criterion, edge ¢; has associated with it a spring “con-
stant”, k;, which is dependent on properties of the underlying function. A local
equilibrium position for node v; is found by solving the local spring system which
is generated on the patch P.

It was originally envisaged that the “springs” would be given a specified un-
extended length, (the required minimum inter-nodal spacing), and the equation
for the tension, T}, in the spring, k;, with this assumption is

B k; x ext

I = = (6.1)
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where
o [ is the specified original length.
o cxt is the current nodal separation less the specified original length, .

However, as can be seen in Figure 6.2, where the interior nodes of the Delaunay
triangulation shown in Figure 5.5 were redistributed for Function DDI1 using
[=0.01 and k; =1+ (us5)%°, the results produced in some cases were abysmal,
with nodes actually moving outside the unit square. This movement of nodes
outside the unit square is due to nodes moving very close to each other, i.e. within
[ of each other. These nodes that are in close proximity then produce compressed
springs which try to move the nodes far away and if the spring constants form
the right pattern then the central node can be moved out of the patch, and in
extreme cases out of the region. Thus it was decided, following Thacker et al.
(1980) and Palmerio et al. (1990), to assume that all springs had negligible length

when unstretched.
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Figure 6.2: Interior Nodes Redistributed using (6.1) for DD1 (81 points)
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The result of this is that a pseudo-tension, which does not involve the original

length of the spring, is defined as

T]‘ = k]‘ X ext. (62)

Hence the pseudo-tension, T}, for edge e; is

Ty = k(2 — 20)? + (g — i )? (6.3)
which can be separated into  and y components to give

T]‘ = k](l'z — l’i’]‘) (64)

x

T;, = ki(yi — yij)- (6.5)

Resolving the pseudo-tensions over the whole patch, then gives

Pi
ST =0 (6.6)
7=1

which can be used, to find the new position (@;,y;) of node v;, viz

Dq e
j=1 ki,

Pq .

(6.7)

and similarly for ;. This is similar to the technique for finding the centre of mass
of a body with weights k; at positions v; ;.
It is now necessary to decide on which property or properties of the underlying

function the spring constant, k;, is to be based. The original choice was
ki = () *° (6.8)

where u,, is the directional second derivative along the element edge, calculated
at the mid-point of edge e;. This is a two-dimensional analogue of the equidistri-
bution theory of Carey and Dinh, (1985), (see Section 3.1).
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However, with k; defined as in (6.8) this procedure produces excessive clump-
ing of nodes in regions of high curvature and poor representations of smooth
regions. Figure 6.3 shows that for Function SR1 which has high curvature near
the ramp the nodes cluster there. (In all the remaining figures in this section,
(Figures 6.3 to 6.11), a Delaunay triangulation was taken as the original triangu-

lation and only the interior nodes are repositioned).

[

Figure 6.3: Interior Nodes Redistributed using (6.7) and (6.8) for SR1 (81 points)

Although k; as in (6.8) performs well for Function SR1, for Function DD1 this
choice of k; does not produce acceptable results as there are some points where
all the connecting edges except one have spring constants of zero which results
in the central node moving to a coincident position with an adjoining node. If
either of these coincident connected nodes are moved later in the procedure then
the routine fails.

Such shortcomings can however be rectified by choosing

(uss)2/5

k] =1 ‘|‘ ai{(uss)Q/S]mal,

(6.9)
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where [(ts5)%/%] ez is the maximum value of (u,,)*/®

over all the edges and « is a
parameter chosen to control the weighting given to the equidistribution measure,
usually with a value of 10 or 20. Note that for k; = 1 equal spacing (Laplacian
smoothing) would result, thus the addition to k; of unity gives additional control
of nodal separation and helps place the nodes in smooth regions where ug; is
small.

The effect of Laplacian smoothing, k; = 1, can be seen in Figures 6.4 and 6.5
which show the triangulations and nodal positions which result from Laplacian

smoothing of the Delaunay triangulations of 33 and 100 data points respectively

(Figures 5.4 and 5.5). The Delaunay triangulation of 81 data points (Figure 5.6)

Figure 6.4: The Laplacian smoothed Delaunay Triangulation of 33 data points

is unchanged under Laplacian smoothing due to the regularity of triangles in the
grid.

Comparing Figure 6.6, which shows the redistributed nodes for Function SR1
produced by choosing o = 10 in (6.9), with Figure 6.3, we can see that such a
change in spring constant can produce little effect in some instances. However

Figure 6.7 shows the triangulation which can result for Function DD1, again when
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Figure 6.5: The Laplacian smoothed Delaunay Triangulation of 100 data points
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Figure 6.6: Interior Nodes Redistributed using o = 10 in (6.9) for SR1 (81 points)

a =10 in (6.9), when the addition of unity halts the introduction of coincident
nodes as detailed above. It can be noted that although nodes are now positioned
in the “mountain”, the ramp has had little influence on the positioning of the
nodes. The poor numerical results for this triangulation are due to the poor
representation of the ramp and the excessive clumping of nodes near the centre
of the mountain, which highlight the need for an alternative choice of spring

constant.
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Figure 6.7: Interior Nodes Redistributed using o = 101in (6.9) for DD1 (81 points)

To alleviate such insensitivity to smooth functions an alternative choice for
the spring constant was used, based on the first derivative of the function to be

represented i.e.

5]

k=147 (6.10)

|u5|max

where (3 is chosen to give a weighting to the gradient (usually 1, 2 or 5). (6.10)
is based on the 1-dimensional expression for arc-length and tends to produce
movement of nodes to positions of high gradient, with the unit constant again
giving a control on nodal separation. The coefficient k; is calculated for the edge,

€;, joining (4,y.) to (xp,ys) by approximating u, as

F(xavya) B F(xbvyb) )
V(@ —20) + (g — 1)?

Us =

(6.11)

The main motivation for this is to produce better representation in regions where
uss ~ 0 but the function is not smooth (see Figure 6.8, for example). In Figure
6.8, with 8 = 5 in (6.10), the nodes can be seen to have remained in the region

of the ramp while also congregating slightly in the vicinity of the mountain. The
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numerical results show that the triangulation decreases the maximum interpola-
tion error while increasing the mean interpolation error and leaves the L,-error

almost unchanged.

.1

Figure 6.8: Interior Nodes Redistributed using 5 = 51in (6.10) for DD1 (81 points)

However (6.10) does not perform as well as (6.9) in representing rapidly chang-
ing functions, (see Figure 6.9). In Figure 6.9, again with 8 = 5 in (6.10), the
points move to the region of maximum gradient, which is not the region of great-
est change of function where the points are required. The numerical results show

an increase in all errors compared with those associated with Figures 6.3 and 6.6.

As a result of the difference in representation achieved by using (6.9) and

(6.11), a combination of the above weights is used, that is;

(uss)2/5
[(uss)2/5]max

5]

kj:1—|—0é

+3 (6.12)

|u5|max
The coefficients o and 3 can then be chosen to reflect the aspect of the function
which it is desired to well represent.

Experimentation showed that in order to get acceptable results for all the test
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Figure 6.9: Interior Nodes Redistributed using # = 51in (6.10) for SR1 (81 points)

functions without utilising any prior knowledge of the function to be represented,
values of @ & 8 — 10 and 3 =~ 2 — 3 are adequate. The justification for these
values is that the equidistribution theory states that the second derivative term
is more important and so has a larger weighting, while, if needed, the weighting
of the first derivative term must outweigh the contribution of the unity term.

Figures 6.10 and 6.11 show that these values of a and 3 in (6.12) can result
in better representations of the functions. They will not necessarily be the best
choice for all functions, as different features would desire different weightings of
each component. Figure 6.10 shows the results of choosing = 10 and 3 = 3 with
Function SR1. The numerical errors show that although it is an improvement over
Delaunay, the L,-, and mean interpolation, errors are larger than those produced
by the grid in Figure 6.3.

Figure 6.11 shows the results of choosing o« = 10 and $ = 3 with Function
DD1. In this grid there are nodes near the ramp due to the influence of the

gradient weighting but there is clumping of the nodes in the mountain region
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Figure 6.10: Interior Nodes Redistributed using (6.12) for SR1 (81 points)

due to the curvature weighting. The numerical results show small errors when

compared to those of the representation given by the grid in Figure 6.7.
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Figure 6.11: Interior Nodes Redistributed using (6.12) for DD1 (81 points)

These results show that the choice of spring constant will vary wildly from
function to function, with some requiring more curvature weighting, while others

require more gradient weighting. The general values given produce adequate
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results in most cases but not necessarily the optimal results.
In the next section the alternative procedure for repositioning the nodes is

outlined.

6.2 Error Equalisation

The second movement criterion considered is a global interpolation error equal-
isation criterion, again treated iteratively in a local manner. This technique
is based on expressions for the error of least squares fits on triangles, (Nadler
(1985)), which have been modified to produce error estimates for linear inter-
polants. It is possible to use these expressions to attempt to equalise the error
on all triangles by relocating the central node in a patch of triangles.

In this section the following symbols are used :-
P is the number of points connected to the central node of a patch.
E is the error on a triangle.
A(T;) is the area of triangle T}, and
A,(T;) is the optimal area of triangle 7.

The formulation is as follows :-

=W, ~ Ci(detH) x [A(Ti)]?’ X |det H | (6.13)
where
Ugy Ugy
H = (6.14)
Uyz  Uyy
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is the Hessian at the centroid of T;, and C; is a constant depending on the sign
of det H.
Since the error, F, is to be equalised on all triangles, it is acceptable to work

with E? rather than F.

In order to get the same E?, say W, on each triangle in the patch we use
P
S W =P x Wy, (6.15)
=1
then for each triangle in the patch

Wi Ciox [A(T)P x |detH]|
W Cs x [AJ(T) < |detH]

(6.16)

where A,(T;) is the area which triangle, T}, should have in order to give an E? of

Wopt, 1.€.

Wopt
W,

1/3
AO(TZ»):[ ] < A(T,). (6.17)

This is valid since the determinant of the Hessian at the centre of the new triangle
can be considered as being the same as at the centre of the old triangle, so the
determinants, det H, and the constants, (;, cancel. The determinant is treated as
being the same or the problem would become non-linear, i.e. the only information
about the new triangle is a line on which one of the vertices can be positioned,
which means that the centre of the new triangle is on a parallel line and thus the
Hessian cannot be calculated.

A further condition which can be imposed is that the area of a patch should

be conserved so that the central vertex remains within the patch.

;A(Ti) = ;AT(TZ') (6.18)
where
Ao(Ty) = AA(T:) (6.19)



and

POoAT
A= Zpﬂi() (6.20)
Zi:l AO(TZ)
Using (6.17), (6.18) and (6.20) an expansion factor,
AT Wopt\ /2
=31 = (%) (6:21)

can be defined for triangle T}, and thought of in the following terms.
€(?) > 1, triangle is enlarged,
€(7) < 1, triangle is shrunk,
€(7) = 1, triangle is unchanged.

This “expansion factor” is used in the procedure to find the new position of
the central node of a patch. It gives the equation of a line onto which the node
has to move in order to give the optimal area, A,(T}), for triangle T7.

The complete procedure is follows and makes use of the following results :-

area of triangle = 0.5 x base length x perpendicular height (6.22)

and

b
powrbvTe (6.23)

where D is the perpendicular distance of the point (u,v) from the line ax+by+c =
0, as shown in Figure 6.12.

Using these results and (6.21) gives

a®; + by; + ¢ = e(i)(ax; + by; + ¢), (6.24)

since the base length remains constant, with (2;,y;) the new position of (x;,y;).
Thus the new point moves on a line parallel to the base of the triangle.
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line :— ax+by+c=0

Figure 6.12: Perpendicular distance of a point from a line
Finding the equations from all the triangles in the patch, produces P equations
for the position of the new node. The use of some or all of these equations allows

the calculation of the new nodal position.

Amongst the procedures which can be used to find the nodal position are :-

1. Least squares fit :- since P lines will almost certainly not meet at a

point.

2. Using the equations associated with the first triangle in a patch and
its neighbour to give the new nodal position: however this does not
guarantee that the node will stay inside the patch, especially if €(1) or

€(2), as defined by (6.21), are greater than 1.

3. Where possible, using the equations associated with triangles j and
j+1 in the patch, where €(j) and €(j 4 1) are both less than or equal

to 1. If this is not possible, choosing j so that

ej)+e(f+1) <elk)+elk+1), k=1.p, j#k. (6.25)

This improves the likelihood of a node remaining inside a patch.
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In all cases, however, it is still necessary to check for degenerate triangles (see

Figure 6.13). If a degenerate triangle occurs then only a proportion of the move

Figure 6.13: Introduction of a degenerate triangle by nodal movement

is made, and another check is made. If it remains degenerate then the node is
not moved.

The results which are produced by this procedure are very poor, as can be seen
in Figures 6.14 to 6.17. Figure 6.14 shows the representation of DD1 by the 100
point set when the nodes have been moved using the error equalisation procedure.
The representation is poor in the region of the mountain and unchanged in the
region of the ramp due to the determinant of the Hessian being zero there. The
numerical errors also show that this is an inadequate representation.

Figure 6.15 shows the representation of P2 which is produced by the error
equalisation criterion on the 100 point set. The numerical errors show that this
is an inadequate representation when compared to the Delaunay triangulation.

Figures 6.16 and 6.17 show that with different point sets the representations
produced can vary widely. The representation in Figure 6.16 is adequate but the
representation in Figure 6.17 is abysmal.

It is also necessary to note that this procedure has no effect on the Function
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Figure 6.14: Error equalisation triangulation of DD1 (81 points)

Figure 6.15: Error equalisation triangulation of P2 (100 points)

SR1, as the determinant of the Hessian is always zero for this function so the

initial triangulation is unchanged. It is possible to see that this procedure does

not improve the representations in the cases mentioned and in almost all cases

the procedure produces similar or worse results.

Another problem is the stopping criterion which is very problem dependent

and has to be adjusted for each problem and data set. This makes the procedure

almost useless as a practical proposition
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Figure 6.16: Error equalisation triangulation of SR3 (100 points)
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Figure 6.17: Error equalisation triangulation of SR3 (81 points)
1

teria are outlined here. First an original triangulation is set up, usually Delaunay,

could improve the procedure is to work towards equalising the actual errors on
The techniques of implementation which were employed in the testing of the cri-

each triangle in a patch rather than equalising the bounds on the errors.

6.3 Implementation



(although various grids produced by data dependent reconnection criteria are also
used, see Section 6.4), the aim being to see if nodal movement depends heavily
on the connectivity of the original triangulation.

An iteration technique is used to move the nodes, with each node being moved
inside its patch to a new position, and the next node in the set of nodes then
being moved. This is analogous to the Gauss-Seidel iteration procedure, as the
new position is used in all subsequent moves and all the spring constants are
recalculated for each node. An alternative strategy is analogous to the S.0.R
method if some proportion, w, of the calculated move is taken. A complete global
method, where all the spring constants are found at the start of a cycle and an
n; by n; matrix system is solved, where n; is the number of interior nodes, is
not used as it is computationally very expensive to repeatedly solve the resulting
matrix system, to convergence, for large numbers of nodes.

Following each sweep through the list of nodes, a check is made to see if
the nodes have converged to a steady solution. The check used depends on the
criterion in use, e.g. for the spring analogy the check is to calculate the maximum
distance moved in each sweep and if this is less than some tolerance, dtol, then
the method is said to have converged. This tolerance could vary, depending on
the function and the length of time the procedure was to take, although it was
usually taken to be O(107?). For the error equalisation criterion a note is made
of the minimum value of ¢(¢), the expansion factor for a triangle, over all patches
in a sweep. When this minimum value is greater than a given tolerance less than
1, usually about 0.8, then the procedure is stopped as it can be assumed that

all triangles are close to the “ideal” size, and the areas have converged to those
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required, within a small tolerance.

It is also necessary to look at the treatment of the boundary nodes for both
techniques, as in all tests recounted so far, only the interior nodes have been
repositioned. For the error equalisation criterion no simple treatment of the
boundary nodes exists so they remain fixed, but for the spring analogy a number
of treatments exist. Originally the effect of not moving the boundary nodes was
investigated, but was found not to be desirable as this created thin triangles
round the boundary and caused over-constrained movement of the interior nodes,
as can be seen in Figures 6.3 and 6.6 to 6.11, and hence the decision to move
the boundary nodes, but to constrain them to move along the boundary was
made. Originally this was implemented before the interior nodes were moved,
by using the same spring analogy as for the interior nodes, but using only the
connections on the boundary. However, this again caused some problems since
it was possible that in moving the boundary nodes to their optimal points and
keeping the connections the same, degenerate triangles could be produced. This
problem can be seen in Figure 6.18 where the shaded area is the triangle which
results when only the boundary nodes are moved but the connectivity stays the
same. As can be seen the triangle is greatly enlarged, (originally it was the same
size as those in the centre of the mesh), and it overlaps other triangles. The same
applies to the triangle in the top left corner (which has not been shaded). The
representation, contours and numerical results are unreliable in this case due to
the overlapping of triangles.

This difficulty could be tackled in two ways :-

1. Include all nodes in a sweep through the list of nodes, but constrain the
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Figure 6.18: Boundary nodes moved only for SR1 (81 points)

vertices of the region to stay fixed and the boundary nodes to remain
on the boundary, and then continue until all nodes have moved to their
optimal positions, hopefully eliminating the production of degenerate

triangles.

2. Once the boundary nodes have been moved to their new positions,
re-Delaunay the resulting nodal positions to produce a new initial tri-
angulation (This is computationally the most expensive procedure).
This revised nodal connectivity is then employed to calculate the re-

vised positions of the interior points only.

One disadvantage of (2) is that the original connectivity is not preserved
and another is that it is computationally very expensive. However with the
nodal positions which occur in Figure 6.18 the result of this procedure can be
satisfactory (see Figures 6.19 and 6.20). Figure 6.19 shows the resultant Delaunay
triangulation from the set of nodes shown in Figure 6.18, while Figure 6.20 shows

the resultant positions of the interior nodes when they are moved using the spring
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Figure 6.19: Delaunay triangulation of points in Figure 6.18 for SR1 (81 points)

Figure 6.20: Connectivity in Figure 6.19, interior nodes moved for SR1 (81 points)
The advantages of (1) are the lack of extra work to find a new triangulation
144

and the preservation of the original connectivity. The disadvantage of (1) is that
if the boundary nodes are constrained to the boundary but all connections in
the triangulations must be used as springs, then ghost points must be introduced
outside the region (see Figure 6.21). These ghost points are points created solely



Interior node

Boundary

. Ghost point

Figure 6.21: Creation of a ghost point

to assist with the calculation of the new positions of the boundary nodes. The
procedure is as follows :- if an internal node is connected to a boundary node, then,
treating the boundary of the region as a mirror, a ghost point is created outside
the region, at the mirror image of the interior point. The resultant ghost point is
connected to the boundary node by an imaginary line with spring constant equal
to that of the line joining the interior node to the boundary node. In computations
the springs which form part of the region boundary have their spring constants
multiplied by some factor, 6, (6 ~ 5), following Thacker et al. (1980), so that the
effect from the internal connections does not become too significant and cause
the poor positioning of boundary nodes. The results of using this procedure are
shown in Figure 6.22, which was produced for Function SR1 with 6 = 5 and
values of @ = 10 and 3 = 2 in (6.12). As can be seen from the numerical results
in Table 6.2 this has the lowest error of any reconnection procedure for SR1 which
uses repositioning only.

Figure 6.23 shows the results when the same parameters are used for Function

DD1. Once again the numerical results are not as good as might be expected due
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Figure 6.22: All Nodes Redistributed using (6.12) for SR1 (81 points)

to the large weighting on the curvature, though the boundary nodes do actually

move towards the ramp.

T
HH

Figure 6.23: All Nodes Redistributed using (6.12) for DD1 (81 points)

The five tables which follow show the numerical errors and geometrical mea-
sures associated with the different representations already presented and those
associated with ones which will follow in the next section. The errors are calcu-

lated as outlined in Section 4.3.
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Errors for the Error Equalisation (EE) criterion
Method | Function, | Ly — error | mean interpolation | max interpolation | Figure
points x1072 x1072 x1071

Delaunay | P2, 100 34.948 28.374 18.073

EE P2, 100 39.972 30.925 18.073 6.15
Delaunay | SR3, 100 | 8.15303 3.85048 6.42352

EE SR3, 100 | 12.7467 7.60751 6.42352 6.16
Delaunay | SR3, 81 5.96940 2.63085 26.7231

EE SR3, 81 38.6385 24.7657 12.3176 6.17

Table 6.1: Errors for the Error Equalisation criterion

Table 6.1 shows that the numerical errors associated with the error equalisa-
tion criterion triangulations presented are worse than those of the corresponding
Delaunay triangulations.

Table 6.2 shows the numerical errors for the triangulations representing the
Function SR1, produced by the set of 81 data points. As can be seen, moving the
nodes improves the errors in almost all the triangulations shown in the previous
sections in this chapter. The triangulations for which the errors are worse are
those which involve the generation of degenerate triangles. As has been previously
noted the best errors are produced by movement criteria based on curvature,
although the gradient based spring constant did make a slight improvement in
the errors. The greatest improvements can be in seen in the entries in the table
which show that moving all the nodes including the boundary nodes improves

the Ly-error greatly, and also decreases the interpolation errors to less than 25%
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Errors for SR1 (81 points)

Method Ly — error | mean interpolation | max interpolation | Figure
x 1073 x 1073 x 1072
Delaunay 4.32505 2.25362 1.16866 5.13
Interior nodes moved 2.59611 1.44170 1.16866 6.3
Interior nodes moved 2.75337 1.53412 1.16866 6.6
Interior nodes moved 3.04027 1.71930 1.16866 6.8
Interior nodes moved 2.68037 1.51198 1.16866 6.10
Boundary nodes moved 5.40282 3.28707 1.53749 6.18
Delaunay of nodes in 6.14 | 5.20637 2.49211 2.49268 6.19
Nodes of 6.15 moved 3.82267 1.67048 2.43169 6.20
All nodes moved 0.96465 0.60172 0.30352 6.22
Reconnected (ABN-2) 4.32775 2.25362 1.16866
Moved then reconnected 0.67286 0.35808 0.27266 6.24
Reconnected then moved 1.21347 0.70576 0.44116 6.25

Table 6.2: Errors for SR1 (81 points)

of those of the Delaunay triangulation. Table 6.3 shows the associated geometric

measures.
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Geometric measures for SR1 (81 points)

Method Angles Skewness AR (Lo) | Figure
min, max | mean, max | mean, min

Delaunay 45.0, 90.0 | 20.0, 20.0 | 0.866, 0.866 | 5.13
Interior nodes moved 17.4, 143.1| 26.1, 55.4 | 0.756, 0.370 | 6.3
Interior nodes moved 25.4, 129.0 | 22.8, 46.0 | 0.810, 0.512| 6.6
Interior nodes moved 22.8, 134.0 | 22.8, 49.3 | 0.805, 0.462 6.8
Interior nodes moved 23.8, 132.0 | 23.4, 48.0 | 0.799, 0.482 | 6.10
Boundary nodes moved 0.65, 169.1 | 37.8, 72.7 | 0.569, 0.020 | 6.18
Delaunay of nodes in 6.18 | 11.0, 147.9 | 23.4, 58.6 | 0.778, 0.282 | 6.19
Nodes of 6.19 moved 10.5, 141.0 | 31.4, 54.0 | 0.662, 0.296 | 6.20
All nodes moved 17.0, 145.3 | 42.1, 56.9 | 0.546, 0.349 | 6.22
Reconnected (ABN2) 18.4, 135.0 | 46.3, 50.0 | 0.487, 0.433
Moved then reconnected 0.11, 179.7 | 66.6, 79.8 | 0.169, 0.003 | 6.24
Reconnected then moved 6.62, 166.7 | 34.9, 71.2 | 0.522, 0.133 | 6.25

Table 6.3: Geometric measures for SR1 (81 points)
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Errors for DD1 (81 points)

Method Lo — error | mean interpolation | max interpolation | Figure
x1072 x1072 x107*

Delaunay 4.44908 1.62930 3.08566 5.14
Nodes outside region 32.7656 18.7799 8.20206 6.2
Interior nodes moved 9.84769 4.59733 5.24890 6.7
Interior nodes moved 4.44787 2.10183 2.18771 6.9
Interior nodes moved 8.10345 3.82542 4.52270 6.11
All nodes moved 8.70128 4.20088 4.50826 6.23
Reconnected (ABN-2) 4.50187 1.29741 3.08566

Moved then reconnected 7.26486 2.56037 4.55134 6.26
Reconnected then moved | 12.3880 7.34259 4.72496 6.27
Error equalisation 6.13078 2.14163 4.73528 6.14

Table 6.4: Errors for DD1 (81 points)

Table 6.4 shows that for the Function DD1 the nodal movement criteria do not

work as well as might be expected. The curvature based spring constants increase

the errors associated with the produced triangulations, but the spring constant

based solely on gradient produces similar results to the Delaunay triangulation.

The triangulation produced by moving all the nodes is not as good as expected

due to the spring constant being weighted towards curvature rather than gradient.

Table 6.5 shows the geometric measures for DD1 with the 81 point data set. The

smallest angle introduced by nodal movement is 6°.
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Geometric measures for DD1 (81 points)

Method Angles Skewness AR (Lo) | Figure

min, max | mean, max | mean, min

Delaunay 45.0, 90.0 | 20.0, 20.0 | 0.866, 0.866 | 5.14

Nodes outside region 0.06, 179.9 | 46.6, 79.9 | 0.329, 0.001 6.2

Interior nodes moved 6.03, 143.8 | 23.7, 55.9 | 0.726, 0.181 6.7

Interior nodes moved 19.9, 116.2 | 20.4, 37.5 | 0.818, 0.533| 6.9

Interior nodes moved 5.81, 147.8 | 23.0, 58.5 ] 0.738, 0.174| 6.11

All nodes moved 6.54, 125.6 | 20.0, 43.7 | 0.779, 0.196 | 6.23

Reconnected (ABN2) 1.40, 175.2| 40.4, 76.8 | 0.567, 0.038

Moved then reconnected | 0.34, 179.1 | 41.8, 79.4 | 0.486, 0.009 | 6.26

Reconnected then moved | 3.83, 169.0 | 31.9, 72.7 | 0.583, 0.107 | 6.27

Error equalisation 2.08, 1754 21.3, 76.9 | 0.840, 0.045| 6.14

Table 6.5: Geometric measures for DD1 (81 points)

As mentioned at the start of the chapter it is possible to introduce geometric
constraints into the nodal movement process. Such constraints were implemented
but since nodal movement does not generate small angles or small triangles no
results will be shown.

Following on from these nodal movement criteria for an initial triangulation
with fixed connectivity, in the next section the consequences of starting with an
initial triangulation and then either “moving and reconnecting” or “reconnecting

and moving” are investigated.
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6.4 Combinations of

Movement and Reconnection

If a triangulation of a set of nodes is given (e.g. the result of a triangulation front
procedure) then it may be desirable to modify the triangulation (post processing)
to better represent some data. The techniques which have been discussed for such
a triangulation are nodal movement and nodal reconnection and in this section
the different effects of the order of the operations are investigated, i.e. what is
the difference in results of “moving and reconnecting” and “reconnecting and
moving”. It can be seen from the graphical results in the text and the numerical
tables at the end of the chapter that the order of these operations has a significant
effect on the final grids and representations.

As in the previous sections of this chapter and Chapter 5 the initial trian-
gulation will be a Delaunay triangulation. When the description says “moved”
it means that all the nodes are moved using (6.12) with o = 10 and § = 2.
This is due to the reasons quoted in Section 6.1. The “reconnection” procedure
is the ABN-2 criterion described in Section 5.3.3. This criterion was chosen as
it is the nodal reconnection criterion which in general produces the best repre-
sentations of the underlying data using the grids formed. Another reconnection
procedure was also tested, in which a quasi-equidistribution criterion was used,

2/5

212 the monitor used was consistent with

instead of the monitor function being u
the criterion used to reposition the nodes. This consistent procedure did not

produce results which were as good as those achieved by using ABN-2 on the

triangulations produced by moving the nodes.
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The form of the descriptions will be as follows :- if the initial procedure has

“ procedure X was carried

already been presented then the description will be
out on the triangulation shown in Figure Y”, while if the initial procedure has
not been previously described the description will be “procedure X was carried
out and then procedure 7Z was applied to the resulting triangulation”.

Figures 6.24 to 6.27 show the results associated with the point sets produced
in Section 6.3. These figures show the differences that “moving and reconnecting”
and “reconnecting and moving” produce.

Figure 6.24 shows the effect on the point set shown in Figure 6.22 of recon-

necting the nodes using the ABN-2 criterion. This shows the long, thin triangles

produced along the ramps face.

an

vvvvvvvvv

W

(0.0)

T
EEEEE

1

T
HH

1 L
1
e

Figure 6.24: Nodes of Figure 6.22 reconnected using ABN-2 for SR1 (81 points)

Figure 6.25 shows the effect of reconnecting the nodes using ABN-2 and then
moving them using a = 10 and # = 2 in (6.12). The effect of the ABN-2
reconnection procedure is slight but it changes the connectivity in such a way

that the nodes in Figure 6.25 have been pulled towards the top right corner of
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Figure 6.25: Nodes reconnected using ABN-2 and moved using (6.12) for SR1 (81

points)

Figures 6.26 and 6.27 show the differences for Function DD1 and the 81 point
data set between “moving and reconnecting” and “reconnecting and moving”.
Figure 6.26 shows the effect of reconnecting the nodal set shown in Figure 6.23.
The ramp is well represented, while the mountains sees an improvement in rep-

resentation, although the numerical results do not totally bear this out.

Figure 6.27 shows the effect that the initial connectivity can have when the

nodes are moved. In this case the nodes are pulled to the mountain, while the

ramp becomes smeared due to the pull of all the nodes in the region of the

mountain.
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Figure 6.26: Nodes of Figure 6.23 reconnected using ABN-2 for DD1 (81 points)
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Figure 6.27: Nodes reconnected using ABN-2 and moved using (6.12) for DD1
(81 points)
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To show the exact effect of the different procedures, we now present the effects

on three different functions, all with the 100 data point set, of the main procedures

outlined before :-
e nodal reconnection,
e nodal movement,
e movement then reconnection, and
e reconnection then movement.

Figures 6.28 to 6.31 show the results of these procedures for Function SRI1

with the 100 data point set.
Figure 6.28 shows nodes moved towards the centre, and the better represen-

tation of the boundary. The numerical errors are considerably improved.
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Figure 6.28: Nodes moved for SR1

Figure 6.29 shows the effect of reconnection using ABN-2 only. Long, thin
triangles are produced but the apparent poor representation of the boundary is

borne out by the maximum interpolation error.
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Figure 6.29: Nodes reconnected using ABN-2 for SR1

Figure 6.30 shows the effect of reconnecting the nodes in Figure 6.28 using

ABN-2. The representation is much better as can be seen from the numerical

results where all the errors are an order of magnitude better than those given by

the original Delaunay triangulation.

@1

Figure 6.30: Nodes in Figure 6.28 reconnected using ABN-2 for SR1

Figure 6.31 shows the poor representation achieved by starting with the very

irregular grid shown in Figure 6.29. The boundary nodes are poorly placed and
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the nodal positions are not as expected due to the increased number of connections

at certain nodes.
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Figure 6.31: Nodes reconnected using ABN-2 and moved using (6.12) for SR1

The overall effect of Figures 6.28 to 6.31 is to show that for SR1, with the 100
data point set, “move and reconnect” gives the best results.

Figures 6.32 to 6.35 show the representation of DD1 with the 100 data point
set.

Figure 6.32 shows the effect of moving the nodes. The nodes cluster towards
the mountain while some remain near the ramp. Although the maximum inter-
polation decreases, the L-, and mean interpolation, errors increase on those of
the Delaunay triangulation.

Figure 6.33 shows the effect of reconnecting the nodes. The ramp is well
represented but a triangle is produced which has an edge joining (0,0) to a point
on the boundary of the region, y = 1. This edge splits the region into two pieces,
which has important repercussions. The mountain is also well represented, as can

be seen from the numerical errors which show that this is the best triangulation
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Figure 6.32: Nodes moved for DD1
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Figure 6.33: Nodes reconnected using ABN-2 for DD1

Figure 6.34 shows the effect of reconnecting the nodes shown in Figure 6.32.
The ramp is well represented except at the boundary, and the mountain is well
represented except near the boundary, x = 1, where the smearing of contours is
due to the nodes in the mountain being on the mountains’ curved surface rather
than at its junction with the plane. The numerical interpolation errors are better
than those for the Delaunay triangulation, but the Ljy-error is worse.
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Figure 6.34: Nodes above reconnected using ABN-2 for DD1

Figure 6.35 shows the effect of moving the nodes with the fixed connectivity
as shown in Figure 6.33. The importance of the edge splitting the region into two
is now apparent. All the nodes to the left of the edge are stuck and can only move
in this region, the flat plane near the top of the ramp, while those to the right
of the edge are not numerous enough, or do not have the connectivity, to ensure
that the mountain is well represented. These defects lead to the resultant, very
poor representation where the ramp and mountain almost meet. These defects
can also be seen in the numerical results.

Figures 6.32 to 6.35 show that the representation of DD1 can be improved
by changing the triangulation, but that “moving and reconnecting” is not always

the best procedure (in this case reconnecting using ABN-2 is better).
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Figure 6.35: Nodes reconnected using ABN-2 and moved using (6.12) for DD1

Figures 6.36 to 6.40 show the effect of all the procedures on the 100 data point
set for the Function M1.
Figure 6.36 shows the Delaunay triangulation for 100 points and the repre-

sentation of M1 using this grid.

Figure 6.36: Delaunay for M1

Figure 6.37 shows the effect of reconnecting the nodes using the ABN-2 crite-

rion. The numerical results show that this has little effect on the representation.
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Figure 6.37: Nodes reconnected using ABN-2 for M1

Figure 6.38 shows the nodal positions which result when the nodes are moved
while keeping the connectivity shown in Figure 6.36. The numerical errors show
a marked improvement, the Lj-error is decreased by almost a half, as is the

maximum interpolation error.

an

Figure 6.38: Nodes moved for M1

Figure 6.39 shows the effect of moving the nodes to the positions shown in
Figure 6.38 and then reconnecting them using the ABN-2 criterion. The nu-
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merical errors are the best of those presented, with all the values decreasing by

approximately 50 % from those of the Delaunay triangulation.

an

Figure 6.39: Nodes moved then reconnected using ABN-2 for M1

Figure 6.40 shows the effect of moving the nodes with the connectivity shown
in Figure 6.37. The numerical results are an improvement over those associated
with the Delaunay triangulation but are not as good as those produced by some

of the other procedures listed here.

a1

Figure 6.40: Nodes reconnected using ABN-2 then moved for M1
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Figures 6.36 to 6.40 show that for a general function, the procedures out-

lined previously can improve the representation of data when interpolated on the

triangulation.

In this case, the best procedure is moving the nodes and then

reconnecting, but most of the other procedures also produce an improvement in

the representation.

Errors for SR1 (100 points)

Method Lo — error | mean interpolation | max interpolation | Figure
x 1073 x 1074 x 1073
Delaunay 7.57001 41.1860 38.3141 5.15
Reconnected (ABN-2) 4.60538 20.3663 38.3141 6.29
Moved 1.16079 7.30275 4.40141 6.28
Moved then reconnected 0.50770 2.88055 4.05630 6.30
Reconnected then moved | 2.96845 14.8279 18.2749 6.31
Table 6.6: Errors for SR1 (100 points)
Geometric measures for SR1 (100 points)
Method Angles Skewness AR (Lo) Figure
min, max | mean, max | mean, min
Delaunay 10.2, 152.5| 23.3, 61.7 | 0.740, 0.275 | 5.15
Reconnected (ABN-2) 0.04, 179.7 | 54.0, 79.8 | 0.304, 0.001 | 6.29
Moved 9.39, 150.9| 30.9, 60.6 | 0.635, 0.272 | 6.28
Moved then reconnected | 0.03, 179.9 | 64.5, 79.9 | 0.194, 0.0008 | 6.30
Reconnected then moved | 1.51, 172.8 | 46.1, 75.2 | 0.340, 0.046 | 6.31

Table 6.7: Geometric measures for SR1 (100 points)
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Tables 6.6 to 6.11 show that the procedures outlined previously can actually

produce differences in the numerical errors produced by the interpolants on the

grids. They also show that there is no specified procedure which will improve the

representation in all cases, but that one or more of the procedures will usually

improve the representation in all cases.

Errors for DD1 (100 points)

Method Lo — error | mean interpolation | max interpolation | Figure
x 1072 x 1072 x 1071
Delaunay 5.87095 2.40301 4.54°757 5.16
Reconnected (ABN-2) 4.91634 1.50004 3.47278 6.33
Moved 7.48263 3.60339 3.72416 6.32
Moved then reconnected 6.30996 2.00391 3.72416 6.34
Reconnected then moved | 14.0425 8.71242 4.57597 6.35
Table 6.8: Errors for DD1 (100 points)
Geometric measures for DD1 (100 points)
Method Angles Skewness AR (Lo) | Figure
min, max | mean, max | mean, min
Delaunay 10.2, 152.5| 23.3, 61.7 | 0.740, 0.275| 5.16
Reconnected (ABN-2) 0.06, 179.8 | 45.3, 79.9 | 0.431, 0.001 | 6.33
Moved 6.18, 151.5 | 22.3, 61.0 | 0.744, 0.185| 6.32
Moved then reconnected | 0.05, 179.6 | 46.6, 79.8 | 0.428, 0.001 | 6.34
Reconnected then moved | 0.80, 177.7 | 34.5, 78.4 | 0.560, 0.020 | 6.35

Table 6.9: Geometric measures for DD1 (100 points)
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Errors for M1 (100 points)
Method Ly — error | mean interpolation | max interpolation | Figure
x 1072 x 1072 x 1072
Delaunay 2.76383 1.57275 14.8171 6.36
Reconnected (ABN-2) 2.66476 1.46380 14.6194 6.37
Moved 1.44762 1.01554 6.97824 6.38
Moved then reconnected 1.31325 0.89145 5.51289 6.39
Reconnected then moved | 1.82925 1.21916 6.54900 6.40
Table 6.10: Errors for M1 (100 points)
Geometric measures for M1 (100 points)
Method Angles Skewness AR (Lo) | Figure
min, max | mean, max | mean, min
Delaunay 10.2, 152.5| 23.3, 61.7 | 0.740, 0.275| 6.36
Reconnected (ABN2) 3.97, 169.4 | 31.5, 72.9 | 0.621, 0.098 | 6.37
Moved 16.1, 135.2 | 16.6, 50.2 | 0.852, 0.450 | 6.38
Reconnected, then moved | 7.60, 164.4 | 24.4, 69.6 | 0.742, 0.157| 6.39
Moved, then reconnected | 2.17, 174.9 | 24.5, 76.6 | 0.753, 0.050 | 6.40

Table 6.11: Geometric measures for M1 (100 points)

The next chapter looks at some of the procedures which can be used to gen-

erate triangular grids if the only nodal information prescribed is the coordinates

of the vertices of the region.
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Chapter 7

Triangulation Front Techniques

In this chapter we look at a set of techniques which can be used to generate trian-
gular meshes which can be used on problems where the vertices of the region are
given. The aim is to create a valid triangulation with as many nodes and triangles
as are necessary to cover the entire region whilst giving a desired resolution of the
features of the underlying data. Boundary nodes between the vertices are first
generated and the interior nodes can then either be created before any triangles
are generated or can be generated in conjunction with the triangles themselves.
The purpose of such techniques is to generate nodes in regions where they are
required, with no prior knowledge of where they should be placed.

As mentioned in Section 5.7 it may be necessary to introduce geometric con-
straints into the grid generation procedure. However it was decided that for the
generation of the nodes using the triangulation front procedure it would not mat-
ter if the triangles were too small or had small angles as long as the nodes were
in the correct region. Investigation showed that post processing of the grids gen-

erated by the grid generation procedure was sometimes necessary, and it was at
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this stage of the procedure that the geometrical constraints could be introduced.

There are many different ways of going about this strategy and these methods
can be split into two families :- “interior nodes first” and “interior nodes and
triangles concurrently”. The first family to be described is the “interior nodes

first”.

7.1 Interior Nodes First

In this family of methods the vertices of the region are known and the bound-
ary nodes are then positioned according to some criterion. This criterion can be
equi-spacing (Lo (1985)), based on some background function for nodal spacing
(Cavendish (1974)); or some other choice. Once the boundary nodes are posi-
tioned then the interior nodes can be generated. Lo places the nodes so that they
are regularly spaced along the line joining corresponding nodes on opposite edges
of the region (thus for the unit square, Lo’s procedure produces a regular pattern
of nodes). Cavendish places the interior nodes by using the background function
for nodal spacing. The region is overlaid with rectangles, whose size depends on
the background function, and in a systematic ordering of rectangles, a new node
is randomly placed in a rectangle. The node is placed randomly in order that a
regular pattern of nodes is not automatically generated.

In Figure 7.1 the region is denoted by the dotted line and Cavendish’s rectan-
gles are shown. The boundary nodes can also be seen. If the first rectangle taken
was the third up on the right then a new node, A, would be placed at random
in that rectangle. If the new node, A, is too close, according to the background

function, to an existing node then it is discarded. This procedure continues un-
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Figure 7.1: Insertion of point in Cavendish’s procedure

til a new node is placed in the rectangle or five attempts have been rejected in
which case no node is positioned. When all the rectangles have been considered
and nodes placed, the resulting nodal distribution is accepted. In Figure 7.1 the
maximum number of internal nodes allowed is 18 (one in each rectangle).

Once a complete set of nodes has been generated the procedure for gener-
ating the triangles commences. In this procedure the generation of triangles is
performed in a geometrical manner (Lo), or in such a way that the sizes of the
triangles are dependent on the background data in some form (Cavendish). The
triangles are generated in the following fashion. The boundary edges, taken in any
anti-clockwise order, form the original front. One edge is chosen from the front
and the list of nodes is checked to find all the nodes to the left of the front within
a specified distance from the midpoint of the edge. These nodes are checked in
order of distance from the midpoint of the edge, with a measure of how close the
resulting triangle is to equiangular being calculated. The measures of triangles
which could be subsequently generated are also calculated. These measures are
the aspect ratios of Lo and Cavendish (Section 4.3). Provided no very long, thin

triangles would be generated in later steps the new triangle is accepted and the

169



front updated.

A\

B A

Figure 7.2: How the choice of Ny can create a long thin triangle

Figure 7.2 shows that if node N; is chosen from edge AB in the front then
further on in the process, AAN; N, will also be formed although it has a very poor
measure. The actual procedure is that AABN,, which does not have as good a
measure as AABNy, but has a better measure than AAN; Ny would be formed.
The result of this is that later on in the procedure AABN; will be generated and
the net effect is that the sum of the measures of the triangles generated is greater
than that of the pair of triangles which is not generated.

The process terminates when the front has no elements in it. A subsequent
smoothing step (Laplacian smoothing, Section 6.1) is then employed so that the
resulting triangles are more nearly equiangular than those originally generated.
The next section details the family of methods which produce “nodes and triangles

concurrently”.
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7.2 Nodes and Triangles Concurrently

(Geometrically)

In this section we investigate methods where the boundary nodes are equally
spaced around the boundary and the positions of the interior nodes are dependent
on the geometric method of generation of the triangles. This can be done in two
ways which are detailed below. In all the work that follows, a front is defined as
being the collection of edges, taken in an anti-clockwise ordering, which is used

to generate new triangles.

7.2.1 Layered

This approach was first presented by Sadek (1980). The boundary of the region
is treated as the original front, with the boundary nodes being on layer 1. Nearly
equiangular triangles are then generated and any nodes formed during this pro-
cess which are connected to two nodes on layer n are members of layer n + 1.
Figure 7.3 shows the procedure during the generation of the first layer of triangles.
The shaded triangles are about to be generated from the two edges marked ‘x’.
The numbers indicate which layer each node is on. This production of triangles
continues until no edges with nodes on layer n are members of the front, with the
restriction that until this occurs no triangles may be generated by an edge with
two nodes on layer n + 1. This process is repeated until there are no edges in the
front. The whole procedure is called layered as the triangulation is built up in
layers one triangle thick from the boundary into the interior of the region.

The nodes are generated in the following manner :- if the internal boundary
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Figure 7.3: Layered triangle generation

angle is ®°, then the number of triangles generated is the nearest integer to %.

This results in the generation of nearly equiangular triangles. When the number
of triangles to be generated has been found the interior angle is divided into that
many equal angles and using the fact that all the triangles should be similar it
is possible to position the new node, or nodes. Figure 7.4 shows the procedures

which are used to produce the relevant number of triangles and nodes. If the

[a® Q) :

®=3a more than 150° ® less than 90°

=28 between 90° and 150°

Figure 7.4: How angle ® dictates number of triangles produced
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interior angle is small then, if the size and shape of the triangle which fills the

space is acceptable, the gap is closed.

7.2.2 Unlayered

In this approach the order in which triangles and nodes are generated is not re-
stricted by the need to generate layers. Deljouie-Rakhshandeh (1990) used this
approach, and generates the triangles in a slightly different manner to Sadek
(1980). The number of triangles which are generated is either one, if the interior
angle is small, or two, if the angle is larger. In the case of one triangle being pro-
duced, (closing), no new node is generated, whilst if two triangles are generated
the new node is positioned at the midpoint of the positions where two equilateral

triangles would be formed by the enclosing edges. Figure 7.5 shows how a new

B

Figure 7.5: Generation of two triangles

point NNV is created from the edges AB and BC'. An equilateral triangle generated
from edge AB, shown by solid lines, would generate point N4p, while an equilat-

eral triangle generated from edge BC', shown by solid lines, would generate Np¢.
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N is then taken as the midpoint of Nyp and Ng¢ and the two triangles formed
are those which are denoted by the dotted lines. A check is kept of the proximity
of existing nodes to new nodes and if they are too close then they coalesce. This
method can lead to the generation of more than one front since the order of node
generation is not fixed to a layered structure. This front splitting can be seen in

Figure 7.6.

front « Proposed front 2 front 1
position

\ of node %

\
\

Figure 7.6: Splitting of a front

We now move on to look at the data dependent version of the “nodes and
triangles concurrently” procedure since the “interior nodes first” method does
not lend itself to a truly data dependent approach, as the positioning of the
nodes for data dependent criteria is usually based on the value of a measure

calculated along an edge in a triangle which has been generated.
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7.3 Nodes and Triangles Concurrently

(Data Dependent)

In this procedure all the grid generation information is stored on a nodally sparse
background grid (usually triangular) and values over the rest of the region are
found by interpolation. This is usually used as a stage of an adaptive solution
technique where the values of the solution at the last time interval are used to
generate the grid on which the solution at the next time interval will be calculated.

The values which are stored on the background grid are :-
e Nodal spacing, 6.
e Stretching parameter, s.
e Direction of stretching, a.

These parameters are connected as shown in Figure 7.7.

so

Figure 7.7: How the background parameters relate to each other
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Palmerio et al. (1990) and Peraire et al. (1987) use this method and their

procedure is as follows :-

10.

. Position the boundary nodes such that they satisfy the nodal spacing

measure.

Choose an edge, AB, to start the generation and find M, its midpoint.
The edge AB can be either the smallest edge in the front or the edge

with the smallest value of one of the parameters.
Find the values of the parameters at M, 657, sy and apy.

Rotate AB so that aps lies along the zq-axis and scale down the x4

coordinates by sys.

Determine 6, according to the sizes of 63y and AB. i.e. if 6,7 is too
large, or too small, when compared to AB, then é; is set as some

multiple of AB; otherwise it is set as Opy.
Construct C at a distance é; from each of A and B.

Find all the active nodes within a specified distance of C, and order

then in order of distance from C (nearest first).
Put C at the top of this list unless AN; < 1.5 x6; and BN; < 1.5 x é;.

The required point is the first point, N;, such that the interior of A
ABN; does not contain another node and such that the line MN; does

not intersect an existing side on the front.

The new element is formed, the coordinates are re-transformed and

the front is updated.
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11. This procedure continues until there are no edges left in the front at
which point the procedure terminates having produced a valid trian-

gulation.

No conditions are made regarding small angles, since it may be necessary to
generate small angles to satisfy the background information. A post-processing
smoother, based on the solution gradient between points, can be employed to
reposition the nodes in the generated triangulation.

Difficulties which have been reported (see e.g. Thomasset (1981)) are that
the algorithms may be comparatively fragile and may fail if the boundary nodes
are clustered closely together due to the generation of large numbers of triangles.
This can be countered by using a “layered” version of the procedure. The other
problem is that the program may reach a state in which it cannot generate any
more triangles in the interior of the region. This can be countered by changing
the values of the proximity tolerances until further triangles can be generated.

Having detailed the triangulation front procedures which have been previ-
ously used we now proceed to outline the procedures we used to implement a

triangulation front generation program.

7.4 Implementation of Geometric

Grid Generation

In order to eventually produce a data dependent triangulation front program
we decided to investigate what difficulties might be encountered by originally

programming a geometrically based triangulation front program.
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The geometrical procedure adopted was as follows :-

1. The boundary nodes were positioned at equi-spaced intervals along the

boundary.

2. Find the smallest edge in the front, AB, and create an equilateral
triangle, AABNy, with AB as base and to the left of the front, with
new point, N;. Repeat for both its neighbouring edges, AC and BD,

creating points Ny and N3 respectively (see Figure 7.8).

w.NN3 |

Figure 7.8: Generation of new nodes from edges

3. It either, or both, of N, and N3 are close, i.e. within a prescribed
distance dtol, of Ny the corresponding edge is flagged. In Figure 7.8

the distance dtol is shown by the circle.

4. The new point, N, is then the midpoint of the points created by flagged

edges.

5. Checks are made to see to see if the new node and triangles are ac-

ceptable. These checks include :-

178



N is close, less than ntol, to an existing node in the front. If this
occurs then the triangle is generated and the front splits into two,

see Figure 7.6.
— N lies inside an existing triangle. Reject N.

— Existing points lie inside the triangles which are generated. Reject

N.

The edges of the triangles created do not cut any edges in the

front. If they do, reject N.

— N is too close to an edge in the front while not being close to its

endpoints (see Figure 7.9). Reject N.

radius, ntol radius, ntol

.

7 ™ T ™~

~
S
- ~
-~ 7

Figure 7.9: N is acceptable but A NCD is not

— Any of the new triangle edges are too close to an existing node

(see above). Reject N.

6. It N passes all of these checks it is accepted, the relevant triangles are

created concurrently and the front is updated.
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7. If small interior angles had been generated by the introduction of the
new triangles then these angles were “closed”, (see Figure 7.10), pro-
vided the triangle generated did not fail any of the checks in the list

above.

—

**closing”’

Figure 7.10: Closure of /ABC by joining A to C

8. Return to step 2 and repeat the procedure until no edges exist in any

generation front.

This outlines the basic procedure and the problems which were encountered

during its implementation are detailed in the next section.

7.4.1 Difficulties

In this section the problems which were encountered during the programming

and testing of the geometrical triangulation front program are detailed.

1. Taking the smallest edge first will create other small edges so that the

generation will start again with the newly created edges as bases and
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so if the process continues, the triangles created will spill across the
middle of the region and the effect of larger edges will be lost. This

can be solved by taking a layered approach to the problem.
2. Tolerances for distances. What is a good choice of dtol and ntol?

3. Tolerances for small angles. How small has an angle to be before it is

“closed”?

4. If the smallest edges are too small then too many small triangles are
generated, while a too large edge can create excessively large triangles.
This can be avoided by not using an edge as a generating edge if it is
“too large” or “too small”. These are usually set as some proportion

of the average separation of the boundary nodes.

It was thus necessary to give values to the various tolerances which would
decide the final form of the triangulation produced.

The choice of tolerances for distances was a matter of checking which tolerance
produced the most equiangular triangulation for the region under consideration.
This choice might change for other regions. Finally the choice came down to a
proportion of the separation of the boundary nodes. The differences in triangu-
lations produced can be seen in Figures 7.11 to 7.13. The triangulation to be
generated was a geometrical triangulation comprising of as many equilateral or
nearly equilateral triangles as possible. The production of small angles was to be
avoided in this case.

The choice of distance tolerance in Figure 7.11 was rejected since the area of
the triangles changed appreciably from the boundary to the centre and small an-

gles were produced. These comments are reinforced by the geometrical measures
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Figure 7.11: dtol = average separation of boundary nodes

presented in Table 7.2 which show the smallest angle as 5° and the maximum

ratio of adjacent triangle areas is over 14.

Figure 7.12: dtol = half average separation of boundary nodes

The triangulation shown in Figure 7.12 contains few long, thin triangles and
has the most nearly equiangular triangles, the smallest angle is 20°and the maxi-
mum skewness in a triangle is 47°. It is thus the most desirable choice of proximity
tester.

The triangulation shown in Figure 7.13 has produced a large number of long,
thin triangles, the smallest angle is 8°, and the triangles are not of similar size,

the maximum uniformity is almost 9, so the proximity tester was rejected.
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Figure 7.13: dtol = a third of average separation of boundary nodes

The consequences of these results is that the tolerance chosen for the proximity
indicator is half the average distance between the boundary nodes. The result of
using this tolerance for a different set of boundary nodes is shown in Figure 7.14.

The geometrical triangulations produced had differing numbers of nodes and
triangles which are shown in Table 7.1. The geometric measures for the geometric
triangulations in Figures 7.11 to 7.14 are shown in Table 7.2 and they highlight

which triangulation, and thus which proximity tester, is the best.

Figure 7.14: Geometrically generated triangulation

The results of the geometrical triangulation front program have been pre-
sented and the problems encountered outlined and we now progress to the data
dependent triangulation front procedure.
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The number of nodes and triangles

in geometric triangulations

Figure 711|712 7.13 | 7.14
Nodes 99 | 265 | 271 | 96
Boundary nodes | 56 | 56 | 56 | 32
Triangles 140 | 472 | 484 | 158

Table 7.1: The number of nodes and triangles in geometric triangulations

Geometric measures for geometric triangulations
Figure Angles Skewness AR (Lo) Uniformity
min, max | mean, max | mean, min mean, max
7.14 14.3, 148.0 | 6.57, 58.7 | 0.947, 0.317 | 1.506, 6.120
7.12 19.7, 130.0 | 4.07, 46.9 | 0.971, 0.494 | 1.237, 2.366
7.11 5.25, 168.8 | 16.1, 72.5 | 0.864, 0.112 | 2.366, 14.14
7.13 7.85, 156.2 | 5.11, 64.1 | 0.952, 0.217 | 1.516, 8.830

Table 7.2: Geometric measures for geometric triangulations
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7.5 Data Dependent Triangulation Fronts

Having investigated geometrical meshes, and discovered some of the difficulties
in implementation, we proceeded with the implementation of data dependent
triangulation front procedures. There were two possible implementations :- using
a background grid and data dependent background variables, or looking at some
measure on the edges of a triangle (akin to the equidistribution nodal reconnection

criterion). These choices of data dependent criteria are outlined below.

7.5.1 Background Data

For the first implementation, the choice of background variables had to be decided
first. Eventually the choice was 6 = 1, and s and a depended on the Hessian, H,
of the function at each grid point. (This choice of 6 meant we did not mind how

large the triangles became).

H=PTAP
where
Ugy Ugy
H =
Uye  Uyy
A1 0
A=
0 A
and P is a permutation matrix.
s and « were calculated using
M
s=,||—
A2
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and

Uy — )‘1
o = tan trew 2
U

y
the latter being the direction of the eigenvector associated with A\;. This choice
of parameters arose from the nodal reconnection work of D’Azevado and Simpson
(1989) where the coordinate transformation depended on the square root of the
ratio of the functions’ second derivatives.

Geometrical grid generation can be thought of as this procedure with s =1

and o = 0.

Difficulties

The difficulties which occurred with these parameters are listed below.

e The size of s has to be checked and an upper bound set, since if it becomes
too large the points generated might lie outside the region. This problem

also occurs if Ay = 0, as s is then not defined.
e The calculation of « can also be difficult in certain cases, e.g. where u,, = 0.

o If large values of s occur and the front splits into two, there is no guarantee
that any node generated will lie in the un-triangulated region enclosed by

the front containing the generating edge.

We now move to the other data dependent triangulation front procedure which

was tested.
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7.5.2 Cost of Triangle

The other data dependent implementation was an extension of the nodal recon-
nection criterion, equidistribution. In this procedure some measure was calculated
on each edge in the front, the edge with the smallest measure was used as a base
and an equilateral triangle was created. The cost of this triangle, the sum of the
measures, was calculated and the node moved until the cost of the triangle was
within specified tolerances. If this did not occur before the triangle became too
big or too small, no node was positioned and the edge with the next smallest
measure was considered. “Nodes and triangles concurrently” geometrical grid
generation can be thought of as this procedure with each edge automatically
having a cost of 1 and the tolerance being 3.

The boundary nodes for this procedure were placed by equidistributing the

measure on each edge over the whole boundary.

Difficulties

The difficulties encountered in this procedure are detailed below.

e Calculating the triangle cost tolerances. If this is done by looking at the
cost on boundary edges then it is possible that if the costs increase enough
inside the region, then the triangles in the interior will become smaller and
smaller until the program generates too many exceedingly small triangles
and never terminates. If no triangles are generated or they become too

small then the tolerances need to be changed.

o The effect of closing small angles to produce triangles has to be studied to

make sure that the cost of the triangle is within the tolerances allowed.
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7.6 Use of Generated Nodal Sets

In previous chapters the effect of reconnecting a fixed set of nodes and of reposi-
tioning the nodes with a fixed connectivity has been investigated. However both
of these require an initial set of nodes. These nodes have until now been ran-
domly generated or generated in a geometric manner. However for a truly data
dependent grid generation procedure the set of nodes should have been generated
in a data dependent manner. The set of nodes generated by a triangulation front
procedure have been produced in a data dependent manner but the position of
the nodes may be non-optimal due to the local nature of the generation proce-
dure. This can be corrected by the use of a global movement procedure such as
was investigated in Chapter 6. However this movement may have resulted in a
non-optimal connectivity and a local reconnection of the connectivity will result
in a good data dependent grid.

The triangulations generated by the procedures can hence be used as the
basis for a data dependent grid procedure where the nodes are generated, repo-
sitioned according to a data dependent criterion and then reconnected using a
data dependent criterion.

In the next section we present the results which show the differences in trian-
gulations which the different data dependent triangulation front implementations
produce. Also presented are the results of using the produced triangulations as

an initial grid for a complete data dependent triangulation procedure.
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7.7 Results

In the section that follows, the results of the triangulation front procedures are
presented. The generated grids are then used as the initial part of a data de-
pendent grid generation procedure in which the nodes are repositioned first and
then reconnected afterwards. To aid the clarity of results the three triangulations
generated for each function, triangulation front, nodal repositioning and nodal
reconnection are presented together as sets of three pictures. After each set of
pictures the numerical results are presented in a table, so a direct comparison
between the grids generated is possible. Unless specifically indicated, the grids

are oriented with (0,0) in the bottom left hand corner.

7.7.1 Background Grid

The results shown here are for the background grid data dependent triangulation
front program. The distance tolerances were all set at half the average spacing
between nodes, while the maximum value of s allowed was 20.

The results are shown for many of the functions in Chapter 4. The results
are presented here in the following fashion :- The triangulation produced by the
triangulation front program is shown first, the result of moving the nodes using
the method outlined in Section 6.1 is then shown and the last picture shows the
result of reconnecting the moved nodes using the ABN-2 method as outlined in
Section 5.3.3. The numerical results are presented in the form of the errors first

and then the geometrical measures.
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The first results are those for the function P2.
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Figure 7.15: Triangulation produced by triangulation front for P2
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Figure 7.16: Result after nodal movement on Figure 7.15

The triangulation produced by the triangulation front program contains long,

thin triangles while the nodes move to a central position after the nodal move-

ment as expected. The triangulation produced by reconnecting produces slightly

smaller errors than either of the preceding triangulations as can be seen in Table

7.3.
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Geometric measures for P2

Lo — error
0.1234
0.1137
0.1125
Angles

min, max

6.84, 162.3
Table 7.3: Errors and measures for P2

Figure 7.17: Result of reconnecting nodes in Figure 7.16

Method

Triangulation front

Nodes moved

Nodes reconnected

Method

Triangulation front | 6.52, 163.7
Nodes moved

Nodes reconnected | 4.10, 169.2
Number of boundary nodes
Number of nodes

Number of triangles
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Figure 7.18: Triangulation produced by triangulation front for M2
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Figure 7.19: Result after nodal movement on Figure 7.18

The grid for M2 produced by the triangulation front contains small triangles

After

where the function changes rapidly and large triangles where it is flat.

the nodal movement the nodes are redistributed so that all the rapidly changing

regions are well provided with points. The grid produced by nodal reconnection

aligns the triangles with the contours and reproduces the valley between the hills
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better. These comments are reinforced by the results shown in Table 7.4.
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Figure 7.20: Result of reconnecting nodes in Figure 7.19

Errors for M2

Method Lo — error | mean interpolation | max interpolation | Figure
107? 107? 1072
Triangulation front 5.9695 3.3736 3.0790 7.18
Nodes moved 3.3177 2.1831 2.2649 7.19
Nodes reconnected 2.3605 1.6704 1.2339 7.20
Geometric measures for M2
Method Angles Skewness AR (Lo) Figure
min, max mean, max mean, min

Triangulation front | 5.77, 164.2 15.6, 69.5 0.860, 0.144 7.18
Nodes moved 18.9, 137.8 12.6, 51.8 0.908, 0.418 7.19
Nodes reconnected | 4.90, 166.0 26.2, 70.6 0.735, 0.125 7.20
Number of boundary nodes 40
Number of nodes 131

220

Number of triangles

Table 7.4: Errors and measures for M2
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The next results are those for the Function SR1.
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Figure 7.21: Triangulation produced by triangulation front for SR1
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Figure 7.22: Result after nodal movement on Figure 7.21

The grid produced by the triangulation front contains long, thin triangles
along the contours. The movement of the nodes separates the nodes and reduces
the number of long, thin triangles. The triangulation produced by reconnecting
the nodes again aligns the triangles with the contours although there are minor

faults in the contours produced. The numerical results are shown in Table 7.5.
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Figure 7.23: Result of reconnecting nodes in Figure 7.22

Errors for SR1

Method Lo — error | mean interpolation | max interpolation | Figure
1077 1077 1072

Triangulation front 7.3280 4.7033 3.2832 7.21

Nodes moved 6.7710 4.2036 1.9292 7.22

Nodes reconnected 3.4772 1.9163 1.2681 7.23

Geometric measures for SR1

Method Angles Skewness AR (Lo) Figure
min, max mean, max mean, min

Triangulation front | 3.15, 164.2 41.3, 69.5 0.356, 0.095 7.21

Nodes moved 8.64, 154.7 31.8, 63.2 0.611, 0.222 7.22

Nodes reconnected | 0.29, 178.9 48.0, 79.2 0.315, 0.009 7.23

Number of boundary nodes 32

Number of nodes 42

Number of triangles 50

Table 7.5: Errors and measures for SR1
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The final two sets of figures are both associated with the Function DD1 and
show the difference that the number of boundary nodes can make to a final

triangulation after movement and reconnection.

The next results are those for the Function DD1 with an average of 9 points

per boundary.

a1

Figure 7.24: Triangulation produced by triangulation front for DD1
.0)

Figure 7.25: Result after nodal movement on Figure 7.24
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Figure 7.26: Result of reconnecting nodes in Figure 7.25

Errors for DD1

Method Lo — error | mean interpolation | max interpolation | Figure
1072 1072

Triangulation front 10.424 3.3043 0.7495 7.24

Nodes moved 7.8217 3.7625 0.4785 7.25

Nodes reconnected 5.4309 1.6040 0.4767 7.26

Geometric measures for DD1

Method Angles Skewness AR (Lo) Figure
min, max mean, max mean, min

Triangulation front | 17.0, 145.6 7.54, 57.1 0.935, 0.346 7.24

Nodes moved 6.58, 143.4 20.5, 55.6 0.764, 0.197 7.25

Nodes reconnected | 0.13, 179.7 44.3, 79.8 0.445, 0.003 7.26

Number of boundary nodes 32

Number of nodes 88

Number of triangles 142

Table 7.6: Errors and measures for DD1
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The next results are those for the Function DD1 with an average of 13 points

per boundary.
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Figure 7.27: Triangulation produced by triangulation front for DD1
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Figure 7.28: Result after nodal movement on Figure 7.27
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Figure 7.29: Result of reconnecting nodes in Figure 7.28

Errors for DD1

Method Lo — error | mean interpolation | max interpolation | Figure
1072 1072

Triangulation front 9.5242 2.6033 0.8515 7.27

Nodes moved 5.0812 2.1580 0.3447 7.28

Nodes reconnected 3.7058 1.1217 0.3239 7.29

Geometric measures for DD1

Method Angles Skewness AR (Lo) Figure
min, max mean, max mean, min

Triangulation front | 2.90, 171.9 6.43, 74.6 0.944, 0.073 7.27

Nodes moved 10.1, 1474 21.2, 58.3 0.756, 0.269 7.28

Nodes reconnected | 0.02, 179.9 45.4, 79.9 0.439, 0.0006 7.29

Number of boundary nodes 48

Number of nodes 175

Number of triangles 300

Table 7.7: Errors and measures for DD1
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The two sets of results show the differences that can occur with different num-
bers of boundary nodes. In both cases the results have the same form but the
degree of misrepresentation varies. The triangulation produced by the triangu-
lation front program poorly represents the data function by either splitting, or
almost splitting, the mountain in half due to the stretched triangles near the
mountain. The movement of the nodes moves the nodes towards the mountain
but in so doing the representation of the ramp degenerates. The triangulation
produced by reconnecting the nodes restores the representation of the ramp and
significantly improves the representation of the mountain. The numerical results
for both the sets are shown in Tables 7.6 and 7.7.

It is necessary to report that this procedure fails for the Function SR3 due to
the combination of the positioning of the boundary nodes and the magnitude and
direction of s. For the other functions, valid triangulations are produced which
represent the underlying functions moderately well but the effect of moving and
reconnecting the nodes is minimal.

Having presented the results produced by the background grid we now show

the grid produced by the triangle cost procedure.

7.7.2 Cost of Triangles

Before the results of using the cost of triangles triangulation front procedure are
presented it is first necessary to actually detail the measure which will be used to
generate the cost of each edge in the triangulation. The measure actually used
was analogous to that used in the spring analogy nodal reconnection procedure.

The cost of a triangle edge was calculated as the length of the edge multiplied by
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the spring constant k; given in (6.12) with a = 10 and 4 = 2. This complements
the nodal movement criterion. The results for this implementation are presented
in the same form as the results for the background grid implementation. The
triangulation front produced triangulation is shown first, followed by the triangu-
lation produced by repositioning the nodes and finally the triangulation produced
by nodal reconnection is shown. The numerical results are then shown in a table
which shows the errors associated with the triangulations and the geometrical
measures associated with the same triangulations.

This is the set of results for the Function P2 generated with 9 nodes per

boundary.
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Figure 7.30: Triangulation produced by triangulation front for P2
Figures 7.30 to 7.32 show the triangulations generated for the Function P2.
Figure 7.30 shows the poor triangulation produced by the triangle cost triangu-
lation front program. The results of Rippa (1991) and D’Azevado and Simpson

prove that the triangulation should be comprised of long, thin triangles. The

triangulation shown here has almost no long, thin triangles in the direction of the

201



an

(0,0)

- n-!-
==-==-=-=
Jesrasazarts 11
Yottt gt

e |

VA s 77777
S e
o

%2724

\\\\\\\\\e\«s\ss\\\\\\\\\\

o,

o g,
e Y s
\\\\\\\MMMMWW»»&\N\\

%y

(0.0)

Figure 7.31: Result after nodal movement on Figure 7.30
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Figure 7.32: Result of reconnecting nodes in Figure 7.31

contours. The result of moving and then reconnecting the nodes is to introduce

long, thin triangles but even this does not significantly improve the errors. This

can be seen by comparing the numerical errors in Table 7.3 with those in Table

7.8. Even though the triangulation produced by the triangle cost program has

twice as many nodes and three times as many triangles as the background grid

produced triangulation it does not manage to attain the same Lj-, or maximum

interpolation, error as the background grid program produced grid.

202



Errors for P2

Method Lo — error | mean interpolation | max interpolation | Figure

Triangulation front 0.3119 0.2288 1.4508 7.30

Nodes moved 0.2572 0.1862 1.1639 7.31

Nodes reconnected 0.1239 0.0897 0.3688 7.32

Geometric measures for P2

Method Angles Skewness AR (Lo) Figure
min, max mean, max mean, min

Triangulation front | 4.59, 164.6 15.0, 69.7 0.858, 0.132 7.30

Nodes moved 12.1, 137.7 17.6, 51.8 0.835, 0.338 7.31

Nodes reconnected | 1.02, 177.4 57.3, 78.2 0.283, 0.024 7.32

Number of boundary nodes 32

Number of nodes 106

Number of triangles 178

Table 7.8: Errors and measures for P2
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Figure 7.33: Triangulation produced by triangulation front for SR1
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Figure 7.34: Result after nodal movement on Figure 7.33
Figures 7.33 to 7.35 show the grids for SR1. They show the regular triangles

the nodal movement and reconnection. Table 7.9 shows the improvement in the
grid has twice as many triangles and nodes as the background grid generated

produced by the triangulation front and the long, thin triangles produced after
errors created by the long, thin triangles. It can be noted that the triangle cost

mesh.
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Figure 7.35: Result of reconnecting nodes in Figure 7.34

Errors for SR1

Method Lo — error | mean interpolation | max interpolation | Figure
1077 1077 1072

Triangulation front 4.8407 2.9298 2.0421 7.33

Nodes moved 5.2418 3.5206 1.7417 7.34

Nodes reconnected 2.1561 0.9181 1.1746 7.35

Geometric measures for SR1

Method Angles Skewness AR (Lo) Figure
min, max mean, max mean, min

Triangulation front | 7.56, 151.9 18.5, 61.2 0.809, 0.214 7.33

Nodes moved 13.1, 135.0 21.5, 50.0 0.783, 0.365 7.34

Nodes reconnected | 0.10, 179.6 63.8, 79.7 0.175, 0.003 7.35

Number of boundary nodes 32

Number of nodes 71

Number of triangles 108

Table 7.9: Errors and measures for SR1
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Figure 7.36: Triangulation produced by triangulation front for M2
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Figure 7.37: Result after nodal movement on Figure 7.36

Figures 7.36 to 7.38 show the results of the three procedures. The numerical

results in Table 7.10 show that the operations of moving and reconnecting the

nodes produced by the triangulation front program improve the errors of the

representations of the underlying function.
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Figure 7.38: Result of reconnecting nodes in Figure 7.37

Errors for M2

Method Lo — error | mean interpolation | max interpolation | Figure
107? 107? 1077

Triangulation front 1.5093 1.2038 5.5684 7.36

Nodes moved 1.4902 1.2381 4.8659 7.37

Nodes reconnected 1.2682 1.0268 4.3529 7.38

Geometric measures for M2

Method Angles Skewness AR (Lo) Figure
min, max mean, max mean, min

Triangulation front | 7.28, 136.7 7.3, 1.2 0.952, 0.427 7.36
Nodes moved 29.4, 99.5 7.9, 26.4 0.959, 0.731 7.37
Nodes reconnected | 1.85, 175.9 28.6, 77.3 0.704, 0.041 7.38
Number of boundary nodes 40
Number of nodes 167

292

Number of triangles

Table 7.10: Errors and measures for M2
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This procedure actually worked for the Function SR3 although it produced
poor results, but did not work for the Functions DD1, SH1 and SH2. The results
for the functions which are not shown are similar to those shown here, e.g. they
include many nearly equilateral triangles.

The conclusion of comparing the two procedures is that the triangle cost
procedure requires more triangles to triangulate the same region with the same
boundary nodes as the background grid procedure.

We now move on to consider how the introduction of geometrical constraints

can be implemented in the data dependent grid generation procedure.

7.8 Geometric Constraints

As has been mentioned before, the purpose of introducing a data dependent
triangulation front program was to apply the grids generated as the initial tri-
angulation of a data dependent grid generation procedure. The main purpose
of the triangulation front was to position nodes where they are required to give
a desirable resolution. This might mean that there should be a large number
of nodes in a small region thus generating small triangles while the stretching
factors might require the introduction of small angles. For these reasons when
geometric constraints are introduced, they are not applied in the triangulation
front program at any point. They are however applied to the latter stages of the
data dependent procedure when the nodes are moved and reconnected. Such con-
straints were applied but in all the cases tested the numerical errors showed that
the solutions were not as good as those produced by the unconstrained procedure.

We have now detailed some of the techniques which can be applied to the prob-
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lem of triangular grid generation. In the next chapter the work is summarised,
recommendations on the strategies implemented are presented and possible areas

of further study are detailed.
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Chapter 8

Summary and Further Work

We now summarise the work of this thesis and the possible areas where the
work may be taken further. In Chapters 2 and 3 we introduced and described
the methods currently used to find geometric and data dependent grids. The
different techniques which are used for the generation of both quadrilateral and
triangular grids were reviewed.

Chapter 4 presented the functions and data sets upon which the methods
detailed in the later chapters would be tested. The measures which would be used
to judge the quality of a triangulation were also detailed. Some of these measures
were calculations of some error in the representation of the underlying function
while others were based on the geometrical properties of the triangulation.

In Chapter 5 we detailed the data dependent techniques which can be used
to implement nodal reconnection in a triangulation. Techniques based on the
interpolating polynomials on neighbouring triangles were presented, as was a
technique based on the the cost of a measure on a line joining two nodes.

Chapter 6 detailed the data dependent methods which can be used to reposi-
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tion the nodes in a triangulation while keeping a fixed connectivity. The extension
of the spring analogy technique to data representation was detailed and results
were presented. A technique based on error estimates was also outlined.

In Chapter 7, a procedure to generate the positions of nodes in a data de-
pendent manner was outlined, based on the triangulation front technique which
generates triangles concurrently with nodes. The result is a data dependent
triangulation, however it was discovered that improved representation could be
achieved using smoothing and reconnection on this grid. The use of such trian-
gulations as the basis for a complete data dependent triangulation procedure was
investigated and results were presented.

By studying the results in Chapters 5-7 it is possible to make recommendations
on the choice of procedures which might improve data representation on trian-
gulations. The results in Chapter 5 indicate that for most functions, for a given
set of nodes, nodal reconnection results in an improvement in the representation
of the underlying data. Thus it is possible to recommend nodal reconnection as
part of a grid generation procedure. Of the methods tested in this thesis the best
overall choice of nodal reconnection criterion was the Angle Between Normals
criterion with the vectors ordered using the 2-norm, ABN-2.

The motivation behind nodal movement is that the data points might be
poorly positioned and that by moving them to areas of interest, i.e. transient
solution features, the data, or solution, will be better represented. By reviewing
the results in Chapter 6 it is possible to see that in most cases the effect of repo-
sitioning nodes while maintaining a fixed connectivity results in improvements in

the function representation. The procedure that is most effective is the spring
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analogy criterion. Although it is possible to modify the parameters in (6.12) if
some prior knowledge of the function is available, the general choice of parameters
is acceptable. Nodal movement can therefore also be recommended as part of a
grid generation procedure.

Since nodal movement will be, to some degree, constrained by the connectivity,
it is generally advisable to perform a reconnection after such movement, as was
illustrated in Chapter 6.

In Chapter 7 the results show that the background grid procedure for generat-
ing the positions of nodes in a data dependent manner produces reasonable nodal
positions for the functions on which the procedure was tested. The procedure is
therefore recommended as one which will produce a data dependent set of nodal
positions with a data dependent nodal connectivity. It is obvious that such a
technique should be used as the original step in a data dependent grid generation
procedure and, with the addition of the techniques recommended in Chapter 6,
a complete strategy can be developed. This strategy, which will result in better
representations for most functions, is to generate the nodes in a data dependent
manner, then to reposition them using a data dependent criterion and finally to
reconnect the nodes using a data dependent technique.

Although this work is carried out in the context of the generation of a grid to
well represent initial data it has applications in the more general area of function
interpolation.

Having presented the recommendations for the grid generation procedure it
is now possible to outline possible avenues for further work. One avenue of re-

search is to make a further investigation of other choices of spring constant and
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background grid variables. Although the suggested choice of parameters in (6.12)
produces reasonable results it was shown in Chapter 6 that if the parameters
are specifically chosen for each function, the results can be improved. A similar
situation exists with regard to the choice of variables for the background grid
triangulation front procedure. The automation of such choices is a possible area
for further work.

Other avenues for research are to study the effect of refining the grid at some
stage during the grid generation procedure, and to search for acceptable criteria
for refining the grids. It would also be of interest to investigate the possible
application of the methods presented here to quadrilateral grid generation and

their extension to 3-dimensional grid generation.
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Appendix A

Sets of Data Points

In this Appendix the sets of data points mentioned in Chapter 4 are presented.
In A.1 the 33 data point set is shown, while in A.2, the 100 data point set is

given.

A.1 33 Data Points

This is the set of 33 data points as presented by Franke (1979).

(x.y) (x.y) (x.y)
(1.0,1.0) (0.0,1.0) (0.0,0.0)
(1.0,0.0) (0.6,0.7) (0.7,0.2)
(0.1,0.3) (0.7,0.7) (0.3,0.8)
(0.6,0.2) (0.8,0.1) (0.9,0.3)
(0.1,0.8) (0.9,0.9) (0.8,0.3)
(0.5,1.0) (0.2,0.2) (1.0,0.5)
(0.6,0.8) (0.8,0.2) (0.5,0.0)
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(0.8,0.7) (0.6, 0.9) (0.0,0.5)

(0.2,0.1) (0.3,0.3) (0.1,0.1)
(0.1,0.5) (0.7,0.9) (0.8,0.8)
(0.9,0.8) (0.8,0.4) (0.7,0.7)

A.2 100 Data Points

This set of 100 data points is a modification of that presented by Franke (1979).
All the points outside the unit square have been moved onto the boundary; the
four points nearest to the vertices of the unit square have been moved to the
vertices and any point within 0.03 of the boundary was moved onto the boundary.

This gives more nodes on the boundary and all the nodes are on, or inside, the

unit square.

(x.y)
(1.00000, 1.00000)
(1.00000, 0.00000)
(0.00000, 0.49436)
(0.13242, 0.05013)
(0.06265, 0.65522)
(0.17147, 0.48017)
(0.36632, 0.03970)
(0.38732, 0.64452)
(0.42000, 0.22625)

(0.58487, 0.00000)

(x.y)
(0.00000, 1.00000)
(0.48557, 0.38914)
(0.03954, 0.69934)
(0.12544, 0.25930)
(0.26456, 0.00000)
(0.19092, 0.68788)
(0.38324, 0.23896)
(0.37954, 0.89381)
(0.47926, 0.63243)

(0.60639, 0.27093)
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(x.y)
(0.00000, 0.00000)
(0.00000, 0.25769)
(0.03158, 0.91077)
(0.07676, 0.41711)
(0.20890, 0.26688)
(0.23046, 0.90465)
(0.34668, 0.49030)
(0.41498, 0.00000)
(0.39778, 0.84897)

(0.57413, 0.42594)



(0.59901, 0.67338)
(0.63965, 0.20083)
(0.67189, 0.93661)
(0.73960, 0.47142)
(0.84246, 0.03805)
(0.91757, 0.63074)
(1.00000, 0.43961)
(0.00000, 0.34140)
(0.00000, 0.74702)
(0.14519, 0.56156)
(0.23916, 0.06623)
(0.18676, 0.81856)
(0.31791, 0.31241)
(0.28035, 1.00000)
(0.40920, 0.50850)
(0.57300, 0.12724)
(0.53806, 0.72352)
(0.67040, 0.32598)
(0.68377, 1.00000)
(0.80866, 0.60916)
(0.86840, 0.09020)
(0.85963, 0.81448)
(0.96763, 0.37953)

(0.94715, 1.00000)

(0.60970, 0.92424)
(0.70012, 0.48907)
(0.77369, 0.00000)
(0.82145, 0.66351)
(0.83669, 0.20831)
(0.92799, 0.90423)
(1.00000, 0.69415)
(0.09587, 0.91465)
(0.10903, 0.09186)
(0.14528, 0.75241)
(0.27673, 0.36960)
(0.24262, 1.00000)
(0.37766, 0.51998)
(0.42777, 0.15610)
(0.48123, 0.75110)
(0.50139, 0.34777)
(0.50262, 1.00000)
(0.63336, 0.50963)
(0.76353, 0.10214)
(0.72906, 0.80228)
(0.94185, 0.33185)
(0.85128, 0.96950)

(0.96570, 0.50444)

223

(0.66169, 0.00000)
(0.69090, 0.66978)
(0.74104, 0.19366)
(0.80766, 0.84768)
(0.84781, 0.43356)
(1.00000, 0.26958)
(0.05399, 0.15867)
(0.00000, 0.57829)
(0.09345, 0.33816)
(0.06956, 0.96324)
(0.22668, 0.59406)
(0.38577, 0.08345)
(0.38129, 0.82038)
(0.46636, 0.31751)
(0.40273, 1.00000)
(0.61069, 0.60847)
(0.64278, 0.07078)
(0.68956, 0.77536)
(0.82590, 0.32358)
(0.81710, 1.00000)
(0.85996, 0.59101)
(0.96706, 0.13341)

(1.00000, 0.74599)
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