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Abstract

In recent years, there has been a rapid growth of interest in spectral prop-
erties of non-self-adjoint operators and operator pencils. This thesis is con-
cerned with indefinite self-adjoint linear pencils which lead to a special class
of non-self-adjoint spectral problems. These problems are not well understood,
and, in general, many sign-indefinite problems which are trivial to state require
some highly non-trivial analysis.

We look at indefinite linear pencil problems from the perspective of a two pa-
rameter eigenvalue problem. We derive localisation results for real eigenval-
ues and present several examples. We also use different approaches to obtain
estimates of non-real eigenvalues, supported by a large number of numerical
experiments. Additionally, these experiments lead to various open questions
and conjectures.
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press my thanks to Sabine Bögli for useful discussions. I am also grateful to
Simon Chandler-Wilde and Lyonell Boulton for useful suggestions.

I gratefully acknowledge the financial support received from the Ministry of
National Education of the Republic of Turkey. Without their financial support
throughout my study, I would not have been able to undertake this research. I
would also like to thank the Department of Mathematics and Statistics for the
funding I have received.

I would like to thank all members of the Department of Mathematics and Statis-
tic at University of Reading. I am extremely grateful to Jani Virtanen and
Titus Hilberdink for their remarkable support through some difficult times. I
am thankful for the emotional support and encouragement, in particular, to
Peta-Ann King, Ruth Harris, Brigitte Calderon, Kris Aldridge, Birzhan Ayan-
bayev, Maha Kaouri, Samuel Groth, Andrew Gibbs, Oliver Sutton, Kasia Ko-
zlowska, György Geher, Nicola Thorn, Jemima Tabeart, James Jackaman,
Emily Roashan, Dan Derrick, Chris Davies, Philip Maybank, Julia Abery. They
have made the past few years much more interesting.

I owe a great deal of thanks to Turgut Anıl Karlıdağ, Ömür Özdemir, Oğuzhan
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Chapter 1

Introduction

Spectral theory is one of the richest fields in mathematics and one can find its various
applications in classical as well as quantum physics, such as in the study of control theory
[35], the physics of musical instruments [24, 33], quantum mechanics [39] and signal
processing [57], see [74] for more details.

The spectral theory of linear self-adjoint operators was first presented by D. Hilbert in
his famous papers (1904-1910). Following this, the abstract concepts of Hilbert spaces
and linear operators were developed by von Neumann whose work was used to build
quantum mechanics, which was created by Jordan, Schrödinger, Dirac, and others. Since
then, self-adjoint operators have been extensively studied in the literature (see [69,75] for
a detailed survey). This was in part due to the needs of quantum mechanics, where
fundamental properties such as momentum, position, and the Hamiltonian are expressed
in this form. Today, many books can be found in this field (e.g. [13,21]).

On the other hand, G. D. Birkhoff initiated the basics on eigenfunction expansions
for non-self-adjoint operators between 1908 and 1913. Although his works were written
during the same period as Hilbert’s papers, the first abstract results in this field appeared
in the literature in 1951, written by M. V. Keldys. There are many authors who made
important contributions to the field, including Kato, Wolf, Gohberg, Krein and Langer. For
more detailed historical information, see [16, 20, 75] and references therein. Non-self-
adjoint operators have a wide range of physical applications, they arise, for instance, in
the study of biological systems [59], in the exploration of resonance phenomena [56],
describing the motion and oscillation of viscous fluids [36], the optical singularities of
crystals [9], the optical model of nuclear scattering [8], and others.

Hermitian systems describe time-dependent systems which conserve the energy, while
non-Hermitian systems do not. Examples of such non-Hermitian systems appear, for ex-
ample, in friction problems and inelastic scattering problems. For recent advances and
open problems in quantum physics related to non-self-adjoint operators, see [6, 7, 30].
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Although the theory of non-self-adjoint operators is still under development, it already has
a variety of applications in different fields, and the theory is far from complete.

This thesis will focus on self-adjoint linear operator pencils which lead to a class of
non-self-adjoint operators. Before going into the details of this relation, the general theory
of operator pencils will be discussed in the next section. Throughout the thesis,H denotes
a finite-dimensional, complex Hilbert space, equipped with inner product 〈·, ·〉 such that
〈au, bv〉 = ab〈u,v〉, u,v ∈ H, a, b ∈ C. We will be working with operators acting on H,
and therefore they are bounded. The identity operator on H will be denoted by I. We
denote by B(H1,H2) the space of all bounded operators from H1 to H2. If H1 = H2 = H,
then we use the short form B(H) = B(H,H). Capital bold letters (e.g. X) represent block
matrices, small bold letters (e.g. u) represent vectors. AT and A∗ represent the transpose
and the adjoint of A, respectively. We denote by diag(λ1, . . . , λm) a diagonal matrix with
entries λ1, . . . , λm.

1.1 Operator pencils

Operator pencils (or polynomial operator pencils) are a family of operators depending on
a parameter, that is, operator polynomials of the form

P = P(λ) = A0 + λA1 + λ2A2 + · · ·+ λkAk,

where λ is a spectral parameter and A0, . . . , Ak are linear operators acting on a finite-
dimensional Hilbert space H. If the operator coefficients are self-adjoint; i.e.

Aj = (Aj)
∗, j = 0, 1, . . . , k,

then such a family is called a self-adjoint operator pencil.
A complex number λ0 is said to be an eigenvalue of the pencil P if P(λ0) is not invert-

ible, or equivalently if

P(λ0)u = 0

has a non-zero solution u ∈ H \ {0}. The set of all eigenvalues of the pencil P is called
the spectrum of P, which will be denoted by Spec(P). Moreover, Spec(P) coincides with
the set

Spec(P) = {λ ∈ C : det(P) = 0}.

If one considers the simplest case P(λ) = A−λI where A is a single operator and I is the
identity operator, then the pencil problem is equivalent to the spectral problem of a single
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operator A. The spectrum Spec(A) of a linear operator A is the set of λ ∈ C such that the
operator A− λI is not invertible, which is the same as that of the pencil P(λ) = A− λI.

For a bounded linear operator T on a Hilbert space H, we define the operator norm of
T as

‖T‖ = sup{|〈Tx,y〉| : x,y ∈ H, ‖x‖ = ‖y‖ = 1}.

The spectral theory of operator pencils has a rich and long history. Pioneering works
were undertaken by Tamarkin, Keldysh, Krein, Langer, Shkalikov and others (see [45]
for a historical survey). In recent years, it has been a very active research area from
both a theoretical and a numerical point view. It has many applications, for instance
to control theory [15], vibrating structures [60, 73], mathematical physics and quantum
mechanics [6,62] and more recently electron waveguide in graphene [22,28,42]. Several
other applications of operator pencils can also be found in [45].

1.2 Indefinite linear pencils

This thesis is devoted to the theory of indefinite linear pencils. We begin by comparing the
systems which have a definite or indefinite operator A. A self-adjoint operator A : H → H
is said to be positive definite if and only if all its eigenvalues are positive, or equivalently

〈Ax,x〉 > 0

for every non-zero vector x ∈ H. The negative definite operators are defined analogously.
A linear operator A is called indefinite if there exist x,y ∈ H for which

〈Ax,x〉 > 0, 〈Ay,y〉 < 0.

One often finds a generalised spectral problem for a pair of self-adjoint operators A, B
acting in a Hilbert space H as: find λ ∈ C such that

Au = λBu. (1.1)

Suppose that B > 0 (i.e. B is positive definite), then there exists
√
B > 0 and, by a change

of variables,
v = B1/2u ⇔ B−1/2v = u,

so that the problem (1.1) becomes

Au = λBu ⇔ AB−1/2v = λB1/2v ⇔ B−1/2AB−1/2v = λv.
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Now, B−1/2AB−1/2 is a product of three self-adjoint operators and it is self-adjoint since
(CDE)∗ = E∗D∗C∗, therefore all its eigenvalues are real.

If A > 0, then by setting µ = 1/λ in (1.1) yields

Bu = µAu,

and then, applying to the same reasoning for
√
A > 0, the spectral problem can be re-

duced to one for a self-adjoint operator A−1/2BA−1/2.
If B < 0 (similarly A < 0), switching the problem to

(−A)u = λ(−Bu),

and since −B > 0 (or −A > 0), the problem can be modified in the same way and it
follows that the spectrum is real.

If both A,B are sign-definite, then the problem (1.1) is called sign-definite as well. If
only one of A,B is sign-definite, then (1.1) is called semi-definite (but still reduces to a
self-adjoint spectral problem). In the general case when A and B are sign-indefinite (or
indefinite), the same tricks cannot be applied, and in this case (1.1) is called indefinite.

If B is invertible, then the problem (1.1) can be reduced to

B−1Au = λu.

However, in general, B−1 and A do not necessarily commute, that is,(
B−1A

)∗
= AB−1 6= B−1A,

thus the operator B−1A may not be self-adjoint. Therefore there may be some complex
eigenvalues in the spectrum.

The problem (1.1) is the spectral problem for the linear pencil

P (λ) = A− λB, (1.2)

where A, B is a pair of self-adjoint operators acting in a Hilbert space H and λ ∈ C. A
pencil of the form (1.2) with both A and B self-adjoint is called a self-adjoint pencil. We
are interested in the case when both A and B are sign-indefinite. We always assume that
B is invertible so that the spectrum of the pencil P(λ) coincides with that of the operator
B−1A.

The difficulty is that standard operator theoretical methods available for the self-adjoint
case, for instance the classical variational principles and the spectral theorem, do not
readily apply and very little information can be deduced about non-real eigenvalues from
the general theory, see, for instance, the next result.
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Lemma 1.2.1. Suppose that u is an eigenvector corresponding to the eigenvalue λ of a
self-adjoint pencil A− λB. If λ ∈ C \ R, then 〈Bu,u〉 = 0 and thus 〈Au,u〉 = 0.

Proof. Multiplying (1.1) with u from both sides, we get

〈Au,u〉 = λ〈Bu,u〉.

We know that 〈Au,u〉 and 〈Bu,u〉 are real and therefore taking the imaginary part of both
sides we obtain

0 = 〈Bu,u〉Im(λ),

which implies that λ ∈ R or 〈Bu,u〉 = 0. The result follows since we consider λ ∈ C\R.

The main objective of this thesis is to study the spectral properties of some sign-
indefinite self-adjoint linear operator pencils. There are not many examples of such pen-
cils in the literature. Similar problems appeared in [19,22,42,46] where it was shown that
many sign-indefinite problems which are trivial to state, require highly non-trivial analy-
sis. One cannot obtain good bounds and estimates on eigenvalues by purely functional
analytic methods.

1.3 Key results and outline of the thesis

Chapter 2 will provide the necessary background from functional analysis. We begin this
chapter with a brief overview of block matrices. The statements given in Section 2.1 are
already known, however we will use them in Chapter 4 to obtain information about the
eigenvalues of a pencil problem.

In Section 2.2 we present a review of the known Gershgorin-type results. Gershgorin’s
method [25] is a well-known method for the localisation of the eigenvalues of a complex
square matrix. His result is usually referred to as the Gershgorin (circle) Theorem, and
states that all the eigenvalues of a matrix with complex entries are contained in a union
of disks. The centre of the disks are the diagonal entries of the matrix, and the radii are
given by the row sum of the absolute values of the non-diagonal entries. Namely, the
result is given as follows.

Theorem 1.3.1 (Gershgorin (circle) Theorem, [25,79]). Let ai,j denote the (i, j)-th element
of the matrix A, that is, A = [ai,j] ∈ Cn×n, n ≥ 2. Then

Spec(A) ⊆ G(A) :=
n⋃
i=1

Gi(A),
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where

Gi(A) := {λ ∈ C : |λ− ai,i| ≤ ri(A)}, (1.3)

and ri(A) denotes the i-th deleted absolute row sum of A, i.e.

ri(A) =
∑
j∈Ji

|ai,j|, Ji = {1, 2, . . . , n} \ {i}. (1.4)

Section 2.2 contains a collection of theorems related to Gershgorin-type results on
the localisation of eigenvalues. We shall apply these results to a particular problem and
illustrate some of them in Section 4.5.3. We will finish this subsection by giving a new
result; a Gershgorin-type localisation for a two-parameter eigenvalue problem (see Corol-
lary 2.2.16).

In Section 2.3, we will briefly present the general theory of orthogonal polynomials. We
will then discuss some properties of Chebyshev polynomials of the second kind, which are
our main interest in this section. We will study the spectral properties of the matrix whose
determinant leads to Chebyshev polynomials of the second kind. Our main focus in the
last part of this section will be on ratio asymptotic results given by Simon [66]. We will
recall some of his results and apply them to a particular problem in Section 4.5.2.

There are also other approaches to sign-indefinte pencils, for instance, Krein spaces,
numerical range (NR) and block numerical range (BNR). We conducted some numerical
investigations on a linear pencil problem. However, they did not produce much informa-
tion, therefore we do not pursue them in this thesis and we omitted the plots and the
investigations we carried out. A comprehensive introduction to Krein spaces is provided
in [5,14,27,34,40] and to NR and BNR in [43,47,61,63,75,76].

In Chapter 3, we focus on a two-parameter eigenvalue problem, and most results
of this chapter have been published in [41]. The main motivation of this chapter comes
from a particular example of a finite-dimensional, sign-indefinite, self-adjoint linear pencil,
studied by Davies and Levitin [19]. We consider the linear pencil problem in a more
general setting, and under reasonable restrictions, we state localisation theorems for the
eigenvalues.

We start the chapter by surveying the work of Davies and Levitin [19], and then intro-
duce and study a two-parameter eigenvalue problem. Namely, letm,n ∈ N andN = m+n,
then Davies and Levitin [19] consider the linear operator pencil

Ac = Ac(λ) := H(N)
c − λSm,n, (1.5)
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where

H(N)
c =



c 1
1 c 1

. . . . . . . . .
. . . . . . . . .

1 c 1
1 c


, Sm,n =



1
. . .

1
−1

. . .
−1


, (1.6)

with omitted entries equal to zero, and c ∈ R is a parameter. The size of both matrices is
N ×N , and the diagonal matrix Sm,n has m plus ones and n minus ones.

The matrix Sm,n is indefinite. If either c ≥ 2 or c ≤ −2, then the matrix H(N)
c is sign-

definite. We will clarify this in Section 3.1, and in fact, we will see that a sharper bound
exists, i.e. |c| ≥ 2 cos(π/(N + 1)). Therefore, the spectrum Spec(Ac) is real when |c| ≥
2. However, interesting things occur in relation to the complex eigenvalues of Ac when
|c| < 2. Davies and Levitin [19] obtained the asymptotics as N → ∞ of the complex
eigenvalues of Ac when c = 0 and asymptotic estimates when c 6= 0. We continue
looking at this example for a fixed N with m = n. There are various ways to treat this
system. Davies and Levitin [19] pursued an asymptotic approach for large size matrices
(i.e. N →∞) and posed some conjectures. We have made some progress towards open
questions from [19] and we will be looking at this system from a different perspective. The
first thing we noted that this linear pencil problem is related to a two-parameter eigenvalue
problem.

Let L, V1 and V2 be self-adjoint linear operators in some Hilbert space H. Then a
two-parameter eigenvalue problem is defined as

M(α, β)x := (L− αV1 − βV2)x = 0, (1.7)

where α, β ∈ C are spectral parameters. A pair (α, β) is called a pair-eigenvalue of
M = M(α, β) if there exists a vector x ∈ H \ {0} such that (1.7) holds. Such a vector
x is called an eigenvector corresponding to the pair-eigenvalue (α, β). We denote by
Specp(M) the set of all pair-eigenvalues of M. If both α, β ∈ R, then we will call (α, β) a
real pair-eigenvalue of (1.7). In this thesis we will focus on the case where H = H1 ⊕H2

for some Hilbert spaces H1 and H2, and where L, V1 and V2 take the particular forms

x =

(
u
v

)
∈ H1 ⊕H2,

and

L =

(
A C
C∗ D

)
, V1 =

(
I 0
0 0

)
, V2 =

(
0 0
0 I

)
. (1.8)
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In here, A and D are self-adjoint operators in the Hilbert spaces H1, H2, respectively, and
C is a linear operator from H2 to H1, then one can re-write the two-parameter eigenvalue
problem (1.7) as

M(α, β)

(
u
v

)
=

(
A− α C
C∗ D − β

)(
u
v

)
= 0, (1.9)

where A− α and D − β are shorthand for A− αI and D − βI, respectively.

Remark 1.3.2. There may be other points (α, β) ∈ C2 where M does not have a bounded
inverse in general. However, we study the eigenvalues of M and Specp stands for point
spectrum.

Now, let us investigate the connection between a two-parameter eigenvalue problem
(1.9) and a linear pencil problem (1.2). Consider the self-adjoint, linear matrix pencil

(L + cI − λS)x = 0, (1.10)

where L is given by (1.8) and

S =

(
I
−I

)
.

Further λ is a spectral parameter and c ∈ R is fixed. Then (1.10) can be re-written as a
generalised eigenvalue problem(

A+ c C
C∗ D + c

)(
u
v

)
= λ

(
I
−I

)(
u
v

)
, (1.11)

which is equivalent to (
A+ c− λ C

C∗ D + c+ λ

)(
u
v

)
= 0. (1.12)

In addition, the problem (1.11) is also equivalent to the non-self-adjoint problem(
A+ c C
−C∗ −D − c

)(
u
v

)
= λ

(
u
v

)
. (1.13)

Then it can be seen from (1.12) that any linear pencil problem of the form (1.10) (or a
non-self-adjoint problem of the form (1.13)) relates to the two-parameter eigenvalue of
the form (1.9) by setting

α = λ− c; β = −λ− c. (1.14)

Indeed, it can be said that Davies and Levitin [19] considered the two-parameter eigen-
value problem (1.9) in the case when S = Sm,n, A = H

(n)
0 , D = H

(m)
0 , (C)n,1 = 1 and all
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other entries of C are zeros. In Section 3.2, the problem (1.9) is attacked in a more gen-
eral setting; we consider the case when A,D are self-adjoint operators and C is rank one,
and we obtain localisation results on the real pair-eigenvalues of the two-parameter eigen-
value problem. The main results (Theorem 3.3.6 and its special case Theorem 3.3.4) will
be given in Section 3.3. For simplicity, we omit the statement of our main results here and
we give an illustrative example instead. For instance, let

A = D =

(
1 0
0 2

)
, C =

(
1 1
1 1

)
,

then the pair-eigenvalues of M lie in a union of rectangular regions in the (α, β)-plane.
In Figure 1.1, we illustrate the region (light-gray shaded area) which contains the real
spectrum of M (blue lines). Boundaries of the region and some special cases will be
explained later in this chapter.

Figure 1.1: In the (α, β)-plane, blue lines are the real pair-eigenvalues of M .

The rest of this chapter is devoted to the study of a two-parameter eigenvalue prob-
lem. Throughout this chapter, we deal with mainly the real pair-eigenvalues of a two-
parameter eigenvalue problem. We focus on the non-real pair-eigenvalues of the problem
only in Section 3.7. First, we start Section 3.2 by describing the general concept of a two-
parameter eigenvalue problem. Then in Section 3.3 after imposing some restrictions and
notation, we state the main results of this chapter concerning the real pair-eigenvalues of
M, namely Theorem 3.3.6 and its special case Theorem 3.3.4. In Section 3.4 we briefly
discuss some auxiliary results for a special class of problems and subsequently we give
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the proofs of the main results in Section 3.5. Afterwards, we give several examples to
illustrate the special cases in Section 3.6.

We conclude the chapter with a discussion of the non-real pair-eigenvalues of a two-
parameter eigenvalue problem. In general, there are infinitely many β ∈ C for every
α ∈ C \ Spec(A). Thus we shall limit our attention to those that satisfy

Im(α + β) = 0.

Therefore, we set

S̃pec(M) := Specp(M) ∩ {(α, β) ∈ C2 : Imα + Imβ = 0}.

First, we locate the collision points of the real eigenvalues (or double eigenvalues) in
terms of the first derivative of β(α) with respect to α and we state the result in Lemma
3.7.3. Another major result of our investigation concerning the non-real pair-eigenvalues
of M is given in Theorem 3.7.4. Using asymptotic analysis, we prove that as ‖C‖ diverges
to infinity there exists a family of non-real pair eigenvalues which approximately lies on a
circle in the complex plane. The centre and the radius of this circle will be explained in
Section 3.7.1, including illustrative examples.

We estimate the real eigenvalues of the pencil Ac by looking at a corresponding two-
parameter eigenvalue problem. We also obtain partial information about the non-real pair-
eigenvalues of the problem which we will study in detail in Section 3.7. In addition, we
obtain some minimal information about the collisions of the real eigenvalues (i.e. double
eigenvalues). Therefore, we need to look at the concrete example again so as to gain
more insight about the open problems from [19].

We note that in our publication [41] we focus on the two-parameter eigenvalue problem
(1.9) in the case when dimH1 = dimH2, whereas in this chapter, we extend our results to
a more general setting. In addition, Lemma 3.5.5, Lemma 3.7.1 and Theorem 3.7.4 are
new, and do not appear in the paper [41].

In Chapter 4 we turn our attention to the linear pencil problem (1.5). We shall only
consider the case when m = n in this chapter. By rephrasing the work of Davies and
Levitin [19], we are able to gain a new perspective. First, we look at the characteristic
equation of the pencil Ac in Section 4.1 which can be written in several ways, one of which
is using iterative functions that turn out to be related to ratios of Chebyshev polynomials
of the second kind Un. In Section 4.1.1, we shall deduce the characteristic equation of the
pencil Ac explicitly and give explicit expressions for the eigenfunctions of the pencil Ac in
terms of the Chebyshev polynomials of the second kind, see Lemma 4.1.3.

11



We will frequently use the following substitution

λ− c := z +
1

z
, λ+ c := w +

1

w
, (1.15)

where λ is an eigenvalue of the pencil Ac and z, w ∈ C. Then each λ corresponds to two
values of z and two values of w, which are the solutions of the quadratic equations

z2 − (λ− c)z + 1 = 0,

w2 − (λ+ c)w + 1 = 0,

respectively. Using (1.15), Davies and Levitin [19] gave another form of the characteristic
equation, and we quote some of their results in Section 4.1.2. In Section 4.1.3, the pencil
problem will be re-written in the basis of the eigenfunctions {ψj} of H(n)

0 .
Numerical experiments suggest that the eigenvalues of a sign-indefinite self-adjoint

pencil often lie on or under a set of curves. Davies and Levitin [19] proved that this is true
in some cases, and determined the curve asymptotically which bounds the spectrum of
Ac when c 6= 0. Nevertheless, the crucial step in the proof was the following conjecture.

Conjecture 1.3.3 ( [19, Conjecture 5.3]). Let c > 0 and m = n. If λ is a non-real eigen-
value of Ac, then

|λ± c| < 2, (1.16)

and therefore

|Re(λ)| < 2− c. (1.17)

Conjecture 1.3.3 is still open. We have verified this conjecture numerically for a wide
range of n and c, and we will give numerical experiments to support this conjecture
throughout this thesis. One of these experiments is illustrated in Figure 1.2, showing
the complicated interplay between max

λ∈Spec(Ac)\R
{|λ+ c|, |λ− c|} and c. We see in the figure

that the maximum value of |λ± c| never exceeds two.
We will look at the pencil problem from different angles and we will see that there

are several ways to reformulate Conjecture 1.3.3. To make these reformulations more
accessible as a whole, we summarize them as follows.

Theorem 1.3.4. Conjecture 1.3.3 is satisfied if and only if any of the following statements
hold:
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Figure 1.2: For n = 10, max{|λ + c|, |λ − c|} (red lines) among all non-real eigenvalues
of Ac is drawn as c ranges from 0 to 2 with the step-size 0.001 and the constant line at 2
(blue dotted lines).

(i) Consider a two-parameter eigenvalue problem M(α, β) defined by (1.9) with A = D =

H
(n)
0 and C = C∗ with (C)nn = 1 and all other entries of C are zeros. Then

S̃pec(M) \ R2 ⊂ {(α, β) : |α|, |β| < 2}.

(ii) Let σ, τ ∈ C, Im(σ) = Im(τ) > 0. If, for some n ∈ N,

Un (σ)Un (τ) + Un−1 (σ)Un−1 (τ) = 0, (1.18)

then |σ| < 1 and |τ | < 1.

(iii) Let F̃n : C→ C, n ≥ 1 denote the sequence of iteratively defined rational functions

F̃n+1(ζ) = ζ − 1

F̃n(ζ)
, F̃1(ζ) = ζ, ζ ∈ C.

Then any solution (σ, τ) ∈ C2 of

F̃n(σ)F̃n(τ) = −1, Im(σ) = Im(τ) > 0,

has both |σ| < 2 and |τ | < 2.

(iv) Let Gn : C→ C, n ≥ 1 denote the family of meromorphic functions

Gn(ξ) :=
ξn+1 − ξ−n−1

ξn − ξ−n
.
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Let z, w ∈ C \ R such that |z|, |w| > 1. Then any solutions z, w of

Gn(z)Gn(w) = −1,

satisfy

z, w ∈ Z1 ∪ Z2 (1.19)

where

Z1 :=
{
ζ ∈ C : |ζ| > 1 and |ζ − i| <

√
2
}
, Z2 :=

{
ζ ∈ C : |ζ| > 1 and |ζ + i| <

√
2
}
.

(v) Let Ac = S−1
n,nH

(N)
c . Then

Spec(Ac) \ R ⊂

(
n⋃
i=1

Gi(Ac)

)⋂(
2n⋃

j=n+1

Gj(Ac)

)
.

We prove most of these reformulations in Section 4.2. Only two of these equivalences
were deduced by Davies Levitin [19], namely Theorem 1.3.4(ii) and (iii). We prove these
reformulations in Section 4.2.1. The rest of the reformulations are new. We give a proof
of Theorem 1.3.4(i) in Section 3.7. We will derive Theorem 1.3.4(iv) in Section 4.2.2 and
verify Theorem 1.3.4(v) in Section 4.2.3.

In Section 4.3 we give a proof of Conjecture 1.3.3 in the case n = 2 and n = 3.
Although we can prove the conjecture explicitly, the proof involves very long computations
for even small matrices. In Section 4.4, we describe the asymptotic behaviour of the
non-real eigenvalues of the pencil Ac as the parameter c tends to zero.

Our purpose in Section 4.5 is to apply useful methods mentioned in Chapter 2 to our
problem. We begin this section with a brief discussion of the pencil problem in a block
operator setting. The main objective is to show the difficulty of the problem.

As mentioned in Theorem 1.3.4(ii), Conjecture 1.3.3 can be reformulated as a result
involving Chebyshev polynomials of the second kind Un. This statement is apparently a
new statement for Chebyshev polynomials. One approach is to treat the system as the
ratios of Chebyshev polynomials of the second kind. It is still an open question to esti-
mate the ratio for orthogonal polynomials of finite index. In Section 4.5.2, first we apply
the ratio asymptotic results given in Section 2.3.4 to the ratio Un(ζ)/Un−1(ζ). Afterwards,
we investigate various properties of this finite ratio and deduce some bounds on this ra-
tio. Although these bounds are not sufficient to prove the conjecture, we believe that
they are still useful. Most of these results in this subsection are joint with Sabine Bögli
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(unpublished). Although the reformulations given in Theorem 1.3.4(ii) and (iii) were al-
ready deduced by Davies and Levitin [19], they haven not studied the ratio of orthogonal
polynomials, and we remark that our investigation is a new approach.

Another form of Conjecture 1.3.3 is given in terms of Gershgorin circles as in Theorem
1.3.4(v). When we apply Gershgorin’s Theorem to our problem, we will see in Section
4.2.3 that all the eigenvalues of Ac lie in the union of all disks, whereas we claim that
the non-real eigenvalues of Ac lie in the intersection of two regions. In Section 4.5.3, we
will apply various Gershgorin-type results mentioned in Section 2.2 to our pencil problem.
We will see that there is no such Gershgorin-type region which contains only the non-
real eigenvalues of a matrix. We tried but failed to obtain such bounds, and therefore
we omitted our calculations. Instead, we will investigate and illustrate some of the known
results, and we will see that a very few of them give a better bound than Gershgorin
Theorem when applied to our problem. We end this chapter by applying the Gershgorin-
type localisation for a two-parameter eigenvalue problem to our problem, and we look at
the Gershgorin’s result under the change of variables (1.15).

Chapter 5 focuses on localisation of the non-real eigenvalues from different perspec-
tives. We mention some heuristics based on numerical experiments. In Section 5.1, we
explain the dynamics of the eigenvalues of the pencil Ac as the parameter c changes.
There is a fascinating dynamics of real eigenvalues colliding to form a pair of complex-
conjugate eigenvalues emerging into the complex plane, and the reverse collisions of
complex eigenvalues. We illustrate these collisions (or jumps) which occur in the first
quadrant of the complex plane in Table 5.1. In Section 5.2, we illustrate some interesting
phenomena for the non-real pair-eigenvalues of a two parametric eigenvalue problem. In
Section 5.3, we investigate double eigenvalues of the pencil Ac. One would see an in-
teresting behaviour if one superimposes the double eigenvalues of Ac for the values of
n, see Figure 5.6. In addition, we count the number of double eigenvalues which lie in
a certain location. Numerical evidence suggests that for c between 0 and 2, there are
altogether 2n2 double λ-roots (conjectured), of which 2n are at the origin and the rest are
non-zero.
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Chapter 2

Background

In this chapter, we discuss some necessary background material from functional analysis.
In Section 2.1, we review some properties of block matrices. Most of the results contained
in this section are probably well-known, however these ideas will be used in Chapter 4.
Section 2.2 contains a review of the well-known Gershgorin-type results, which we will
apply in Section 4.5.3 to our problem and give a detailed discussion of their applications.
In Section 2.3, we provide a brief overview of orthogonal polynomials before turning to a
discussion of Chebyshev polynomials of the second kind. We will introduce some nota-
tion and basic terminology, and discuss some of the spectral properties of a matrix. We
conclude this section with a brief survey of ratio asymptotics of orthogonal polynomials.

2.1 Block matrices

In this section, we shall discuss some properties of block (operator) matrices. Let

H = H1 ⊕H2 (2.1)

be a direct sum of complex Hilbert spaces H1,H2. A linear operator X ∈ B(H) always
admits a block (operator) matrix representation

X =

(
A11 A12

A21 A22

)
, (2.2)

with linear operators Aij ∈ B(Hj,Hi), i, j = 1, 2. Most of the time, we will be interested
in the special case when dimH1 = dimH2, Ajj = A∗jj, j = 1, 2, and either A21 = −A12 or
A21 = −A∗12. In the rest of this section, we set X as a 2 × 2 block matrix with respect to
the decomposition (2.1) and review some of its spectral properties.

We start by considering a 2×2 matrix, and we will then generalise the result for a 2×2

block matrix. The following lemma establishes certain bounds on the eigenvalues of 2× 2

matrices.
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Lemma 2.1.1. Let Y =

(
a b

−b d

)
, where a, d ∈ R, and b ∈ C. If λ ∈ C \R is an eigenvalue

of Y , then

|a− d| < 2|b|,

|Re(λ)− a| ≤ |b|,

|Re(λ)− d| ≤ |b|,

|Im(λ)| ≤ |b|.

Proof. Set β = a+ d and γ = ad+ |b|2, then the elementary formula λ2− βλ+ γ = 0 gives

λ =
a+ d

2
±
√

(a+ d)2

4
− ad− |b|2

=
a+ d

2
±
√

(a− d)2

4
− |b|2.

The assumption λ 6∈ R implies that (a− d)2/4− |b|2 < 0 and hence |a− d|/2 < |b|. It also
implies that Re(λ) = (a+ d)/2. Therefore

|Re(λ)− a| =
∣∣∣∣a+ d

2
− a
∣∣∣∣ =
|a− d|

2
< |b|,

and similarly

|Re(λ)− d| = |a− d|
2

< |b|,

|Im(λ)| =
√
|b|2 − (a− d)2

4
⇒ |Im(λ)| ≤ |b|.

Remark 2.1.2. Lemma 2.1.1 is analogous to Lemma 1.2.7 from [75].

The next result gives some information for the eigenvectors of a certain type of a block
matrix.

Lemma 2.1.3. Let γ ∈ R. If λ ∈ C \ R is an eigenvalue of

Xγ =

(
A11 − γ A12

−A∗12 A22 + γ

)
,

where Ajj = A∗jj, j = 1, 2, then the corresponding eigenvectors (u,v)T satisfy ‖u‖ = ‖v‖.
In addition,

|Im(λ)| ≤ ‖A12‖.
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Proof. Consider the spectral problem(
A11 − γ A12

−A∗12 A22 + γ

)(
u
v

)
= λ

(
u
v

)
.

Let λ = x+ iy where x ∈ R and y ∈ R \ {0}. Then re-writing the problem as{
(A11 − γ)u + A12v = (x+ iy)u,

−A∗12u + (A22 + γ)v = (x+ iy)v,

and multiplying the first equation by u and the second by v gives{
〈A11u,u〉 − γ‖u‖2 + 〈A12v,u〉 = (x+ iy)‖u‖2,

−〈A∗12u,v〉+ 〈A22v,v〉+ γ‖v‖2 = (x+ iy)‖v‖2.
(2.3)

Considering the imaginary parts of (2.3), we get{
−y‖u‖2 + Im〈A12v,u〉 = 0

Im〈A∗12u,v〉+ y‖v‖2 = 0,
(2.4)

and since 〈A12v,u〉 = 〈A∗12u,v〉, summing the two equations in (2.4) gives the first result.
In addition, we have from (2.4) that

|y| = |Im〈A12v,u〉|
‖u‖2

≤ ‖A12v‖‖u‖
‖u‖2

, (2.5)

and since ‖u‖ = ‖v‖, we obtain |y| ≤ ‖A12‖.

Remark 2.1.4. Note that we have the relation

λ ∈ Spec

(
A11 − γ A12

−A∗12 A22 + γ

)
⇔ γ ∈ Spec

(
A11 − λ A12

A∗12 −A22 + λ

)
.

Therefore, it follows that for λ ∈ C \ R, eigenvectors (u,v)T corresponding to the real
eigenvalues of (

A11 − λ A12

A∗12 −A22 + λ

)
satisfy ‖u‖ = ‖v‖.

Remark 2.1.5. Consider Lemma 2.1.3. If, in addition, ‖u‖ = ‖v‖ = 1, then we deduce
from (2.5) that

|Im(λ)| = |Im〈A12v,u〉|.
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Theorem 2.1.6. Consider
X0 =

(
A11 A12

−A∗12 A22

)
,

where A11 = A11
∗ satisfies Spec(A11) ⊆ [a1, a2], and A22 = A22

∗ satisfies Spec(A22) ⊆

[d1, d2]. Let X0f = λf where λ ∈ C \ R and f =

(
u
v

)
such that ‖u‖2 + ‖v‖2 = 2. Then

‖u‖ = ‖v‖ = 1, (2.6)

and

max(a1, d1)− δ ≤ Re(λ) ≤ min(a2, d2) + δ,

where δ = |〈A12v,u〉|.

Proof. Equation (2.6) immediately follows from Lemma 2.1.3. Now, re-writing X0f = λf in
the form

A11u + A12v = λu,

−A∗12u + A22v = λv,

leads to

〈A11u,u〉+ 〈A12v,u〉 = λ, (2.7)

−〈A12
∗u,v〉+ 〈A22v,v〉 = λ. (2.8)

This may be re-written in the form(
a b

−b d

)(
1
1

)
= λ

(
1
1

)
,

where a = 〈A11u,u〉, b = 〈A12v,u〉, δ = |b|, and d = 〈A22v,v〉. The theorem now follows
directly from Lemma 2.1.1 and the inclusion a ∈ [a1, a2] and d ∈ [d1, d2].

Remark 2.1.7. Theorem 2.1.6 is similar to Proposition 1.3.9 from [75] where she esti-
mates

Spec (X0) ∩ R ⊂ [min(a1, d1),max(a2, d2)].

Our result is somewhat stronger if δ = |〈A12v,u〉| is small.
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2.2 Gershgorin circles

One of the most famous methods which can be used for eigenvalue localisation regions
was introduced by the mathematician Semyon Aranovich Gershgorin in 1931 [25]. He
observed that the spectrum of a complex matrix is contained in a union of disks in the
complex plane, which are nowadays called Gershgorin disks. These disks are centred at
the diagonal entries of the matrix and their radii are the row (or column) sum of the mod-
uli of non-diagonal entries; see Theorem 1.3.1 for the formal statement of Gershgorin’s
result. It is an easy tool to obtain bounds on the eigenvalues without assuming any con-
dition on a matrix. It has many applications, for example, in stability theory (see [68]), in
locating the roots of polynomials (see [1,50,54,55]) and controller design (see [32,64]).

In general, eigenvalue inclusion regions are useful in eigenvalue perturbation theory
(see [71, 81]) and in the computation of pseudospectra (see [72]). A good survey of
eigenvalue bounds including their rich and interesting history can be found in [31, Chapter
6], whereas [79] provides more advanced and comprehensive results. In this section, the
well-known results about Gershgorin-type eigenvalue localizations will be reviewed.

2.2.1 Inclusion regions for the eigenvalues of matrices

We begin by recalling some notation. The (i, j)-th element of the matrix A is denoted by
ai,j, i.e. A = [ai,j] ∈ Cn×n. ri(A) denotes the i-th deleted absolute row sum of A, i.e.

ri(A) :=
∑
j∈Ji

|ai,j|,

where Ji = {1, 2, . . . , n} \ {i}. We now give a proof of Gershgorin Theorem (Theorem
1.3.1).

Proof of Theorem 1.3.1. Let λ be an eigenvalue of A and x be a corresponding eigen-
vector. Suppose the i-th component of x has the largest modulus; i.e. |xi| = maxj |xj|.
Looking at the i-th coordinate of the equation Ax = λx, it can be seen that

n∑
j=1

ai,jxj = λxi ⇔ ai,ixi +
∑
j∈Ji

ai,jxj = λxi ⇔
∑
j∈Ji

ai,jxj = (λ− ai,i)xi.

Taking the modulus on the both sides of the last equation and applying the triangle in-
equality and then the maximal property of |xi| yields

|λ− ai,i||xi| =

∣∣∣∣∣∑
j∈Ji

ai,jxj

∣∣∣∣∣ ≤∑
j∈Ji

|ai,j||xj| ≤ |xi|
∑
j∈Ji

|ai,j| = |xi|ri(A).
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Since |xi| > 0, dividing both sides of the inequality by |xi| gives |λ−ai,i| ≤ ri(A), i.e. λ lies
in a disk with centre ai,i and radius ri(A). Since it is not clear which i each eigenvalue cor-
responds to, one needs to take the union of all such disks in order to obtain a guaranteed
region.

The set Gi(A) is called the i-th Gershgorin disk of A, which is a closed disk in the
complex plane C, centred at ai,i with a radius of ri(A). Then G(A) is the union of the n

Gershgorin disk, and it is called the Gershgorin set which is closed and bounded in C.

Remark 2.2.1. Since the spectra of A and its transpose AT are identical, an analogous
statement is obtained by considering the matrix AT , with deleted column sums replacing
deleted row sums. This will also be true for all the other results in this section unless
stated otherwise.

The next well-known result is given by Brauer (1947).

Theorem 2.2.2 ( [79, Theorem 2.2]). Let A = [ai,j] ∈ Cn×n, n ≥ 2. Then

Spec(A) ⊆ K(A) :=
n⋃

i,j=1
i 6=j

Ki,j(A),

where

Ki,j(A) := {ζ ∈ C : |ζ − ai,i||ζ − aj,j| ≤ ri(A)rj(A)}. (2.9)

Cassini ovals are a family of quartic curves defined as the set of points such that the
product of the distances to two fixed points is constant, and the fixed points are called the
foci of the Cassini oval. Ki,j(A) is called the (i, j)-th Brauer Cassini oval for the matrix A,
whereas K(A) is called the Brauer set.

Remark 2.2.3. Note that Gi(A) is sometimes also called the i-th Gershgorin circle of A.
Both (i, j)-th Brauer Cassini oval Ki,j(A) and i-th Gershgorin circle Gi(A) were named
with the shape of their boundaries, however both Ki,j(A) and Gi(A) are regions bounded
by a Cassini oval and a circle respectively.

Remark 2.2.4. For an n × n matrix, there are n(n − 1)/2 ovals of Brauer Cassini, while
there are n Gershgorin disks.

The next result is due to Fan and Hoffman (1954).
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Theorem 2.2.5 ( [79, Theorem 1.20]). For any matrix A = [ai,j] ∈ Cn×n, if α is any positive
number satisfying 1

n∑
i=1

ri(A)

max
j∈Ji
|ai,j|

≤ α(1 + α),

then

Spec(A) ⊆
n⋃
i=1

{ζ ∈ C : |ζ − ai,i| ≤ ρi},

where

ρi = αmax
j∈Ji
|ai,j|. (2.10)

Melman found new eigenvalue inclusion sets for matrices without assuming any struc-
ture in [50, 52, 55], for structured matrices in [49], and for Toeplitz type matrices in [53],
however we shall mention only two of them. Before stating the results, we introduce addi-
tional notation. Let Ji,j = {1, . . . , n} \ {i, j}, then define

r̃i,j :=
n∑

k∈Ji,j

|ai,k| = ri − |ai,j| =
n∑
k=1

|ai,k| − |ai,i| − |ai,j| (for i 6= j). (2.11)

Theorem 2.2.6 ( [50, Theorem 2.1]). Let A = [ai,j] ∈ Cn×n. Then

Spec(A) ⊆ Ω(A) :=
n⋃
i=1

⋂
j∈J̃i

Ωi,j(A)

 ,

where J̃i is any non-empty subset of Ji and

Ωi,j(A) := {ζ ∈ C : |(ζ − ai,i)(ζ − aj,j)− ai,jaj,i| ≤ |ζ − aj,j|r̃i,j(A) + |ai,j|r̃j,i(A)}. (2.12)

In addition,
Ωi,j(A) ⊆ Gi(A) ∪ Gj(A) for all i 6= j.

Recall that the matrix is centrohermitian if it is symmetric with respect to its cen-
tre, i.e. its elements satisfy ai,j = an−i+1,n−j+1, and it is skew-centrohermitian if ai,j =

−an−i+1,n−j+1, where ai,j is the complex conjugate of ai,j.

Theorem 2.2.7 ( [49, Theorem 2.6]). Let A = [ai,j] ∈ Cn×n such that n is even and A is
skew-centrohermitian. Then

Spec(A) ⊆
n⋃
i=1

Vi(A),

where Vi(A) is defined to be the set

{ζ ∈ C :
∣∣(ζ − ai,i)(ζ − ai,i)− |ai,n−i+1|2

∣∣ ≤ (|ζ + ai,i|+ |ai,n−i+1|) r̃i,n−i+1(A)}. (2.13)
1If maxj∈Ji

|ai,j | = 0 = ri(A) for some i, then ri(A)/max
j∈Ji

|ai,j | is defined to be zero.
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2.2.2 Exclusion regions for the eigenvalues of matrices

There are some proper subsets of the Gershgorin set which do not contain any eigenvalue
of the matrix. These sets give substantial improvements to determine the location of the
eigenvalues of a matrix (cf. [44,51]). Melman [51] gave the following Gersghorin-type set.

Theorem 2.2.8. Let A = [ai,j] ∈ Cn×n. Then

Spec(A) ⊆ Ω̃(A) =
n⋃
i=1

Ω̃i(A),

where

Ω̃i(A) := Gi(A) \ Li(A), Li(A) :=
⋃
j∈Ji

Li,j(A), (2.14)

and

Li,j(A) := {ζ ∈ C : |ζ − aj,j| < 2|aj,i| − rj(A)}. (2.15)

Furthermore, Ω̃(A) ⊆ G(A).

Remark 2.2.9. In [51], there was a typographical error in the definition of Li,j(A), “≥“
instead of “<“. What we state here is the corrected version by Li et al. [44].

According to Melman, this result was based on a previous result obtained by Parodi
and Schneider. We refer to [79, p.73-79] for detailed discussion of the Parodi and Schnei-
der results. The next result is given by Li et al. [44] in which they gave two new Brauer-type
sets. We mention only one of them.

Theorem 2.2.10 ( [44, Theorem 4]). Let A = [ai,j] ∈ Cn×n. Then

Spec(A) ⊆ Φ̃(A) =
n⋃

i,j=1
i6=j

Φ̃i,j(A),

where

Φ̃i,j(A) = Ki,j(A) \ L̃i(A), L̃i(A) =
⋃
s∈Ji

L̃s,i(A), (2.16)

and

L̃s,i(A) = {ζ ∈ C : |ζ − as,s|(|ζ − ai,i|+ r̃i,s(A)) < (|as,i| − r̃s,i(A))|ai,s|}. (2.17)

Furthermore, Φ̃(A) ⊆ B(A).

Remark 2.2.11. It was pointed out in [44] that there are 3n(n − 1)/2 Cassini ovals in the
set Φ̃(A), whereas n(n− 1)/2 ones in the set K(A). Although Φ̃(A) usually gives a better
bound than the Brauer set K(A), it takes more time to compute.

23



2.2.3 Inclusion regions for the eigenvalues of a linear pencil

The first Gerhgorin-type inclusion region for a generalised eigenvalue problem Ax = λDx

appeared in the paper by Stewart and Sun [70,71]. Let A = [ai,j] ∈ Cn×n and D = [di,j] ∈
Cn×n.

Theorem 2.2.12. [71, Theorem 2.4] Let (A,D) be a regular matrix pair, i.e. det(A− λD)

does not vanish identically. Let

Si(A,D) = {ζ ∈ C : |ai,i − ζdi,i| ≤
∑
j∈Ji

|ai,j − ζdi,j|}, i = 1, . . . , n. (2.18)

Then

Spec(A− λD) ⊂
n⋃
i=1

Si(A,D).

Note that ζ appears on both sides of the inequality in the sets Si so that it may be
difficult to compute Si in some cases. Therefore, Stewart and Sun [71] gave an alternative
bound as follows.

Theorem 2.2.13. [71, Corollary 2.5] Let X denote the chordal metric defined by

X (x, y) =
|x− y|√

1 + |x|2
√

1 + |y|2
. (2.19)

Let

S̃i(A,D) ≡ {ζ ∈ C : X (ζ, aii/dii) ≤ %i}, (2.20)

where

%i =

√√√√(∑j∈Ji |ai,j|
)2

+
(∑

j∈Ji |di,j|
)2

|ai,i|2 + |di,i|2
. (2.21)

Then
Si ⊂ S̃i, i = 1, . . . , n,

so that

Spec(A− λD) ⊂
n⋃
i=1

S̃i(A,D).
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2.2.4 Minimal Gershgorin sets

In this section, we review the minimal Gershgorin set which was introduced by Varga
in [78]. Its theoretical properties were studied in more detail in [79] and the algorithms for
computing the set were developed in [38,80].

Let x = (x1, . . . , xn)T ∈ Rn be any vector with positive components (which we write as
x > 0), and set

X := diag(x1, . . . , xn),

so that X is non-singular. It is clear that if A = [ai,j] ∈ Cn×n then

X−1AX =

[
ai,j

xj
xi

]
.

Since Spec(A) ≡ Spec(X−1AX), applying the Gershgorin’s result (i.e. Theorem 1.3.1) to
X−1AX gives that i-th Gershgorin disk for X−1AX is given by

Grxi (A) := {ζ ∈ C : |ζ − ai,i| ≤ rx,i(A)} , (2.22)

where rx,i(A) is the i-th deleted absolute row sum of X−1AX, i.e.

rx,i(A) := ri(X
−1AX) =

1

xi

∑
j∈Ji

|ai,j|xj. (2.23)

Then the associated Gershgorin set is given by

Grx(A) :=
n⋃
i=1

Grxi (A),

and therefore
Spec(A) ⊆ Grx(A).

Since this inclusion holds for any x > 0 in Rn, by intersecting over all x > 0 in Rn, we
obtain

Spec(A) ⊆ GR(A) :=
⋂
x>0

Grx(A). (2.24)

The set GR(A) is called the minimal Gershgorin set for A, relative to the collection of all
row sums rx,i(A), where x > 0 in Rn.

In other words, for any nonsingular matrix X, the spectrum of A and X−1AX are the
same whereas their Gershgorin sets are not, and one may obtain better estimates by
considering the minimal Gershgorin set of a matrix. Indeed, the minimal Gershgorin set
gives the sharpest localisation of the spectrum of a matrix among all Gershgorin-type sets
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(cf. [37]). Nevertheless, calculating this set for a given matrix is not easy. Therefore, Varga
et al. [80] and Kostic et al. [38] proposed numerical algorithms for finding an approximation
set, however the applicability of these algorithms are limited to the small or medium size
matrices.

2.2.5 Gershgorin sets for block matrices

Gershgorin’s theorem was extended to a more general setting of partioned matrices by
Feingold and Varga [23,79] and to finite matrices of bounded operators on Banach spaces
by Salas [65]. The results in this section have more general forms which are applicable to
bounded and/or infinite dimensional operators but we will be working on the block matrix
X given in (2.2).

It is well-known (see [26, p. 84]) that the norm of the resolvent of a normal operator
can be calculated in terms of the distance to the spectrum, i.e. if A is a normal operator,
then (

‖(ζI − A)−1‖
)−1

= dist(ζ, Spec(A)) = inf
λ∈Spec(A)

|ζ − λ|, (2.25)

where ζ ∈ C \ Spec(A).
The next result is the Gershgorin theorem for the block matrix X, which is given by

Tretter [75].

Theorem 2.2.14. [75, Theorem 1.13.1 and Remark 1.13.4] Let A11 = A∗11, A22 = A∗22 and
suppose that A21 = −A∗12. Then

(i) It follows that

Spec(X) ⊂ {ζ ∈ C : dist(ζ, Spec(A11) ∪ Spec(A22)) ≤ ‖A12‖} .

(ii) In addition, let

min(Spec(A11)) = a−, max(Spec(A11)) = a+,

min(Spec(A22)) = d−, max(Spec(A22)) = d+.

Then
Re(Spec(X)) ⊂ [min{a−, d−},max{a+, d+}].

There are similar generalisations of the Gershgorin-type results in the block matrix
case, see [23, 79]. We mention only Brauer’s result on Cassini ovals which was given by
Freingold and Varga [23] as the following.
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Theorem 2.2.15. [23, Theorem 6] Let A11 = A∗11, A22 = A∗22 and suppose that either
A21 = A∗12 or A21 = −A∗12. Then

Spec(X) ⊂
{
λ ∈ C :

(
inf

ζ∈Spec(A11)
|λ− ζ|

) (
inf

ζ∈Spec(A22)
|λ− ζ|

)
≤ ‖A12‖2

}
. (2.26)

2.2.6 A Gershgorin-type result for the spectrum of a two-parameter
eigenvalue problem

In Section 3.2, the general concept of the two-parameter eigenvalue problem will be in-
vestigated in more details. In here, we briefly introduce the problem and then we give the
Gershgorin-type localisation for the problem. A two-parameter eigenvalue problem is

M(α, β)

(
u
v

)
=

(
A− α C
C∗ D − β

)(
u
v

)
= 0, (2.27)

where A, D are self-adjoint operators in the Hilbert spaces H1, H2, respectively, and C is
a linear operator from H2 to H1. We say that (α, β) is a pair-eigenvalue of M if there exist
a non-zero element (u,v)T ∈ H1 ⊕ H2 satisfying (2.27). The set of all pair-eigenvalues
of M will be denoted by Specp(M). The following result is the Gershgorin-type set for the
two-parameter eigenvalue problem obtained by applying to Theorem 2.2.15.

Corollary 2.2.16. For the set of pair-eigenvalues of M defined by (2.27) we have

Specp(M) ⊂M (A,D) ,

where

M (A,D) :=
{

(α, β) ∈ C2 : dist(α, Spec(A)) dist(β, Spec(D)) ≤ ‖C‖2
}
.

Proof of Corollary 2.2.16. Recall the relation between the two-parameter eigenvalue prob-
lem (2.27) and the non-self-adjoint problem (1.13). Applying Theorem 2.2.15 to the non-
self-adjoint problem (1.13), the set on the RHS of (2.26) becomes{

λ ∈ C : dist(λ, Spec(A+ c)) dist(λ, Spec(−D − c)) ≤ ‖C‖2
}
.

Re-arranging the distance function with account of (1.14) gives

dist(λ, Spec(A+ c)) = dist(λ− c, Spec(A)) = dist(α, Spec(A)),

and similarly

dist(λ, Spec(−D − c)) = dist(−λ− c, Spec(D)) = dist(β, Spec(D)).

Hence the statement of the corollary follows.
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2.3 Orthogonal polynomials

Let η be a positive Borel measure with support I defined on R for which all the moments

ηk =

∫
I
xkdη(x), k = 0, 1, 2, . . . ,

are finite. Let Pn(x) be a polynomial of degree n. Then a sequence of polynomials
{Pn(x)}∞n=0 is orthogonal with respect to η on I if

〈Pn, Pm〉η =

∫
I
Pn(x)Pm(x)dη(x) = hnδmn, m, n = 0, 1, 2, . . . ,

where δmn is the Kronecker delta and hn is the square of the weighted L2-norm of Pn given
by

hn := 〈Pn, Pn〉η = ‖Pn‖2
η =

∫
I

(Pn)2 dη(x) > 0.

Let ω(x) denote a weight function which is continuous and positive on (a, b). Assume
the measure η is absolutely continuous with respect to Lebesgue measure and dη(x) =

ω(x)dx on some interval (a, b), then {Pn(x)}∞n=0 is called orthogonal on (a, b) with respect
to the positive weight function ω(x) if

〈Pn, Pm〉ω =

∫ b

a

Pn(x)Pm(x)ω(x)dx = hnδmn, m, n = 0, 1, 2, . . . .

If hn = 1 for each n = 0, 1, 2, . . . , then the sequence of polynomials is called orthonormal.
If Pn(x) − xn has a degree of at most n − 1, then the sequence of polynomials is said to
be monic.

Orthogonal polynomials satisfy the three-term recurrence relations that show their re-
lations with continued fractions.

Theorem 2.3.1. [77, Theorem 2.1] Orthogonal polynomials Pn(x) = γnx
n + knx

n−1 + . . .

on the real line satisfy a three-term recurrence relation

xPn(x) = an+1Pn+1(x) + bnPn(x) + anPn−1(x), (2.28)

with initial conditions P−1 = 0 and P0 = 1. The recurrence coefficients are given by

an =

∫
xPn−1(x)P (x)dη(x) =

γn−1

γn
> 0,

bn =

∫
xP 2

n(x)dη(x) =
kn
γn
− kn+1

γn+1

.
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See [77] for proof of Theorem 2.3.1.
The orthogonal polynomials are closely related to the Jacobi matrices (or Jacobi oper-

ators). These matrices are real, symmetric, tridiagonal matrices with positive off-diagonal
entries, and given by

Jn =


b1 a1

a1 b2 a2

a2 b3
. . .

. . . . . . an−1

an−1 bn

 , aj > 0, bj ∈ R. (2.29)

The Jacobi matrix Jn has n real distinct eigenvalues and the monic polynomial Pn(x)/γn

is the characteristic polynomial of Jn. In other words, zeros of Pn are the eigenvalues of
Jn.

2.3.1 Properties of the Chebyshev polynomials of the second kind

Chebyshev polynomials are special cases of the Jacobi polynomials, which are a class of
classical orthogonal polynomials. We shall focus our attention only on Chebyshev poly-
nomials of the second kind, denoted by Un(x). The sequence of polynomials {Un(x)}∞n=0

was first studied by the mathematician P. L. Chebyshev (1821-1894). Formally, they are
defined by

Un(x) =
sin[(n+ 1)θ]

sin θ
, when x = cos θ. (2.30)

If x ∈ [−1, 1], then one can take the range of the corresponding variable θ as [0, θ].
Recall the trigonometric identity

sin[(n+ 1)θ] + sin[(n− 1)θ] = 2 cos θ sin(nθ). (2.31)

If we combine the definition (2.30) with (2.31), then it follows that Un(x) satisfies the re-
currence relation:

U0(x) = 1,

U1(x) = 2x, (2.32)

Uj+1(x) = 2xUj(x)− Uj−1(x), j ≥ 2.

It can be seen from (2.30) that the θ-zeros in [0, π] of sin[(n+ 1)θ] must correspond to the
x-zeros in [−1, 1] of Un(x), i.e.

(n+ 1)θ = jπ, j = 1, 2, . . . , n.
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Therefore the zeros of Un(x) are

xj = cos

(
jπ

n+ 1

)
, j = 1, 2, . . . , n. (2.33)

Remark 2.3.2. Using the recursion formula (2.32), one can show by induction that Un(x)

is a polynomial of degree n in x with the leading coefficient equal to 2n.

Denote the monic orthogonal polynomial

Fn(x) = Un(x/2), (2.34)

then the functions Fj(x) satisfy the recurrence relations:

F0(x) = 1,

F1(x) = x,

Fj(x) = xFj−1(x)− Fj−2(x) for j ≥ 2.

(2.35)

In addition, using the Jacobi matrix (2.29), it can be seen that the functions Fj(x) obey
the determinant identity

Fn(x) = Un(x/2) = det
(
H(n)
x

)
,

where H(n)
x is the n× n tridiagonal matrix

H(n)
x :=



x 1
1 x 1

. . . . . . . . .
. . . . . . . . .

1 x 1
1 x


. (2.36)

Therefore, the eigenvalues of H(n)
0 correspond to two times the zeros of Un(x), that is,

µ
(n)
j = 2 cos

(
πj

n+ 1

)
, j = 1, 2, . . . , n. (2.37)

We enumerate the eigenvalues µ(n)
j in decreasing order.

In the next result, it will be shown that the Chebyshev polynomials of the second kind
{Un(x)}∞n=0 form an orthogonal polynomial system on [−1, 1] with respect to the weight
function ω(x) = (1− x2)1/2.

Lemma 2.3.3. {Un(x)}∞n=0 are orthogonal on [−1, 1], i.e.

〈Ui, Uj〉w =

{
π
2

if i = j,

0 if i 6= j,

with respect to the weight function w(x) = (1− x2)1/2.
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Proof. If i 6= j, then using

x = cos θ, dx = − sin θdθ, (2.38)

we have

〈Ui, Uj〉w =

∫ 1

−1

Ui(x)Uj(x)(1− x2)1/2dx,

=

∫ 0

π

sin[(i+ 1)θ]

sin θ

sin[(j + 1)θ]

sin θ
(1− cos2 θ)1/2(− sin θ)dθ,

=
1

2

∫ π

0

(cos[(i− j)θ]− cos[(i+ j + 2)θ])dθ,

=
1

2

[
sin[(i− j)θ]

(i− j)
− sin[(i+ j + 2)θ]

(i+ j + 2)

]π
0

= 0.

If j = i, then again by (2.38), we find the normalization which corresponds to Uj(x) as
follows:

〈Ui, Ui〉w =

∫ 0

π

sin2[(i+ 1)θ]

sin2 θ
sin θ(− sin θ)dθ,

=
1

2

∫ π

0

(1− cos[2(i+ 1)θ])dθ,

=
1

2

[
θ − sin[2(i+ 1)θ]

[2(i+ 1)]

]π
0

,

=
π

2
.

Corollary 2.3.4. Similarly, by the change of variables, we can derive the orthonormal
system {√

1

π
Fn(x)

}∞
n=0

,

on [−2, 2] with respect to the weight function w(x) = (1− (x/2)2)
1/2.

It is well-known that if a polynomial has a repeated (double) root, then its derivative
has the same root. Therefore, the next result will be useful later for finding the double
roots of Un(x).

Lemma 2.3.5. For n > 0 and |x| 6= 1,
d

dz
Un(x) =

(n+ 2)Un−1(x)− nUn+1(x)

2(1− x2)
. (2.39)

We omit the proof of Lemma 2.3.5 as it is based on the chain rule and the trigonometric
product identity sin a cos b = 1

2
(sin(a+b)+sin(a−b)). In addition, this lemma is an exercise

in Chapter 2.5, problem 15, [48]. See [48] for further properties of Chebyshev polynomials
of the second kind.
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2.3.2 Extension of Chebyshev polynomials

Using (2.32), the expressions of Un(x) can be evaluated for any real x, however the trans-
formation x = cosθ is not possible outside the interval [−1, 1]. If |x| > 1, then we may take
the alternative transformation x = cosh Θ with Θ in the range [0,∞). One can verify that
the same polynomials as sums of powers of x are generated by

Un(x) =
sinh(n+ 1)Θ

sinh Θ
.

We extend the Chebyshev polynomials Un(x) into a polynomial Un(ξ) of a complex
variable ξ by introducing a related complex variable ω such that

ξ =
ω + ω−1

2
. (2.40)

Let |ω| = r and suppose that ω moves on a circle of radius r centred at the origin. In the
case r > 1, we have

ω = reiθ = r cos θ + ir sin θ,

ω−1 = r−1e−iθ = r−1 cos θ − ir−1 sin θ,

and so, from (2.40),

ξ = a cos θ + ib sin θ. (2.41)

where

a =
1

2

(
r + r−1

)
, b =

1

2

(
r − r−1

)
.

Hence the map (2.40) transforms a circle into an ellipse centred at the origin, with major
semi-axes a, minor semi-axes b, and with foci at ξ = ±1.

If r = 1, i.e. ω moves on the unit circle, then we obtain b = 0 and ellipse collapses into
the real interval [−1, 1]. However, ξ moves the interval twice as ω travels around the unit
circle.

Now, unless z lies on the interval [−1, 1], the equation ω + ω−1 = 2ξ has two solutions
for ω

ω = ω1,2 = ξ ±
√
ξ2 − 1.

However, they are inverses of each other. This means that ω 7→ ξ is a two-to-one mapping,
with branch points at ξ = ±1. We need to cut the plane along the interval [−1, 1] so as
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to define the complex square root
√
ξ2 − 1 in a way that it lies in the same quadrant as ξ.

Therefore, we choose

ω = ω1 = ξ +
√
ξ2 − 1, (2.42)

so that |ω| = |ω1| ≥ 1 and |ω2| = |ω−1
1 | < 1. Then ω depends continuously on ξ along any

path that does not intersect the interval [−1, 1].
To extend the Chebyshev polynomials of the second kind, we define ξ by (2.40) and

assume |ω| = r = 1. We then obtain by (2.41) that

ξ = cos θ

and so, using (2.42),

ω = ξ +
√
ξ2 − 1 = eiθ,

where we fixed a branch of a square root so that
√
−1 = i. Hence Un(ξ) is now a Cheby-

shev polynomials in a real variable. Then the definition (2.30) gives

Un−1(ξ) =
sin(nθ)

sin θ
=

1
2
(einθ − e−inθ)
1
2
(eiθ − e−iθ)

,

which leads us to the general definition, for all ξ ∈ C,

Un−1(ξ) =
ωn − ω−n

ω − ω−1
(2.43)

where

ξ =
1

2

(
ω + ω−1

)
.

Hence, Un(ξ) is the analytic continuation of Un(x) to the complex plane since we extended
the values of Un(x) across a branch cut in the complex plane.

2.3.3 Spectral properties of H(n)
0

In this section, we want to construct the basis of eigenfunctions of H(n)
0 explicitly. Let

µ
(n)
j be the eigenvalues of the matrix H0, defined by (2.37), and ψj be corresponding

eigenvectors, i.e.
H

(n)
0 ψj = µ

(n)
j ψj, j = 1, 2, . . . , n. (2.44)
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Lemma 2.3.6. For an arbitrary n ∈ N, an eigenfunction corresponding to the eigenvalue
µ

(n)
j of H(n)

0 is

ψj =


ψj,1
ψj,2

...
ψj,n

 with ψj,k =

√
2

n+ 1
sin

(
πjk

n+ 1

)
, k = 1, . . . , n. (2.45)

Proof. Recall the the Chebyshev method for finding the nth multiple angle formula for the
sine function

sin(n+ 1)x+ sin(n− 1)x = 2 cos x sin(nx). (2.46)

The equation (2.44) is written in components as

ψj,2 = µjψj,1,

ψj,k−1 + ψj,k+1 = µjψj,k, k = 2, 3, . . . , n− 1,

ψj,n−1 = µjψj,n.

Substituting (2.45) and (2.37) into above, it can be seen that all n equations hold by
(2.46).

Note that all eigenvalues of H0 are simple. If j 6= k, then

〈H0ψj,ψk〉 = µj〈ψj,ψk〉

〈ψj, H0ψk〉 = µk〈ψj,ψk〉

}
⇒ (µj − µk) 〈ψj,ψk〉 = 0,

which implies that the eigenvector basis {ψj}nj=1 is orthogonal. Since the matrix H(n)
0 is

Hermitian, the sequence of eigenfunctions {ψj} of H(n)
0 forms an orthonormal basis by

the spectral theorem. Therefore, for a given dimension n, the norm of ψj is given by

‖ψj‖2 =
2

n+ 1

n∑
k=1

sin2 πjk

n+ 1
= 1, j = 1, . . . , n. (2.47)

Remark 2.3.7. One can show (2.47) by using the Dirichlet kernel

1 + 2
n∑
k=1

cos(kx) =
sin
[
(n+ 1

2
)x
]

sin
(
x
2

) , (2.48)

and the trigonometric identity

sin2
(x

2

)
=

1− cosx

2
. (2.49)
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2.3.4 Ratios of Chebyshev polynomials of the second kind

In this section, we state the ratio asymptotics given by B. Simon [66] when applied to the
Chebyshev polynomials of the second kind. We will then use these results in a linear
pencil problem in Section 4.2.1. Recall that Fn is a monic orthogonal polynomial and the
ratio asymptotics we will state is based on the ratio

Fn+1(ζ)

Fn(ζ)
=
Un+1(ζ/2)

Un(ζ/2)
. (2.50)

In addition, recall that the zeros of Fn(ζ) are the eigenvalues of H(n)
0 given by (2.37), and

H
(n)
0 is the Jacobi matrix. Simon obtained the following results.

Theorem 2.3.8 ( [66, Theorem 2.1]). For all ζ ∈ C \ [−2, 2]

lim
n→∞

Fn+1(ζ)

Fn(ζ)
=
ζ +

√
ζ2 − 4

2
, (2.51)

where the branch of the square root is taken with
√
· · · = ζ +O(1/ζ) near ζ =∞.

Theorem 2.3.9 ( [66, Theorem 2.2]). Suppose that for one ζ0 with Im(ζ0) 6= 0,

lim
n→∞

Fn+1(ζ)

Fn(ζ)

exists and is finite. Then the only function that can occur as ratio asymptotics is the one
in (2.51).

Proposition 2.3.10 ( [66, Proposition 2.3]).

(i)

Fn−1(ζ)

Fn(ζ)
=

n∑
j=1

a
(n)
j

ζ − µ(n)
j

, (2.52)

where α(n)
j > 0 and

n∑
j=1

a
(n)
j = 1. (2.53)

(ii) If Imζ > 0, then

0 < −Im

(
Fn−1(ζ)

Fn(ζ)

)
≤ 1

Imζ
(2.54)

and ∣∣∣∣Fn−1(ζ)

Fn(ζ)

∣∣∣∣ ≤ 1

Imζ
.
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(iii) If Imζ > 0, then

Im(ζ) ≤ Im

(
Fn(ζ)

Fn−1(ζ)

)
.

Proof. (i) Since Fn is monic, the ratio can be written as

Fn−1(ζ)

Fn(ζ)
=

n−1∏
k=1

(
ζ − µ(n−1)

k

)
n∏
j=1

(
ζ − µ(n)

j

) . (2.55)

Since Fn(ζ)/Fn−1(ζ) has simple poles and tends to zero at infinity, equation (2.52) holds
for some α(n)

j . Multiplying equation (2.52) by ζ − µ(n)
i we have

n−1∏
k=1

(
ζ − µ(n−1)

k

)
n∏
j=1
j 6=i

(
ζ − µ(n)

j

) = a
(n)
i +

 n∑
j=1
j 6=i

a
(n)
j

ζ − µ(n)
j

(ζ − µ(n)
i

)
.

Then taking ζ to µ(n)
i , we obtain

a
(n)
i =

n−1∏
k=1

(
µ

(n)
i − µ

(n−1)
k

)
n∏
j=1
j 6=i

(
µ

(n)
i − µ

(n)
j

) . (2.56)

Note that for any j = 1, . . . , n− 1

µ
(n)
j < µ

(n−1)
j < µ

(n)
j+1.

Therefore for i = n, all factors on the right hand side of (2.56) are positive, and when we
decrease i by one, both numerator and denominator each pick up a minus sign. Hence
a

(n)
i > 0. As ζ →∞, it can be seen from (2.55) that the ratio equals to ζ−1 +O (ζ−2). Also

from the right side of (2.52) we have that

ζ−1

(
n∑
j=1

a
(n)
j

)
+O

(
ζ−2
)
,

so (2.53) holds.
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(ii)First, note that for any b ∈ R and ζ ∈ C with Im(ζ) > 0

0 < Im

(
1

ζ − b

)
≤
∣∣∣∣ 1

ζ − b

∣∣∣∣ ≤ 1

Im(ζ)
.

Then using (2.52) we obtain

Im

(
Fn−1(ζ)

Fn(ζ)

)
= Im

(
n∑
j=1

a
(n)
j

ζ − µ(n)
j

)
≤

n∑
j=1

a
(n)
j

Im(ζ)
=

1

Im(ζ)
.

(iii) Re-write the recurrence relation (2.35) as

z =
Fn(ζ)

Fn−1(ζ)
+
Fn−2(ζ)

Fn−1(ζ)
.

Since Im(Fn−2(ζ)/Fn−1(ζ)) < 0 by (2.54), the result follows by considering the imaginary
parts of the equation.
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Chapter 3

A two-parameter eigenvalue problem
for a class of block-operator matrices

This chapter deals mainly with a two-parameter eigenvalue problem. Before we introduce
the problem, we start Section 3.1 by reviewing the linear pencil problem studied by Davies
and Levitin [19], which is the main motivation of this chapter. In Section 3.2 we introduce a
two-parameter eigenvalue problem and we explain the relation between eigenvalue prob-
lems at the end of this section. In Section 3.3, after introducing some notation we give
the main results of this chapter concerning the real spectrum of the problem. We present
some preliminary results in Section 3.4, and then we shall give the proofs of our results
in Section 3.5. To support our results, illustrative examples of all different possibilities
are given in Section 3.6. Finally, we will discuss the non-real spectrum of the problem in
Section 3.7.

3.1 Basics from a linear pencil problem

One interesting matrix example of a finite-dimensional linear self-adjoint pencil that is
sign-indefinite was considered by Davies and Levitin [19]. Namely, let m,n ∈ N and
N = m+ n, and consider the linear operator pencil

Ac = Ac(λ) := H(N)
c − λSm,n, (3.1)

where the matrix H(N)
c is defined in (2.36) with c ∈ R, and Sm,n is the diagonal matrix

Sm,n =



1
. . .

1
−1

. . .
−1


. (3.2)
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The size of both matrices is N ×N , and the diagonal matrix Sm,n has m plus ones and n
minus ones. The number λ0 is said to be an eigenvalue of the pencil Ac if(

H(N)
c − λSm,n

)
f = 0 (3.3)

has a non-zero solution f ∈ CN . Spec(Ac) denotes the spectrum of the pencil Ac which is
the set of all its eigenvalues.

In most of our statements, we assume that m = n and N = 2n. We will mostly use 2×2

block structures and so we will often work with the half-size matrix H(n)
0 . In the notation

H
(n)
0 , the superscript (n) represents its size. For simplicity, we often drop the superscript

(n) in H
(n)
c whenever it is clear from the context, i.e. Hc := H

(n)
c , and we will state it

otherwise. The full matrix size is N and will not be omitted. Recall that the eigenvalues of
H

(n)
0 were denoted by µ(n)

j in (2.37), and for the same reason, we set µj := µ
(n)
j . Moreover,

we denote for brevity S := Sn,n.
We begin with the following result on the localisation of eigenvalues of the pencil Ac.

Lemma 3.1.1 ( [19, Lemma 2.1]). All the eigenvalues λ ∈ Spec(Ac) satisfy

|λ| < 2 + |c|.

Proof. Note that ‖H0‖ = µ1 = 2 cos (π/(N + 1)) < 2. Since Spec(Ac) ≡ Spec(S−1Hc), we
have

|λ| ≤ ‖S−1Hc‖ = ‖Hc‖ = ‖H0 + cI‖ < 2 + |c|.

The matrix S is indefinite. Since Spec
(
H

(N)
c

)
≡ Spec

(
H

(N)
0 + cI

)
and Spec

(
H

(N)
0

)
={

µ
(N)
1 , . . . , µ

(N)
N

}
, the matrix H(N)

c is indefinite when c ∈
(
µ

(N)
N , µ

(N)
1

)
⊂ (−2, 2). Therefore,

the spectrum Spec(Ac) may contain non-real eigenvalues when |c| < µ
(N)
1 . Davies and

Levitin [19] pursued an asymptotic approach for large-size matrices (i.e. N → ∞) and
they obtained the asymptotics of the complex eigenvalues of Ac when the parameter c is
equal to zero. They proved that when c = 0 all eigenvalues of Ac approximately lie on
the same curve, which is independent of N , in coordinates (Re(λ), NIm(λ)). The curve is
explicitly given in the next result.

Theorem 3.1.2 ( [19, Theorem 4.2]). Let c = 0, n = m = N/2 → ∞. The eigenvalues of
Ac are all non-real, and those not lying on the imaginary axis satisfy

Im(λ) = ±Y0(|Re(λ)|)
2n

+ o(n−1),
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Re(λ) = ±2 cos

(
2πk

2n+ 1

)
+ o(n−1),

where k = 1, . . . ,
⌊
n
2

⌋
and b·c denotes the integer part, and

Y0(y) :=
√

4− y2 log

(
tan

(
π

4
+

1

2
arccos

(y
2

)))
.

If n is even, then there are no other eigenvalues.
If n is odd, there are additionally two purely imaginary eigenvalues at

λ = ±i log(n)

n
(1 + o(1)).

We omit numerical illustrations concerning the asymptotics given in Theorem 3.1.2.
Instead, we illustrate the eigenvalues of A0 for some n in Figure 3.1. For a more detailed
discussion on the asymptotics of the complex eigenvalues of A0, we refer the reader
to [19].

We will see in most of our numerical experiments that there is symmetry in the spec-
trum Spec(Ac).

Lemma 3.1.3 ( [19, Lemma 2.1(a) and Lemma 5.1]). Let n = m. Then the spectrum
Spec(Ac) is invariant under the symmetry λ → λ and the symmetry λ → −λ. Moreover
Spec(Ac) is symmetric with respect to c→ −c.

Remark 3.1.4. As mentioned above, Davies and Levitin [19] found the approximate loca-
tions of the eigenvalues of Ac when c = 0. As the central focus of this study is the case
|c| < 2 and the spectrum of Ac is invariant under the symmetry c→ −c, it will be sufficient
to consider only the case 0 < c < 2.

Figure 3.1: Spec(A0) for n = 170 (black diamonds), n = 300 (blue triangles) and n = 700
(red circles). Left: in coordinates (Re(λ), Im(λ)). Right: in coordinates (Re(λ), 2nIm(λ)).
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As can be seen from the left side of Figure 3.1, the spectra asymptotically lie on a
particular curve in the complex plane (Re(λ), Im(λ)). If one redrew the eigenvalues in co-
ordinates (Re(λ), NIm(λ)), one would see that they approximately lie on the same curve,
as in the right side of Figure 3.1. Nevertheless, the spectral picture is more complicated
when c 6= 0 (see the left side of Figure 3.2). The spectrum of Ac contain both real and
non-real eigenvalues and it is hard to believe that the non-real eigenvalues for a fixed c lie
on a certain curve.

Figure 3.2: Left: Spec(Ac) for c = 1.5, and n = 170 (white diamonds), n = 300 (blue
triangles) and n = 700 (red circles) in coordinates (Re(λ), Im(λ)). Right: ∪600

n=1 Spec(Ac) for
c = 1.5 in coordinates (Re(λ), 2nIm(λ)).

Nonetheless, there is a common bounding curve if one superimposes all the eigenval-
ues of the pencil Ac by taking some values of n with imaginary parts scaled by its size N
(see the right side of Figure 3.2). Note that the behaviour in the interior differs for different
c. Davies and Levitin [19] derived an explicit expression for the curve which bounds the
whole spectrum of Ac, however the crucial step when proving the result was Conjecture
1.3.3. Namely, Davies and Levitin [19] deduced the following asymptotic estimates when
c is non-zero as N →∞.

Theorem 3.1.5 ( [19, Theorem 5.4]). Let 0 < c < 2, n = m = N/2→∞. The eigenvalues
of Ac that satisfy

|Re(λ)| < 2− c

also satisfy

|Im(λ)| ≤ Yc(|Re(λ)|)
2n

+ o(n−1),

where

Yc(y) := Y−1
c,y

(
tan

(
1

2
arccos

(
y − c

2

))
tan

(
1

2
arccos

(
y + c

2

)))
,
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and Y−1
c,y is the inverse of the monotonic increasing analytic function Yc,y : (0,∞) → (0, 1)

defined by

Yc,y(x) := tanh

(
x

2
√

4− (y − c)2

)
tanh

(
x

2
√

4− (y + c)2

)
.

We shall derive the characteristic polynomial of the pencilAc explicitly in Section 4.1.1.
Now, we will have a look at some open questions from [19] and try to make some progress
towards them. We paid a lot of attention to try to prove Conjecture 1.3.3. Proving (1.16)
may be harder than proving (1.17). In Section 4.2 we reformulate the harder modulus
version of Conjecture 1.3.3 in different forms. We emphasise that extensive numerics
confirm Conjecture 1.3.3. One numerical evidence can be seen, for instance, in Figure
1.2, where we show that the maximum value of |λ ± c| (red line) never exceeds 2 (blue
dotted line) for n = 9 and n = 100. We conducted some experiments taking n between
3 and 300, and taking very small step sizes c, and we failed to find a counter example
to the conjecture. In Figure 3.3, we illustrate two typical pictures. We also prove this
conjecture in the case n = 2 and n = 3 in Section 4.3. We will illustrate in various ways
with many other numerical experiments that Conjecture 1.3.3 seems true, however we
could not prove it for a fixed n.

Conjecture 1.3.3 claims that any non-real eigenvalues λ of the pencil Ac satisfies both
|λ + c| < 2 and |λ − c| < 2. First, it is easy to see that two of these conditions cannot
be broken simultaneously and we will clarify this case, that is both |λ + c| and |λ − c|
cannot be greater than or equal to 2, in Section 4.2.1. Nevertheless, it is not clear why
one of these conditions cannot be broken for the non-real eigenvalues of Ac. When we
apply Gershgorin Theorem to Ac, we will see in Section 4.2.3 that every eigenvalue of Ac
satisfies at least one of |λ + c| < 2 and |λ − c| < 2. Therefore, if we replace ”and” by ”or”
in the conjecture, then the claim would be true by Gershgorin Theorem but then the result
holds for all eigenvalues of Ac.

Remark 3.1.6. There are several ways to treat the pencil problem (3.3). One way is to act
by Ac on vectors which we will write as

(
u
v

)
=



u1
...
un
vn
...
v1


. (3.4)
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Figure 3.3: max{|λ+ c|, |λ− c|} (red lines) among all non-real eigenvalues of Ac is drawn
as c ranges from 0 to 2 with the step-size 0.001 and the constant line at 2 (blue dotted
lines). Left: n = 9. Right: n = 100.

With this convention, the spectral problem for the linear pencil Ac can be written in the
block-matrix form as (

H0 − σI B
B H0 + τI

)(
u
v

)
= 0, (3.5)

where

σ = λ− c; τ = λ+ c. (3.6)

Here all sub-blocks are n × n, and B = B∗ with Bnn = 1 and all other entries of B are
zeros.

Remark 3.1.7. Since S is invertible, the spectrum of the pencilAc equals that of the matrix

Ac := S−1H(N)
c . (3.7)

Using (3.4), the spectral problem for the block matrix Ac can be written as

Ac

(
u
v

)
=

(
Hc B
−B −Hc

)(
u
v

)
= λ

(
u
v

)
. (3.8)

The next result is a special case of Lemma 2.1.3 when A11 = H0, A22 = −H0, A12 = B

and γ = −c.

Corollary 3.1.8. Let λ ∈ Spec(Ac) \ R and (u,v)T be eigenvectors which correspond to
the non-real eigenvalues λ of Ac. Then

‖u‖ = ‖v‖ and |Im(λ)| ≤ 1.

43



Our original motivation was to try to prove Conjecture 1.3.3 but we could not, never-
theless we still gain some insight and obtain new estimates. The first thing we observed
when we considered problem (3.5) in a more general setting, that is,(

A− σ κC
κC∗ D + τ

)(
u
v

)
= 0, (3.9)

where κ ∈ R, A = A∗,D = D∗ and C has rank one. Indeed, problem (3.9) is a special case
of a two-parameter eigenvalue problem which we describe in the next section. Namely,
Davies and Levitin [19] consider the case when κ = 1, A = H

(n)
0 , D = H

(m)
0 , (C)n,1 = 1

and all other entries of C are zeros. In the next section, we shall introduce the general
concept of a two-parameter eigenvalue problem first and then explain the relation between
eigenvalue problems.

3.2 Introduction to a two-parameter eigenvalue problem

This section deals with the Multiparameter Eigenvalue Problems (MEPs) which are the
generalisation of the one-parameter standard eigenvalue problem Lx = λx and the gen-
eralised one-parameter eigenvalue problem Lx = λV x. MEPs can be written in the fol-
lowing abstract form:

Lx =
k∑
i=1

λiVix, (3.10)

where λi ∈ C, i = 1, 2, . . . , k, are spectral parameters, and L and Vi are self-adjoint linear
operators in some Hilbert space H. Then λ = (λ1, . . . , λk) is called a multi-parametric
eigenvalue (or k-tuple, or eigentuple) if there exists an x ∈ H\{0}, called an eigenvector,
such that (3.10) holds.

MEPs arise in numerous applications, in particular in mathematical physics when the
method of separation of variables is used to solve boundary value problems for partial
differential equations. In the 1960s, an abstract algebraic setting for MEPs was introduced
by Atkinson [2, 3], and since then various aspects of MEPs have been investigated by
several authors, see for instance [4,10–12,67] and references therein.

In the rest of this chapter, we consider a special class of two-parameter eigenvalue
problems in a block-operator setting. Let L, V1 and V2 be self-adjoint linear operators in
some Hilbert space H. Then a two-parameter eigenvalue problem is defined as

M(α, β)x := (L− αV1 − βV2)x = 0, (3.11)
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where α, β ∈ C are spectral parameters. We will focus on the case where H = H1 ⊕ H2

for some Hilbert spaces H1 and H2, and where L, V1 and V2 take the particular forms

L =

(
A C
C∗ D

)
, V1 =

(
I 0
0 0

)
, V2 =

(
0 0
0 I

)
, (3.12)

and

x =

(
u
v

)
∈ H1 ⊕H2.

In here, A and D are self-adjoint operators in the Hilbert spaces H1, H2, respectively,
and C is a linear operator from H2 to H1. Hence one can re-write the two-parameter
eigenvalue problem (3.11) as

M(α, β)

(
u
v

)
=

(
A− α C
C∗ D − β

)(
u
v

)
= 0. (3.13)

We call (α, β) ∈ C2 a pair-eigenvalue of M = M(α, β) if there exists a non-trivial

solution x =

(
u
v

)
∈ H of (3.13). Such a vector x is called an eigenvector corresponding

to the pair-eigenvalue (α, β). We denote by Specp(M) the set of all pair-eigenvalues of M.
If both α, β ∈ R, then we will call (α, β) a real pair-eigenvalue of (3.13).

The equation (3.13) can be re-written as

(A− α)u = −Cv, (3.14)

(D − β)v = −C∗u. (3.15)

If α /∈ Spec(A), then (3.14) can be re-written as u = −(A − α)−1Cv, and substituting this
into (3.15) yields

(D − C∗(A− α)−1C)v = βv. (3.16)

This also means that if α /∈ Spec(A) and β(α) is an eigenvalue of

D − C∗(A− α)−1C,

then (α, β(α)) ∈ Specp(M).
The connection between a two-parameter eigenvalue problem (3.13) and a linear pen-

cil problem (1.2) was obtained in Section 1.3 by setting

α = λ− c; β = −λ− c. (3.17)

With this convention, we see that any linear pencil problem of the form (1.10) (or a non-
self-adjoint problem of the form (1.13)) can be transformed into the two-parameter eigen-
value of the form (3.13).
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Indeed, it can be said that Davies and Levitin [19] consider the two-parameter eigen-
value problem (3.13) in the case when A = H

(n)
0 , D = H

(m)
0 , (C)n,1 = 1 and all other

entries of C are zeros. In this section, we set (α, β) as general spectral parameters of
a two-parameter eigenvalue problem M. In this setting, the corresponding change of
notations will be

α = σ; β = −τ.

We shall plot the pair-eigenvalues of M in the (α, β)-plane, whereas σ and τ is fixed as in
(3.6) throughout this thesis.

3.3 Basics and statements

In the rest of this chapter, we investigate the real pair-eigenvalues (α, β) of the two-
parametric eigenvalue problem (3.13) with starting additional restrictions in Section 3.3.1.
We discuss the non-real pair-eigenvalues of M only in Section 3.7. We also give some
heuristics for the localisation of the eigenvalues of the pencil Ac in the aspect of a two
parametric eigenvalue problem in Section 5.2.

3.3.1 Restrictions and notation

Suppose that H1 and H2 are finite dimensional, and therefore we are dealing with matri-
ces. Take dim(H1) = n and dim(H2) = m. First, we focus our attention to only the real
pair-eigenvalues of M. Our main results (Theorem 3.3.6 and its special case Theorem
3.3.4) are stated below.

Remark 3.3.1. Most of the results in the rest of this chapter have been published in [41].
Note that Levitin and Ozturk [41] deal with the case when n = m. What we discuss in
here is the expanded version of [41].

Unless otherwise stated, we set

i = 1, . . . , n, k = 1, . . . , n− 1, j = 1, . . . ,m, l = 1, . . . ,m− 1

which will be used as subscripts. The eigenvalues of A and D will be denoted by

α1 ≤ . . . ≤ αn, β1 ≤ . . . ≤ βm,

respectively, and their corresponding eigenvectors will be denoted by ϕi and ψj, respec-
tively.
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In stating most of our results, we restrict our attention to the case where C has rank
one. More specifically, we choose two vectors z ∈ Rn and w ∈ Rm (the real one are
chosen for simplicity), and set

Cv = κ〈v,w〉z, for all v ∈ H2,

where ‖z‖ = ‖w‖ = 1 and κ ≥ 0, and similarly

C∗u = κ〈u, z〉w, for all u ∈ H1.

The entries of the matrix C will be Ci,j = κziwj.

Remark 3.3.2. In [41], where H1 = H2, we take C = κP , where κ ∈ R, and P is a
projection onto a one-dimensional subspace Z = Span{z}, z ∈ R, ‖z‖ = 1. Then, in the
basis {ϕj}, P will have the matrix representation (〈z,ϕi〉〈z,ϕj〉)ni,j=1.

Let ΦX,λ denote the eigenspace of a self-adjoint operatorX corresponding to an eigen-
value λ, simple or multiple. Further denote, for any f ∈ Rn with ‖f‖ = 1,

ΓX,f := {λ ∈ Spec(X) | ∃φ ∈ ΦX,λ : φ 6= 0 and 〈f ,φ〉 = 0},

Γ̃X,f := {λ ∈ Spec(X) | 〈f ,φ〉 = 0 ∀φ ∈ ΦX,λ}.

Here, X stands for either A or D, and f stands for either z or w. For simplicity, denote

ΓA = ΓA,z, Γ̃A = Γ̃A,z,

ΓD = ΓD,w, Γ̃D = Γ̃D,w.

Note that Γ̃X,f ⊆ ΓX,f . If λ is a simple eigenvalue of X, then dim(ΦX,λ) = 1, and
therefore λ ∈ ΓX,f ⇐⇒ λ ∈ Γ̃X,f . Also, ΓX,f contains all the multiple eigenvalues of X.
This is due to the fact that in any linear subspace of dimension greater than one, one can
find a non-trivial linear combination which is orthogonal to a given vector.

The orthogonal projection Pf of H onto S = Span{f} is a linear operator such that
Pfy ∈ S for all y ∈ H, given by

Pfy = 〈y, f〉f .

Let Qf := I − Pf be the orthogonal projection onto S⊥. For a self-adjoint operator X :

H → H, denote

X‖,‖ = PfX|S : S → S, X⊥,‖ = PfX|S⊥ : S⊥ → S,

X‖,⊥ = QfX|S : S → S⊥, X⊥,⊥ = QfX|S⊥ : S⊥ → S⊥.
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Pz and Pw will represent the orthogonal projection of H1 and H2, onto Z = Span{z} and
W = Span{w}, respectively. The eigenvalues of A⊥,⊥ and D⊥,⊥ will be denoted by

α̂1 ≤ . . . ≤ α̂n−1, β̂1 ≤ . . . ≤ β̂m−1,

respectively, and their corresponding eigenvectors will be denoted by ϕ̂k and ψ̂l, respec-
tively.

Lemma 3.3.3. The eigenvalues of X and X⊥,⊥ always interlace, i.e. let λ ∈ Spec(X) and
λ̂ ∈ Spec(X⊥,⊥), then for any j ∈ {1, . . . , dim(X)− 1},

λj ≤ λ̂j ≤ λj+1.

3.3.2 Statement of the simple Chess Board Theorem

Assume for the moment that ΓA = ΓD = ∅, which in particular implies that all the eigen-
values of A and D are simple. Denote

x0 := −∞, x2n :=∞, x2i−1 := αi, x2k := α̂k,

and similarly for β,

y0 := −∞, y2m :=∞, y2j−1 := βj, y2l := β̂l.

Then, the numbers x0, . . . , x2n divide the α-line into 2n intervals, finite or infinite, and
similarly the numbers y0, . . . , y2m divide the β-line into 2m intervals. Combination of these
lines divides the (α, β)-plane into rectangles, some of them semi-infinite,

Rp,q := rp × rq, rp := (xp−1, xp), rq := (yq−1, yq),

where p = 1, . . . , 2n and q = 1, . . . , 2m, see Figure 3.4.

Theorem 3.3.4 (The Simple Chess Board Theorem). Let ΓA = ΓD = ∅. Then all the
real pair-eigenvalues (α, β) of M lie on a family of curves (α, β(α)) with the following
properties:

(a) each curve may pass only through rectangles Rp,q with p+ q even;

(b) each curve may cross from rectangle to rectangle only through the corner points
(xp, yq) with p+ q odd;
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Figure 3.4: In the (α, β)-plane, black dotted and red dot-dashed lines in the vertical
direction represent α = αi and α = α̂k, respectively; in the horizontal direction they
represent β = βj and β = β̂l, respectively. Here n = 4 and m = 3, and the rectangles Rp,q

with p+ q even are shaded.

(c) each curve β(α) is continuous in α except at eigenvalues of A; at each eigenvalue
of A exactly one curve blows up in the following sense: β(α)→ ±∞ as α→ αi ± 0,
αi ∈ Spec(A);

(d) each curve β(α) is monotone decreasing in α on its domain of continuity; more
precisely, we have

dβ

dα
= −κ2 〈(A− α)−2z, z〉(〈(D − β)−1w,w〉)2

〈(D − β)−2w,w〉
< 0. (3.18)

Remark 3.3.5. As α and β are in fact interchangeable, Theorem 3.3.4 can be equivalently
reformulated in terms of curves (α(β), β) with the only modification being that exactly one
curve α(β) blows up at each eigenvalue of B in the sense that α(β)→ ±∞ as β → βj±0,
βj ∈ Spec(A).

3.3.3 Statement of the full Chess Board Theorem

In this section, we assume that either ΓA 6= ∅ or ΓD 6= ∅. Denote additionally, for X :

H → H,

∆X := {λ ∈ Spec(X) | λ ∈ Spec(X) ∩ Spec(X⊥,⊥) and dim(ΦX⊥,⊥,λ) > dim(ΦX,λ)}.

We will state formally an analogue of Theorem 3.3.4 below, but we start with summarising
the principle changes: first, we exclude from the dividing mesh the points of Γ̃A \∆A and
Γ̃D \∆D; and secondly, the real pair-spectrum of M will, in addition to the curves, contain
the lines (ΓA × R) and (R× ΓD).
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More precisely, let xi, i = 1, . . . , s, denote the points of(
(Spec(A) ∪ Spec(A⊥,⊥)) \ Γ̃A

)
∪∆A

enumerated in increasing order without account of multiplicities, and similarly yj, j =

1, . . . , t, denote the points of the analogue for D enumerated in increasing order without
account of multiplicities. Set additionally x0 = y0 = −∞, xs+1 = yt+1 = +∞, and

Rp,q = (xp−1, xp)× (yq−1, yq), p = 1, . . . , s+ 1, q = 1, . . . , t+ 1.

Theorem 3.3.6 (The Full Chess Board Theorem). All the real pair-eigenvalues (α, β) of
M lie either on the straight lines (ΓA×R)∪ (R×ΓD) or on a family of curves (α, β(α)) with
the following properties:

(a) each curve may pass only through rectangles Rp,q with p+ q even;

(b) each curve may cross from rectangle to rectangle only through the corner points
(xp, yq) with p+ q odd;

(c) each curve β(α) is continuous in α except at eigenvalues of A not belonging to Γ̃A;
at each such eigenvalue of A exactly one curve blows up in the following sense:
β(α)→ ±∞ as α→ αi ± 0, αi ∈ Spec(A);

(d) each curve β(α) is monotone decreasing in α on its domain of continuity with (3.18).

Remark 3.3.7. The equation (3.16) is real analytic, therefore the solutions of (3.16) are
also real analytic locally except at the points where the curves cross. We will see in
Lemma 3.5.4 that when α ∈ Spec(A) \ ΓA there are m − 1 corresponding (α, β) pair-
eigenvalues of M which we can locate. In addition, as mentioned in Theorem 3.3.6(c),
one curve blows up. Since each curve β(α) is monotone decreasing in α, it can be said
that each curve lies its individual sequence of black rectangles, plus the one which blows
up. Therefore these curves do not intersect as there is only one curve in each rectangle
Rp,q with p + q even. Thus, for every α ∈ C \ Spec(A), there are m complex values β(α),
and the corresponding curves can be chosen continuously in α since each curve is locally
analytic in α. However, we note that we do not take into account of additional vertical (or
horizontal) straight lines which are not in the mesh.
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3.3.4 Limit cases

Only in this subsection, we will be denoting M by Mκ to indicate its dependence on κ. We
state that when κ → 0, the components of the real pair-eigenvalues of Mκ approach the
eigenvalues of A and D, and when κ → ∞, they approach the eigenvalues of A⊥,⊥ and
D⊥,⊥. The proof of the next result will be given in Section 3.5.

Theorem 3.3.8. As κ→ 0, the real pair-eigenvalue spectrum of Mκ converges to

EA,D := (Spec(A)× R) ∪ (R× Spec(D))

in the sense that ∀ε > 0 ∃κ0 > 0 such that ∀(α, β) ∈ Specp(Mκ) ∩ R2 we have

dist ((α, β), EA,D) < ε

whenever κ < κ0.
As κ→∞, the real pair-eigenvalue spectrum of Mκ converges to

ẼA,D := (Spec(A⊥,⊥)× R) ∪ (R× Spec(D⊥,⊥))

in the sense that ∀ε > 0 ∃κ0 > 0 such that ∀(α, β) ∈ Specp(Mκ) ∩ R2 we have

dist
(

(α, β), ẼA,D
)
< ε

whenever κ > κ0.

3.4 Auxiliary results

The statements in this section are for a single matrix X, and mostly very elementary. We
shall use them later in the proof of the Chess Board Theorem. Let

λj ∈ Spec(X), φj ∈ ΦX,λj , j = 1, . . . , dim(X),

and

λ̂k ∈ Spec(X⊥,⊥), φ̂k ∈ ΦX⊥,⊥,λk , k = 1, . . . , dim(X)− 1.

We shall frequently use the Fourier representation of the resolvent, for any f ∈ Rn with
‖f‖ = 1,

(X − λ)−1f =
∑
j

〈f ,φj〉
λj − λ

φj, λ 6∈ Spec(X). (3.19)

We also set
RX(λ, f) := 〈(X − λ)−1f , f〉 =

∑
j

|〈f ,φj〉|2

λj − λ
. (3.20)
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Lemma 3.4.1. Let λ /∈ Spec(X) and f 6= 0. Then

RX(λ, f) = 0 ⇔ λ ∈ Spec(X⊥,⊥) and (X − λ)−1f = cφ̂,

where φ̂ is an eigenfunction of X⊥,⊥ corresponding to λ and c 6= 0.

Proof. Set ζ = (X − λ)−1f . Then

(X − λ)ζ = f ⇔
(
X⊥,⊥ − λ X‖,⊥
X⊥,‖ X‖,‖ − λ

)(
q
p

)
=

(
0
f

)
, (3.21)

where q = Qfζ and p = Pfζ. Note that RX(λ, f) = 〈ζ, f〉 = 0 iff p = Pfζ = 0. Substituting
this into (3.21) gives us {

(X⊥,⊥ − λ)q = 0,

X⊥,‖q = f .
(3.22)

By the second equation, q is non-zero, and then by the first equation λ ∈ Spec(X⊥,⊥) and
q = cφ̂, with c 6= 0. Also, we have

q = Qfζ = (I − Pf )ζ = ζ,

and so
ζ = (X − λ)−1f = cφ̂.

Lemma 3.4.2. λ ∈ ΓX if and only if λ ∈ Spec(X)
⋂

Spec(X⊥,⊥).

Proof. If there exits an λ ∈ ΓX , then there is an eigenfunction φ ∈ ΦX,λ such that 〈f ,φ〉 =

0, and therefore Pfφ = 0 and so Qfφ = φ. Thus

X⊥,⊥φ = QfXφ = λQfφ = λφ,

and so λ ∈ Spec(X)
⋂

Spec(X⊥,⊥).
On the other hand, let λ ∈ Spec(X)

⋂
Spec(X⊥,⊥). Then

Xφ = λφ ⇒ 〈Xφ, φ̂〉 = λ〈φ, φ̂〉 = λ〈Qfφ, φ̂〉. (3.23)

Also, since φ̂⊥f ,

Xφ̂ = X(φ̂+ 0f) = X⊥,⊥φ̂+X⊥,‖φ̂, (3.24)

therefore

〈Xφ, φ̂〉 = 〈φ, Xφ̂〉 = 〈φ, X⊥,⊥φ̂〉+ 〈φ, X⊥,‖φ̂〉
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= 〈Qfφ, X⊥,⊥φ̂〉+ 〈Pfφ, X⊥,‖φ̂〉

= λ〈Qfφ, φ̂〉+ 〈Pfφ, X⊥,‖φ̂〉

which implies by (3.23) that 〈Pfφ, X⊥,‖φ̂〉 = 0. Now, if Pfφ = 0, then φ⊥f so that λ ∈ ΓX .
If X⊥,‖φ̂ = 0, then we have from (3.24) that Xφ̂ = λφ̂, and therefore φ̂ is an eigenfunction
of X such that φ̂ ⊥ f , so that λ ∈ ΓX .

Lemma 3.4.3. If λ ∈ Spec(X) \ Γ̃X , then RX(t, f) has a singularity at t = λ. The function
RX(t, f) changes sign when t passes through an λj, or an λ̂k.

If λ ∈ Γ̃X , then (X − λ)−1f exists, and RX(t, f) is continuous at t = λ. It changes sign
at this λ if and only if additionally λ ∈ ∆X .

Proof. If λj ∈ Spec(X) \ Γ̃X , then there exits at least one φj ∈ ΦX,λ such that 〈f ,φj〉 6= 0,
and it can be seen from (3.20) that RX(t, f) goes to ±∞ as λ → λj ∓ 0. Furthermore,
since RX(t, f) has zeros at λ = λ̂k by Lemma 3.4.1, and also is a continuous function
except at the poles λ = λj, it changes sign every time z passes through λ̂j as well.

The second statement follows immediately from (3.20) and the fact that f ⊥ ΦX,λ.
To show the last statement, we consider the following decomposition

H = ΦX,λ ⊕QfΦ
⊥
X,λ ⊕ PfΦ

⊥
X,λ,

where Φ⊥X,λ is the orthogonal complement of ΦX,λ with respect to λ. Let dim(ΦX,λ) = d

and therefore dim(QfΦ
⊥
X,λ) = dim(X)− d− 1 and dim

(
PfΦ

⊥
X,λ

)
= 1. Let X̃ = X|Φ⊥X,λ , then

X =

diag(λ, . . . , λ) 0 0

0 X̃⊥,⊥ X̃‖,⊥
0 X̃⊥,‖ X̃‖,‖

 ,

where the left corner block has dimension d. If λ ∈ ∆X then λ ∈ Spec(X) ∩ Spec(X⊥,⊥)

such that dim(ΦX⊥,⊥,λ) > dim(ΦX,λ) = d. Thus,

λ ∈ ∆X ⇔ λ ∈ Spec(X̃⊥,⊥) and λ 6∈ Spec(X̃).

Therefore RX̃(t, f) has zeros at t = λ ∈ ∆X by Lemma 3.4.1, and the function RX̃(t, f)

changes sign at this λ.

Proof of Lemma 3.3.3. This lemma is known as Cauchy interlacing theorem. The proof is
based on the variational principle. In finite dimensional case,

〈X⊥,⊥f , f〉 = 〈QfXf , f〉 = 〈Xf , Qf f〉 = 〈Xf , f〉,
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since Qf = Q∗f and Qf f = f , so the forms coincide, however the space is different. Ac-
cording to min-max theorem,

λj = min
U1

{max
f
{〈Xf , f〉 | f ∈ U1 \ {0}} | dim(U1) = j},

λ̂j = min
U2

{max
f
{〈X⊥,⊥f , f〉 | f ∈ U2 \ {0}} | dim(U2) = j}.

We have the subspaces U1 and U2 of the same dimension, however U1 contains a bigger
collection of subspaces (it may additionally include elements from Pf f ). Therefore, by
taking min over bigger set may be smaller, i.e.

λj ≤ λ̂j.

However, λj = λ̂j if and only if U1 contains elements only from f⊥.
Looking at the other direction,

λj+1 = max
U1

{min
f
{〈Xf , f〉 | f ∈ U1 \ {0}} | dim(U1) = n− j},

λ̂j = max
U2

{min
f
{〈X⊥,⊥f , f〉 | f ∈ U2 \ {0}} | dim(U2) = n− j},

and for the same reason, by taking max over bigger set may be bigger, i.e.

λ̂j ≤ λj+1.

3.5 Proofs of the main results

We proceed to the proof of Theorem 3.3.6; Theorem 3.3.4 follows from Theorem 3.3.6
immediately as a special case.

We first derive the characteristic equation of (3.13).

Theorem 3.5.1. If α /∈ Spec(A) and β /∈ Spec(D), then the characteristic equation of
(3.13) for β(α) is

κ2〈(A− α)−1z, z〉〈(D − β)−1w,w〉 = 1. (3.25)

Proof. Re-writing the equation (3.16) as

(D − β)v = C∗(A− α)−1Cv.

and then using the information that C is rank one, we obtain

(D − β)v = C∗(A− α)−1Cv,
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= C∗(A− α)−1κ〈v,w〉z

= κ2〈v,w〉〈(A− α)−1z, z〉w,

which implies
v = κ2〈v,w〉〈(A− α)−1z, z〉(D − β)−1w.

Now since the term κ2〈v,w〉〈(A− α)−1z, z〉 is a constant, we can fix it as

κ2〈v,w〉〈(A− α)−1z, z〉 = 1, (3.26)

by setting
v := (D − β)−1w. (3.27)

Substituting (3.27) into (3.26), we arrive at (3.25).

Corollary 3.5.2. Suppose α /∈ Spec(A) and β /∈ Spec(D). Then the equation (3.25) is
equivalent to the following one:

κ2RA(α, z)RD(β,w) = κ2

(
n∑
i=1

|〈z,ϕi〉|2

αi − α

)(
m∑
j=1

|〈w,ψj〉|2

βj − β

)
= 1. (3.28)

Proof. The result yields by substituting RA(α, z) and RD(β,w) into (3.25).

The next lemma shows that (ΓA×C)∪ (C×ΓD) ⊂ Specp(M), strengthening in fact the
claim of Theorem 3.3.6.

Lemma 3.5.3. If α ∈ ΓA, then

(α, β) ∈ Specp(M) for all β ∈ C.

Similarly, if β ∈ ΓD, then

(α, β) ∈ Specp(M) for all α ∈ C.

Proof. We prove the first of these statements, the second is similar. Let α ∈ ΓA, and let
ϕ ∈ ΦA,α such that 〈ϕ, z〉 = 0. An immediate check shows that(

u
v

)
=

(
ϕ
0

)
is a pair-eigenvector of M for a pair-eigenvalue (α, β) with an arbitrary β ∈ C.

In Lemma 3.5.3 we show what happens when α ∈ ΓA or β ∈ ΓD; our next result shows
which points (α, β) may lie in Specp(M) when α is an eigenvalue of A outside of ΓA.
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Lemma 3.5.4. Let α ∈ Spec(A) \ ΓA, and β 6∈ ΓD. Then (α, β) ∈ Specp(M) if and only if
β = β̂ ∈ Spec(D⊥,⊥).

Similarly, if β ∈ Spec(D) \ ΓD, and α 6∈ ΓA, then (α, β) ∈ Specp(M) if and only if
α = α̂ ∈ Spec(A⊥,⊥).

Proof. Once more, we only prove the first statement. Let α ∈ Spec(A)\ΓA. Let us re-write
(3.14), (3.15) as

(A− α)u = −κ〈v,w〉z, (3.29)

(D − β)v = −κ〈u, z〉w. (3.30)

Multiplying (3.29) by ϕ ∈ ΦA,α, we get

〈(A− α)u,ϕ〉 = 〈u, (A− α)ϕ〉 = 0 = −κ〈v,w〉 〈z,ϕ〉.

Since α 6∈ ΓA, we have 〈z,ϕ〉 6= 0, and so 〈v,w〉 = 0 (and so Cv = 0), and by (3.29),

u = aϕ, (3.31)

where the constant a may or may not be zero. Substituting now (3.31) into (3.30)

(D − β)v = −κa〈ϕ, z〉w, (3.32)

and since v ⊥ w, the equation (3.32) becomes

(D⊥,⊥ − β)v +D⊥,‖v = −κa〈ϕ, z〉w. (3.33)

Now, applying the projections Qw and Pw to the result, we obtain

D⊥,⊥v = βv, (3.34)

D⊥,‖v = −κa〈ϕ, z〉w. (3.35)

If β 6∈ Spec(D⊥,⊥), then by (3.34), v = 0, and thus a = 0, and so u = 0, and (α, β) 6∈
Specp(M), proving the “only if” part of the statement.

If β = β̂ ∈ Spec(D⊥,⊥), and ψ̂ ∈ ΦD⊥,⊥,β̂
, we choose v = bψ̂; we claim that we may

choose constants a, b such that a2 + b2 6= 0 to satisfy (3.35). After multiplying (3.35) by w,
it becomes

b〈D⊥,‖ψ̂,w〉 = −κa〈ϕ, z〉. (3.36)

The scalar product on the right-hand side is non-zero by our assumption α 6∈ ΓA. The
scalar product on the left-hand side is non-zero since otherwise D⊥,‖ψ̂, which acts on the
space parallel to w, is zero and by Lemma 3.5.3 β̂ ∈ SpecD with an eigenfunction ψ̂, and
therefore β ∈ ΓD by Lemma 3.4.2, again contradicting our assumptions. Thus we can
always choose a, b with a2 + b2 6= 0 in order to satisfy (3.36).
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We can now prove our main result.

Proof of the full Chess Board Theorem. The eigenvalues inside (ΓA×R)∪ (R×ΓD) have
been already accounted for by Lemma 3.5.3, so we will be working outside this set.

Recall the characteristic equation (3.28). Since it needs to be satisfied, RA(α, z) and
RD(β,w) have to have the same sign for real pair-eigenvalues. It can be seen from (3.20)
that RA(α, z) is positive when α < α1, and by Lemma 3.4.3, it only changes sign every
time when α passes through xp, p = 1, . . . , s. Similarly, RD(β,w) is positive when β < β1

and it only changes sign every time when β passes through yq, q = 1, . . . , t. Thus the
only allowed regions for real α and β are when (α, β) ∈ Rp,q with p+ q even, proving, with
account of Lemma 3.5.4, the statements (a) and (b).

Statement (c) follows immediately from (3.25) and Lemma 3.4.3.
To prove (d), we differentiate the characteristic equation (3.25) with respect to α, arriv-

ing at

κ2〈(A− α)−2z, z〉〈(D − β)−1w,w〉+ κ2〈(A− α)−1z, z〉〈(D − β)−2w,w〉dβ
dα

= 0,

so that
dβ

dα
= −〈(A− α)−2z, z〉〈(D − β)−1w,w〉
〈(A− α)−1z, z〉〈(D − β)−2w,w〉

,

and re-arranging with account of (3.25), we can re-write β′ as in (3.18).
To see that β′ < 0, we observe from (3.25) that RA(α, z) 6= 0 and RD(β,w) 6= 0. Also,

〈(A− α)−2z, z〉 = 〈(A− α)−1z, (A− α)−1z〉 = ‖(A− α)−1z‖,

which is always positive by (3.19), and similarly 〈(D − β)−2w,w〉 > 0, and therefore
dβ/dα < 0.

Proof of Theorem 3.3.8. Let α 6∈ Spec(A) and β 6∈ Spec(D). For a self-adjoint operator A,
we have by Cauchy-Schwartz, if ‖z‖ = 1,

|〈(A− α)−1z, z〉| ≤ ‖(A− α)−1z‖‖z‖ ≤ ‖(A− α)−1‖ =
1

dist(α, Spec(A))
, (3.37)

and similarly for D. By the characteristic equation (3.25), we have, as κ→ 0, that either

RA(α, z) = 〈(A− α)−1z, z〉 → ∞

or
RD(β,w) = 〈(D − β)−1w,w〉 → ∞,
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which implies by (3.37) that either dist(α, Spec(A)) → 0 or dist(β, Spec(D)) → 0. In other
words, we have either α tends to an eigenvalue of A and β is arbitrary, or β tends to an
eigenvalue of D and α is arbitrary. Then the first statement follows.

Similarly, if κ→∞, then again by (3.25) we have that either

RA(α, z) = 〈(A− α)−1z, z〉 → 0

or
RD(β,w) = 〈(D − β)−1w,w〉 → 0,

which implies by Lemma 3.4.1 that either α → α̂ ∈ Spec(A⊥,⊥) or β → β̂ ∈ Spec(D⊥,⊥).
Then the second statement follows.

We note that our result holds under the hypothesis of the full Chess Board theorem
since any point in ΓA or ∆A is always contained in Spec(A) ∩ Spec(A⊥,⊥), and similarly for
D.

To finish the proof of the main theorem, it remains to show that the real pair-eigenvlaues
can only lie in rectangles Rp,q with p + q even (except mesh lines). Actually we already
mentioned in Remark 3.3.7 which rectangles are permitted and which are excluded. Nev-
ertheless, we will show this case for the sake of completeness. As we know already
by Lemma 3.5.4 that the eigenvalue curves can only cross through the mesh vertices,
it is sufficient to indicate one rectangle with p + q even which contains at least one real
pair-eigenvalue. This will then determine which rectangles are permitted because of the
crossings. In the next result, we show that for any κ 6= 0, one can always find a pair-
eigenvalue in the region R2n,2m (or Rs+1,t+1 when we have an eigenvalue with multiplicity
greater than one).

Lemma 3.5.5. Let αn and βm be the largest eigenvalue of A and D, respectively, which
are in the mesh. For any α > αn, ∃β = β(α) > βm such that (α, β) ∈ Specp(M).

Proof. Take α > αn. Then the resolvent (A − α)−1 exists and is a negative operator.
Moreover,

(α, β) ∈ Specp(M)⇔ β ∈ Spec(T (α)),

where T (α) = D−C∗(A− α)−1C is Hermitian. Thus, to prove the statement it remains to
show that T (α) has an eigenvalue greater than βm. Let vm be a normalised eigenvector
of D corresponding to βm. Then

〈T (α)vm,vm〉 = 〈Dvm,vm〉 − 〈(A− α)−1wm,wm〉
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where wm = Cvm. If wm 6= 0, then by (3.20), we have

−〈(A− α)−1wm,wm〉 =
n∑
j=1

|〈wm,uj〉|2

α− αj
= κ2|〈vm,w〉|2

n∑
j=1

|〈z,uj〉|2

α− αj
,

which is always positive since α > αn. Hence 〈T (α)vm,vm〉 > βm. In that case, by
variational principle T (α) has an eigenvalue β(α) > βm. Suppose wm = 0. Then

wm = Cvm = κ〈vm,w〉z = 0 ⇔ vm ⊥ w ⇔ βm ∈ Γ̃D.

However, if βm ∈ Γ̃D then βm will not be in the mesh. Due to our construction, we do not
take into account of the set Γ̃ in the mesh, and therefore wm 6= 0.

3.6 Examples

3.6.1 Example 1

As we mentioned earlier, the main motivation of this section comes from the particular
non-self-adjoint problem which was considered in [19], with corresponding change of no-
tations. Re-write the pencil problem as:(

H
(n)
0 − α κC

κC∗ H
(m)
0 − β

)(
u
v

)
= 0, (3.38)

where (C)n,1 = 1 and all other entries of C are zeros. We therefore set z = (0, . . . , 0, 1)T

and w = (1, 0, . . . , 0)T . When κ = 1, the problem (3.38) is equivalent to the pencil Ac
problem with (3.17), nevertheless we plot the spectrum for different values of κ.

The eigenvalues of H(n)
0 are given by (2.37) and the eigenvalues of

(
H

(n)
0

)
⊥,⊥

are

given by the same formula with n replaced by n − 1. We shall return to the investigation
of the non-real pair-eigenvalues of this problem in Section 3.7.

Note that Γ
H

(n)
0

= ∅ and the general spectral picture in the (α, β)-plane including the
rectangular mesh can be seen in Figures 3.6 and Figure 3.11. We also illustrate in Figure
3.7 the real pair-eigenvalues by taking a wide range of κ values and superimposing them.
We see that the results of the simple Chess Board Theorem hold. We also illustrate
the limit cases in Figure 3.5 where we see that real pair-eigenvalues lie in the border of
rectangular regions.
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Figure 3.5: Specp(M) when A = H
(5)
0 and D = H

(4)
0 . Left: with κ = 10−5. Right: with

κ = 105.

Figure 3.6: Specp(M) when A = D = H
(4)
0 with κ = 0.4 (red curves), κ = 1 (blue curves)

and κ = 2 (orange curves).

3.6.2 Example 2

This example illustrates the case when Γ = ∅. Let

A2 = diag(−1, 2), D1 = diag(1, 3, 4). (3.39)

Set

z =
1√
2

(
1
1

)
, w =

1√
3

1
1
1

 . (3.40)
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Figure 3.7: The superimposition of Specp(M) when A = D = H
(4)
0 for the values of κ from

0.001 to 10 with the step-size of 0.1.

Then ΓA2 = ΓD1 = ∅. Also

Spec((A2)⊥,⊥) =

{
1

2

}
, Spec((D1)⊥,⊥) =

{
1

3
(8±

√
7)

}
.

The spectral picture is illustrated in Figure 3.8(left), and we see that the simple Chess
Board Theorem (Theorem 3.3.4) holds.

Figure 3.8: Left: Specp(M) with A = A2, D = D1, and κ = 1. Right: Specp(M) with
A = A3, D = D1, and κ = 3/4.

Remark 3.6.1. In the rest of the examples, we set D = D1 and w, as given in (3.39) and
(3.40), thus ΓD1 = ∅. We will consider different A and z in order to illustrate each special
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case, therefore these changes will be seen in the vertical direction only.

3.6.3 Example 3

This example illustrates the case when Γ 6= ∅ and Γ̃ = ∅. Consider

A3 = diag(1, 1) and z =

(
1
0

)
. (3.41)

Then ΓA3 = {1} and Γ̃A3 = ∅. Also

Spec((A3)⊥,⊥) = {1}.

The spectral picture is illustrated in Figure 3.8(right). We see that Specp(M) has an addi-
tional straight line at α = 1, and there is also a blow-up at α = 1. This line is included in
the mesh since z is orthogonal to one eigenvector but z 6⊥ ΦA3,1.

3.6.4 Example 4

This example illustrates the case when Γ = Γ̃ 6= ∅. Consider

A4 = diag(1, 4) and z =

(
1
0

)
.

Then ΓA4 = Γ̃A4 = {4}. Also
Spec((A4)⊥,⊥) = {4}.

The spectral picture is shown in Figure 3.9(left). It can be seen that there is an additional
straight line passing through α = 4 which is not included in the mesh since A4 has simple
eigenvalues and z ⊥ ΦA4,4.

3.6.5 Example 5

This example illustrates the case when Γ, Γ̃ 6= ∅ and Γ 6= Γ̃. Consider

A5 = diag(−1,−1, 3, 3) and z =


0
0
0
1

 .

Then ΓA5 = {−1, 3} and Γ̃A5 = {−1}. Also

Spec((A5)⊥,⊥) = {−1, 3},
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Figure 3.9: Left: Specp(M) with A = A4, D = D1, and κ = 3/2. Right: Specp(M) with
A = A5, D = D1, and κ = 4/3.

where the eigenvalue −1 has multiplicity two. The spectral picture is shown in Figure
3.9(right). As expected, there are two additional vertical straight lines: at α = −1, where
there is no blow-up and the line is not included in the mesh since z ⊥ ΦA5,−1; and at α = 3,
where there is a blow-up and the line is included in the mesh since z 6⊥ ΦA5,3.

3.6.6 Example 6

Finally, this example illustrates the case when ∆ 6= ∅. Consider

A6 = diag(1, 2, 2, 3) and z =
1√
2


1
0
0
1

 . (3.42)

Then ΓA6 = Γ̃A6 = {2}. Also
Spec((A6)⊥,⊥) = {2},

where the eigenvalue 2 has multiplicity three. The spectral picture is shown in Figure
3.10(right). Since z ⊥ ΦA6,2, there is no blow-up at α = 2. Nevertheless, this line is
included in the mesh as ∆A6 = {2}, i.e. dim(Φ(A6)⊥,⊥,2) > dim(ΦA6,2).

3.7 The non-real pair-eigenvalues of M

We now turn our attention to the non-real pair eigenvalues of a two-parameter eigenvalue
problem (3.13). Generally speaking, for every α ∈ C \ Spec(A), we have either m corre-
sponding β ∈ C which occurs under the restriction of the simple Chess Board Theorem,
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Figure 3.10: Specp(M) with A = A6, D = D1, and κ = 5/3.

or infinitely many β ∈ R which occurs whenever Γ, Γ̃ or ∆ is not equal to the empty set.
We therefore limit our attention to the pair-eigenvalues subject to the additional restriction

Im(α + β) = 0, (3.43)

which is equivalent to introducing the additional restriction c ∈ R in the non-self-adjoint
problem, see (3.17). For this reason, we introduce the following notation:

S̃pec(M) := Specp(M) ∩ {(α, β) ∈ C2 : Im(α) + Im(β) = 0}.

In addition, for brevity, we will work under the restrictions of the simple Chess Board
Theorem.

Lemma 3.7.1. The spectrum S̃pec(M) is invariant under the symmetry (α, β)→ (α, β).

Proof. The result is true for any M(α, β) = L−αV1− βV2 with self-adjoint coefficients L,
V1 and V2: If (α, β) is a pair-eigenvalue of M(α, β), then L− αV1 − βV2 is not invertible,
therefore (L−αV1−βV2)∗ = L−αV1−βV2 is not invertible and (α, β) is a pair-eigenvalue
of M(α, β).

A general spectral picture of the non-self-adjoint problem considered in [19] is illus-
trated in the (α, β)-plane in Figure 3.11. Red curves depict the real parts of non-real
pair-eigenvalues Reβ(Reα) such that (3.43) holds, which keeps all (α, β) ∈ R2 in the pic-
ture (shown in blue) and also some non-real pair-eigenvalues. In general, as can be seen
from the examples which were considered in Section 3.6 there is no additional symmetry.
Nevertheless, in our special example, we have the following result.
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Corollary 3.7.2. Consider a two-parameter eigenvalue problem M with A = D = H
(n)
0 ,

C = C∗ with (C)nn = 1 and all other entries of C are zeros. Then, in addition to the result
of Lemma 3.7.1, the spectrum S̃pec(M) is invariant under the symmetry (α, β) → (β, α)

and the symmetry (α, β)→ (−β,−α).

Proof. We know by Lemma 3.1.3 that Spec(Ac) is invariant under the symmetries λ→ −λ
and c → −c. We see by (3.17) that these symmetries correspond to (α, β) → (β, α) and
(α, β)→ (−β,−α), respectively.

Figure 3.11: S̃pec(M) with A = D = H0 and C = B for n = 5.

The real and non-real eigenvalue curves λ(c) may collide, with two possible types of
collisions: those when two real eigenvalues collide and produce a complex conjugate
pair, called Type-A, and those when a pair of complex conjugate eigenvalues collide and
become real, called Type-B, see Figure 3.12 for equivalents in (α, β)-plane.

We gave an equivalent statement of Conjecture 1.3.3 in terms of a two-parameter
eigenvalue problem in Theorem 1.3.4(i). We now turn to the proof of the result.

Proof of Theorem 1.3.4(i). Using the relation (3.17), we see that λ ∈ C \ R if and only if
α, β ∈ C\R. Consider the two-parameter eigenvalue problem M(α, β) with A = D = H

(n)
0 ,

C = C∗ with (C)nn = 1 and all other entries of C are zeros. We know that any pencil
problem of the form (1.10) and any two-parameter eigenvalue problem of the form (1.9)
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Figure 3.12: Left: the collisions in the (Re(λ), Im(λ))-plane. Right: the collisions in the
(Re(α),Re(β))-plane.

are equivalent by (1.14). Therefore this two-parameter problem M(α, β) and (3.5) are
likewise equivalent with α = σ and β = −τ . If c > 0, then

|α| = |λ− c| < 2, |β| = |λ+ c| < 2,

and if c < 0, then the inequalities will still hold by Corollary 3.7.2.

Unfortunately, we could not find much information about the non-real pair-eigenvalues
which satisfy such bounds. Nevertheless, we found the collision locations in terms of
derivative of β(α) with respect to α, and this holds not only for our pencil problem but also
for any two-parameter eigenvalue problem with rank one C. Our first main result in this
section is the following.

Lemma 3.7.3. The collisions in S̃pec(M) occur at the points where

dβ(α)

dα
= −1.

Proof. Recall a two-parameter eigenvalue problem with the change of notation (3.17):(
A− λ+ c C

C∗ D + λ+ c

)(
u
v

)
= 0,

which can be written equivalently as

Mλ

(
u
v

)
=

(
A− λ C
C∗ D + λ

)(
u
v

)
= −c

(
u
v

)
.

Considering c(λ) and taking the derivative in each side of the spectral problem with re-
spect to λ, we obtain

M
′

λ

(
u
v

)
+ Mλ

(
u
v

)′
= −c′

(
u
v

)
− c

(
u
v

)′
⇔ (Mλ + c)

(
u
v

)′
=
(
−c′ −M

′

λ

)(u
v

)
⇔ (Mλ + c)

(
u
v

)′
=

(
−c′ −

(
−I

I

))(
u
v

)
,
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which is solvable if and only if the left hand side of the last equation is orthogonal to(
u
v

)
. Therefore multiplying by

(
u
v

)
and bearing in mind ‖u‖ = ‖v‖ by Corollary 3.1.8,

we obtain

c
′ (‖u‖2 + ‖v‖2

)
=

〈(
I
−I

)(
u
v

)
,

(
u
v

)〉
= ‖u‖2 − ‖v‖2

= 0.

We show that the critical points occur when dc
dλ

= 0; then using (3.17) gives

dc

dλ
=

dc
dα
dλ
dα

=
−1

2
− 1

2
β
′

1
2
− 1

2
β ′

= 0 ⇔ β
′
= −1.

3.7.1 Limiting cases

If κ tends to zero, then the problem (3.13) becomes disjoint and the spectral picture can
be understood easily. On the other hand, a very interesting phenomenon occurs when κ
gets large; the spectral picture becomes more complicated. For instance, for some values
of κ, non-real pair-eigenvalue collisions may occur, see Figure 3.13.

Figure 3.13: S̃pec(M) when A = D = H0 with n = 5 for κ = 1.37. Left: in the
(Re(α),Re(β))-plane. Right: in the (Re(α), Im(α))-plane.
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We know that if α ∈ R \ (Spec(A) ∪ Spec(A⊥,⊥)), then there are m corresponding real
β’s such that (

α, β(1)
κ (α)

)
, . . . ,

(
α, β(m)

κ (α)
)
∈ S̃pec(M).

Theorem 3.3.8 implies that as κ→∞, there are (m− 1) corresponding β’s such that

β(1)
κ (α), . . . , β(m−1)

κ (α)→ Spec(D⊥,⊥),

and mth one goes to ±∞ where ± depends on which block α lies in. For instance, as
α → αn + 0, then RA(α) → −∞, and by (3.28) we obtain RD(β) → −0, and therefore
β(α)→ +∞.

In addition to the real pair-eigenvalues, there are some non-real pair-eigenvalues and
we cannot do the asymptotics for all of them. Nevertheless, if we restrict ourselves to
S̃pec(M), there is one more family for which we will show the asymptotics as κ → ∞. In
the rest of this section, we shall analyse in more detail this family of pair-eigenvalues as
κ tends to infinity.

Figure 3.14: S̃pec(M) when A = D = H0 with n = 5 for κ = 5. Left: in the (Re(α),Re(β))-
plane. Right: in the (Re(α), Im(α))-plane.

It can be seen in Figure 3.14 that for sufficiently large κ, α’s lie on a circle in the
complex plane. Is it actually true that α’s and/or β’s lie on a circle? Can we figure out
what the circle is? Is it always the case or only for this particular example? In the next
theorem, which is one of the main results of this section, we will show that it is indeed
the case; namely, if we take two circles of sufficiently large radius κ, centred at A‖,‖ in the
α-plane and D‖,‖ in the β-plane, then each point in the first circle will be approximately the
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first component of the large eigenvalue-pair, and each point in the second circle will be
approximately the second component of the same eigenvalue-pair. Note that A‖,‖, D‖,‖ ∈
R and can be computed as

A‖,‖z = 〈Az, z〉z, D‖,‖w = 〈Dw,w〉w,

which are some constants proportional to z and w, respectively.

Theorem 3.7.4. As ν = 1
κ
→ 0, there exist a family of pair-eigenvalues (α, β) ∈ S̃pec(M)

such that ∣∣α− A‖,‖∣∣2 = κ2 +O
(
ν2
)
, (3.44)∣∣β −D‖,‖∣∣2 = κ2 +O

(
ν2
)
, (3.45)

or more precisely, for any t ∈ R, (αt, βt) ∈ S̃pec(M), where

αt = eitν−1 + a1 +O(ν), βt = e−itν−1 + b1 +O(ν), (3.46)

and a1 and b1, which are in general depending on t, satisfy

Re
(
(a1 − A‖,‖)e−it

)
= 0, Re

(
(b1 −D‖,‖)eit

)
= 0.

The next result will be useful in the proof of Theorem 3.7.4.

Lemma 3.7.5. Let c ∈ C \ {0} arbitrary constant. Then the system(
c 1
1 1/c

)(
p
q

)
=

(
s
t

)
has a non-trivial solution if and only if

ct− s = 0.

Proof. Re-writing as a system of two equations

cp+ q = s,

p+ (1/c)q = t,

and leaving p alone in the second equation and substituting into the first equation gives

c(t− (1/c)q) + q = s ⇔ ct− s = 0.
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Proof of Theorem 3.7.4. First, we prove the expansions given in (3.46). Then will deduce
the formulas (3.44) and (3.45). Take

α = κa, β = κb, ν =
1

κ
,

where a, b ∈ C and we let ν → 0. Then the equation (3.14) and (3.15) can be re-written
as

Au + κ〈v,w〉z = αu
Dv + κ〈u, z〉w = βv

}
⇔
{
νAu + 〈v,w〉z = au
νDv + 〈u, z〉w = bv

and we are seeking a solution of the form(
u
v

)
=
∞∑
k=0

(
uk
vk

)
νk,

(
a
b

)
=
∞∑
k=0

(
ak
bk

)
νk.

At order O(ν0), we have

〈v0,w〉z = a0u0

〈u0, z〉w = b0v0

}
(3.47)

which implies that

u0 = c0z,

v0 = d0w,

where c0, d0 are constants. Substituting these into (3.47) gives us

d0 = a0c0

c0 = b0d0

}
and therefore

a0b0 = 1. (3.48)

Since we can always re-scale the eigenfunctions, we set c0 = 1 and write the first terms
as (

u0

v0

)
=

(
z
a0w

)
.

Using the additional restriction Im(a0 + b0) = 0, we write

a0 = a0,r + ia0,i

b0 = b0,r − ia0,i

70



and substituting these into (3.48) yields

a0,r = b0,r

a0,rb0,r + a2
0,i = 1

}
which implies

a0 = eit, b0 = e−it (3.49)

for arbitrary t ∈ R. At order O(ν1), we have

Au0 + 〈v1,w〉z = a0u1 + a1u0

Dv0 + 〈u1, z〉w = b0v1 + b1v0

}
⇔
{
Az + 〈v1,w〉z = eitu1 + a1z
eitDw + 〈u1, z〉w = e−itv1 + eitb1w

(3.50)

Now separating vectors orthogonal and parallel to z and w in (3.50), we get

A‖,⊥z = eitQzu1 (3.51)

(A‖,‖ − a1)z− eitPzu1 + 〈v1,w〉z = 0 (3.52)

eitD‖,⊥w = e−itQwv1 (3.53)

(eitD‖,‖ − eitb1)w − e−itPwv1 + 〈u1, z〉w = 0 (3.54)

Now, write (3.52) and (3.54) as a system(
−eit 1

1 −e−it
)(
〈u1, z〉
〈v1,w〉

)
=

(
a1 − A‖,‖

eit(b1 −D‖,‖)

)
. (3.55)

By Lemma 3.7.5, the system (3.55) has a non-trivial solution if and only if

(a1 − A‖,‖)e−it + (b1 −D‖,‖)eit = 0.

Separating real and imaginary parts as a1 = a1,r + ia1,i and b1 = b1,r − ia1,i, we obtain

⇔ (a1,r − A‖,‖ + ia1,i)(cos t− i sin t) + (b1,r −D‖,‖ − ia1,i)(cos t+ i sin t) = 0

⇔
{

(a1,r − A‖,‖ + b1,r −D‖,‖) cos t+ (a1,i + a1,i) sin t = 0
(a1,i − a1,i) cos t+ (−a1,r + A‖,‖ + b1,r −D‖,‖) sin t = 0

⇔
{

(a1,r − A‖,‖ + b1,r −D‖,‖) cos t+ 2a1,i sin t = 0
(a1,r − A‖,‖ − b1,r +D‖,‖) sin t = 0

(3.56)

From the second equation of (3.56), we obtain

a1,r − A‖,‖ = b1,r −D‖,‖, (3.57)

and substituting this into the first equation of (3.56) we obtain

2(a1,r − A‖,‖) cos t+ 2a1,i sin t = 0 ⇔ Re[(a1 − A‖,‖)e−it] = 0, (3.58)
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and similarly

2(b1,r −D‖,‖) cos t− 2a1,i sin t = 0 ⇔ Re[(b1 −D‖,‖)eit] = 0. (3.59)

Now, substituting a0 and a1 into α, we have

α = ν−1a = a0ν
−1 + a1 +O(ν1)

= eitν−1 + a1 +O(ν),

and similarly, substituting b0, b1 into β, we have

β = ν−1b = b0ν
−1 + b1 +O(ν1)

= e−itν−1 + b1 +O(ν),

where a1 and b1 satisfies (3.58) and (3.59), respectively.
We now prove (3.44), the second statement (3.45) is similar. Using the expansion for

α in (3.46) we get

|α− A‖,‖|2 = |κa− A‖,‖|2

= |ν−1(a0 + νa1)− A‖,‖|2 +O(ν2)

= |ν−1eit + a1 − A‖,‖|2 +O(ν2)

= |ν−1|2|eit + ν(a1 − A‖,‖)|2 +O(ν2)

= ν−2
[
1 + 2νRe[(a1 − A‖,‖)e−it]

]
+O(ν2)

= ν−2 +O(ν2)

= κ2 +O

(
1

κ2

)
,

where we used (3.58) and |x+ y|2 = |x|2 + |y|2 + 2Re(xy).

We see from Figure 3.14 that when A = D, the large non-real pair-eigenvalue seems
to occur on the line Re(α) ∼= Re(β) which is equivalent to Re(λ) = 0 in the non-self-adjoint
problem. We now formally state this result as a corollary.

Corollary 3.7.6. Let A = D. Then there exists a pair eigenvalue (α, β) ∈ S̃pec(M) such
that

Re(α) = Re(β) +O(κ−2),

i.e.
α = β +O(κ−2).

Proof. This follows immediately from (3.49) and (3.57).
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3.7.2 Examples

In this section, we apply the limit results to the examples given in Section 3.6. Most
examples produce similar plots so we only mention three of them here. In each graph, we
also plot a circle of radius κ, centred at A‖,‖ in the α-plane and D‖,‖ in the β-plane, and
both indicated by a black circle.

First, consider A = D = H0, and take n = 7. Then (H0)‖,‖ = 0 and the behaviour of the
non-real eigenvalues in the α-plane can be seen in Figure 3.15. Since we take A = D,
we plot the figures only in the α-plane as figures in the β-plane are identical. The figure
illustrates that one family of non-real pair-eigenvalues approaches a circle as κ increases,
whereas the rest of the non-real eigenvalues get smaller and eventually become real.

Figure 3.15: S̃pec(M) \ R2 (red curves) in the α-plane with A = D = H0 for n = 7. Left:
κ = 2 and D(0, 2) (black dashed circle). Right: κ = 8 and D(0, 8) (black dashed circle).

Now, we consider some two-parameter eigenvalue examples given in Section 3.6. As
a second illustration, consider Example 3, i.e. take A = A3 with z = (1, 0)T as in (3.41),
and D = D1 with w = 1/

√
3(1, 1, 1)T as in (3.39). Then

(A3)‖,‖ = 1, (D1)‖,‖ = 8/3.

The limiting non-real eigenvalue behaviour for large κ can be seen as expected in Figure
3.16.

Third, we consider Example 6, i.e. take A = A6 with z = 1/
√

2(1, 0, 0, 1)T as in (3.42),
and D = D1 with w = 1/

√
3(1, 1, 1)T as in (3.39). Then (A6)‖,‖ = 2. The limiting non-real

eigenvalue behaviour can be seen in Figure 3.17.
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Figure 3.16: S̃pec(M) \R2 (red curves) with A = A3 and D = D1 for κ = 10. Left: D(1, 10)
(black dashed circle) in the α plane. Right: D(8/3, 10) (black dashed circle) in the β-plane.

Figure 3.17: S̃pec(M) \R2 (red curves) with A = A6 and D = D1 for κ = 10. Left: D(2, 10)
(black dashed circle) in the α plane. Right: D(8/3, 10) (black dashed circle) in the β-plane.
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Chapter 4

Bounds for the eigenvalues of Ac

In this chapter, we turn our attention to the linear pencil problem (3.3) and try to answer
some open questions about the non-real eigenvalues of Ac. These questions were first
raised by Davies and Levitin [19]. We will try to treat the problem (3.3) differently in order
to gain meaningful information. We start by re-writing the characteristic equation of Ac
in numerous ways in Section 4.1. In addition, Conjecture 1.3.3 can be reformulated in
various ways and we mention three of them in Section 4.2. Section 4.3 contains a full
proof of the conjecture when n = 2 and n = 3. We will see below that the conjecture is
non-trivial in these cases. Section 4.4 uses asymptotic methods to locate the non-real
eigenvalues of Ac when c goes to zero.

Finally, Section 4.5 applies the useful tools introduced in Chapter 2 to our pencil prob-
lem. We study finite ratios of Chebyshev polynomials of the second kind Un(ζ) in Section
4.2.1. We shall see that known ratio asymptotic estimates mentioned in Section 4.5.2 are
not sufficient when applied to the ratio Un+1(ζ)/Un(ζ). Therefore we will look at the finite
ratios of Un(ζ) in more detail to obtain better estimates. The results we will obtain are still
inadequate to answer the open questions, nonetheless we believe that these estimates
are useful. We conclude the chapter in Section 4.5.3 with a detailed discussion of the
well-known Gershgorin-type results when applied to our particular problem.

4.1 Different representation of the operator pencil Ac

Our goal in this section is to treat the linear pencil problem (3.3) in various ways by writing
several variations of the characteristic equation.
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4.1.1 Explicit expressions for eigenfunctions of Ac

The problem (3.5) can be re-written as

(H0 − σI)u = −Bv, (4.1)

(H0 + τI)v = −Bu. (4.2)

Recall the relation Fj(ζ) = Uj(ζ/2), where Uj is the Chebyshev polynomial of the second
kind, and that the function Fj satisfies the recurrence relation (2.35).

Lemma 4.1.1. Let ζ 6∈ Spec(H0), and let w solve

(
H

(n)
0 − ζI

)
w =


0
...
0
1

 . (4.3)

Then

w = w(ζ) = − 1

Fn(ζ)


F0(ζ)
F1(ζ)

...
Fn−2(ζ)
Fn−1(ζ)

 = −Fn−1(ζ)

Fn(ζ)


F0(ζ)/Fn−1(ζ)
F1(ζ)/Fn−1(ζ)

...
Fn−2(ζ)/Fn−1(ζ)

1


with

‖w(ζ)‖2 =
Fn(ζ)

|Fn(ζ)|2
,

where

Fn(ζ) :=
n−1∑
j=0

|Fj(ζ)|2. (4.4)

Proof. The equation (4.3) is written in components as

w2 − ζw1 = 0

wj−1 − ζwj + wj+1 = 0, for j = 2, . . . , (n− 1),

wn−1 − ζwn = 1.

Substituting wj = −Fj−1(ζ)

Fn(ζ)
we see that all n equations hold by (2.35).
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Corollary 4.1.2. Let u, v, σ, τ solve (4.1)-(4.2), and let σ, τ 6∈ {µn, . . . , µ1}. Then

u = −vnw(σ) =
vn

Fn(σ)


F0(σ)
F1(σ)

...
Fn−1(σ)

 ,

v = −unw(−τ) =
un

Fn(τ)


(−1)nF0(τ)

(−1)n+1F1(τ)
...

−Fn−1(τ)

 .

Proof. Immediate from (4.1)-(4.2) and Lemma 4.1.1.

Lemma 4.1.3. Let u, v, σ, τ solve (4.1)-(4.2), and in addition let σ, τ 6∈ {µn, . . . , µ1} and
‖u‖ = 1. Then λ = (σ + τ)/2 is a simple eigenvalue of Ac, and

Fn−1(σ)Fn−1(τ) + Fn(σ)Fn(τ) = 0, (4.5)

where

σ = λ− c, τ = λ+ c.

Moreover

|vn|2 =
|Fn(σ)|2

Fn(σ)
=
|Fn−1(τ)|2

Fn(τ)
, (4.6)

|un|2 =
|Fn(τ)|2

Fn(τ)
=
|Fn−1(σ)|2

Fn(σ)
. (4.7)

Additionally,

u =
eis√
Fn(σ)


F0(σ)
F1(σ)

...
Fn−1(σ)

 , v =
eit√
Fn(τ)


(−1)nF0(τ)

(−1)n+1F1(τ)
...

−Fn−1(τ)

 .

for some s, t ∈ R.

Proof. By Corollary 4.1.2,

un = vn
Fn−1(σ)

Fn(σ)
, vn = −un

Fn−1(τ)

Fn(τ)
,

which implies (4.5). The eigenvalue is geometrically simple since the eigenspace is one-
dimensional (with un or vn being a simple parameter). By Lemma 2.1.3, we know that
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‖u‖ = ‖v‖. The first equalities in each of (4.6) and (4.7) are then obtained from the
normalising conditions

‖v‖2 = |un|2‖w(−τ)‖2 = |un|2
Fn(τ)

|Fn(τ)|2
= 1,

‖u‖2 = |vn|2‖w(σ)‖2 = |vn|2
Fn(σ)

|Fn(σ)|2
= 1.

The second ones are obtained from writing normalising conditions as

‖v‖2 = |vn|2
n∑
j=1

|vj|2

|vn|2
= |vn|2

Fn(τ)

|Fn−1(τ)|2
= 1,

and similarly for u. [Remark: the second inequalities in (4.6) and (4.7) can be also de-
duced from the first ones and (4.5).] The expressions for u and v result from a substitu-
tion.

Remark 4.1.4. It would be nice to obtain additional restrictions on σ and τ from the fact
that the quantities in (4.6) and (4.7) should be less than one. Unfortunately this is not
the case - the numerics of the contour plot of the RH sides in (4.6) and (4.7) show that
the curves on which |Fn(τ)|2

Fn(τ)
= 1 protrude (by a small amount) into the domain |τ | > 2 (or

Re(τ) > 2) for n ≥ 4. These curves are illustrated in Figure 4.1 as n increases. Note that
this is because the construction above does not use the crucial condition Im(σ) = Im(τ).

Figure 4.1: Contour plots of |Fn(τ)|2
Fn(τ)

= 1 (blue curves) in the (Re(τ), Im(τ))-plane and
Re(τ) = ±2 (red dashed lines) for n = 3, n = 4 and n = 5 from left to right.

4.1.2 Mapping z + 1/z

Let λ ∈ Spec(Ac). We use the following substitution

λ− c = σ := z +
1

z
, λ+ c = τ := w +

1

w
, (4.8)
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where z and w are some complex numbers. Note that each λ corresponds to two values
of z (which are inverses of each other) and two values of w (which are also inverses of
each other). These values are the solutions of the quadratic equations

z2 − (λ− c)z + 1 = 0, (4.9)

w2 − (λ+ c)w + 1 = 0, (4.10)

respectively. If λ is non-real, then we define z and w to be the unique solutions of (4.9)
and (4.10), respectively, which satisfy

|z| > 1, |w| > 1. (4.11)

Define the meromorphic function fn : C2 → C by

fn(z, w) = (zn+1 − z−n−1)(wn+1 − w−n−1) + (zn − z−n)(wn − w−n). (4.12)

The next result is the characteristic polynomial of the pencil Ac, deduced in [19], as an
explicit complex polynomial equation in two variables.

Lemma 4.1.5 ( [19, Lemma 2.4]). Let z, w, λ be related by (4.9)-(4.10). If σ = z+z−1 6= ±2

and τ = w + w−1 6= ±2, then

det(H(2n)
c − λS) = (−1)n

fn(z, w)

(z − z−1)(w − w−1)
.

Remark 4.1.6. Lemma 4.1.5 is not the exact statement of Lemma 2.4 in [19]. To be
precise, Davies and Levitin [19] constructed the characteristic polynomial of a linear pencil
H

(N)
0 − λSm,n;σ,τ where Sm,n;σ,τ is the diagonal matrix

Sm,n;σ,τ =

(
σIm

τIn

)
,

and what we state here is the special case when m = n and −τ instead of τ .

Let D(o, r) be the disk of radius r around a point o, that is,

D(o, r) := {ζ ∈ C : |ζ − o| < r},

and let ∂D(o, r) be the boundary of the disk D(o, r). In addition, define the families of
meromorphic function Gn : C→ C by

Gn(ξ) :=
ξn+1 − ξ−n−1

ξn − ξ−n
. (4.13)

Now, we quote another result from [19] which relates the eigenvalues of the pencil A to
the function fn and Gn.
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Theorem 4.1.7 ( [19, Theorem 2.3]). Let λ ∈ C \ {−2− c,−2 + c, 2− c, 2 + c} and let λ, z,
w be related by (4.8)-(4.11). Then

(a) λ is an eigenvalue of the pencil Ac if and only if

fn(z, w) = 0. (4.14)

(b) If λ is an eigenvalue of Ac, then it is real if and only if both z and w lie in the set

∂D(0, 1) ∪ (R \ {0}) .

(c) If λ 6∈ R then λ is an eigenvalue of Ac if and only if

Gn(z)Gn(w) = −1. (4.15)

Remark 4.1.8. Looking at the imaginary parts of (4.8), we see that

Imλ = Im

(
z +

1

z

)
= Im

(
w +

1

w

)
,

and re-arranging this we obtain

Imλ = Im(z)

(
1− 1

|z|2

)
= Im(w)

(
1− 1

|w|2

)
. (4.16)

If λ ∈ C \ R, then using |z| > 1 and |w| > 1 implies that corresponding Im(z) and Im(w)

are of the same sign.

Remark 4.1.9. Let λ ∈ R. Then Theorem 4.1.7(b) immediately follows from (4.16). In
addition, we have from (4.9) and (4.10) that

z =
λ− c±

√
(λ− c)2 − 4

2
, w =

λ+ c±
√

(λ+ c)2 − 4

2
. (4.17)

It follows from Lemma 3.1.1 that |λ| ≥ 2+ |c| is impossible. Also it can be seen from (4.17)
with account of Theorem 4.1.7(b) that

λ ∈ (−2− c,−2 + c] ⇔ z ∈ R, w ∈ ∂D(0, 1), (4.18)

λ ∈ (−2 + c, 2− c) ⇔ z ∈ ∂D(0, 1), w ∈ ∂D(0, 1), (4.19)

λ ∈ [2− c, 2 + c) ⇔ z ∈ ∂D(0, 1), w ∈ R. (4.20)

In addition, Theorem 4.1.7(b) states that if λ ∈ R, and z and/or w are non-real, then they
lie on the unit circle ∂D(0, 1).
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4.1.3 Ac in the basis of eigenfunctions of H0

Let the matrix Ψ have the entries (ψj,k)
n
j,k=1 =

(√
2/(n+ 1) sin(πjk/(n+ 1))

)n
j,k=1

, i.e.

Ψ :=

√
2

n+ 1


sin
(

π
n+1

)
sin
(

2π
n+1

)
· · · sin

(
πn
n+1

)
sin
(

2π
n+1

)
sin
(

4π
n+1

) ...
... . . .

sin
(
πn
n+1

)
· · · sin

(
πn2

n+1

)
 . (4.21)

Since the columns of Ψ are normalised eigenfunctions of H0 which is Hermitian, Ψ is a
unitary matrix, i.e.

Ψ = Ψ∗ = ΨT = Ψ−1.

In the orthonormal basis{(
ψ1

0

)
, . . . ,

(
ψn
0

)
,

(
0
ψ1

)
, . . . ,

(
0
ψn

)}
,

where 0 represents the zero vector in Rn, the problem (3.5) can be re-written as follows.

Lemma 4.1.10. Using the change of basis matrix diag(Ψ,Ψ), the spectral problem (3.5)
is equivalent to the problem

µ1 − σ ψ1,nψn,n · · · ψ1,nψ1,n

. . . ...
...

µn − σ ψn,nψn,n · · · ψn,nψ1,n

ψ1,nψn,n · · · ψ1,nψ1,n µ1 + τ
...

... . . .
ψn,nψn,n · · · ψn,nψ1,n µn + τ





u1
...
un
vn
...
v1


= 0. (4.22)

Proof. Note that (diag(Ψ,Ψ))−1 = diag(Ψ,Ψ). Consider the problem (3.5). Since for any
non-singular matrix X, the spectrum of A and X−1AX are the same, the matrix on the
left-hand side of (3.5) can be written in the following alternative form:(

Ψ
Ψ

)(
H0 − σI B

B H0 + τI

)(
Ψ

Ψ

)
=

(
ΨH0Ψ− σI ΨBΨ

ΨBΨ ΨH0Ψ + τI

)
. (4.23)

Calculating

H̃0 := ΨH0Ψ = diag(µ1, . . . , µn), (4.24)

B̃ := ΨBΨ = (ψn,jψk,n)nj,k=1 (4.25)

Substituting these into (4.23) and recalling that ψj,k = ψk,j, we arrive at (4.22).

We will apply Gershgorin Theorem to the problem (4.22) and deduce the correspond-
ing Gershgorin set in Section 4.5.3.3.
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4.2 Reformulating Conjecture 1.3.3 in different forms

As can be seen in Theorem 1.3.4, there are several ways to reformulate Conjecture 1.3.3.
Our aim in this section is to re-write the conjecture by using the different forms of charac-
teristic equation.

4.2.1 Ratios of orthogonal polynomials

Define the family of meromorphic function F̃n : C→ C by

F̃n(ζ) :=
Fn(ζ)

Fn−1(ζ)
. (4.26)

In fact, the function F̃n(ζ) is equal to the ratios of Chebyshev polynomials of the second
kind Un(ζ/2) = Fn(ζ). Then the following recurrence relation is immediate.

Proposition 4.2.1. Let n ≥ 1. Then F̃n(ζ) satisfies the recurrence relation

F̃n+1(ζ) = ζ − 1

F̃n(ζ)
, F̃1(ζ) = ζ. (4.27)

Proof. Consider the recurrence relation (2.35). Then for n = 1

F̃1(ζ) =
F1(ζ)

F0(ζ)
= ζ.

For n ≥ 2, dividing the last equation of (2.35) by Fj−1(ζ) we arrive at (4.27).

One can see that functions F̃n andGn are related to each other in the following manner.

Proposition 4.2.2. Let ξ ∈ C \ {0} and n ≥ 1. Then

Gn(ξ) = F̃n

(
ξ +

1

ξ

)
. (4.28)

Proof. We proceed by induction. For n = 1, we have

G1(ξ) =
ξ2 − ξ−2

ξ − ξ
= ξ +

1

ξ
= F̃1

(
ξ +

1

ξ

)
so (4.28) holds for n = 1. Now assume that (4.28) is true for some n ∈ N. Then

Gn+1(ξ) =
ξn+2 − ξ−n−2

ξn+1 − ξ−n−1

=
(ξn+1 − ξ−n−1)(ξ − ξ−1)− ξn + ξ−n

ξn+1 − ξ−n−1

= ξ + ξ−1 − 1

Gn(ξ)
= F̃n+1

(
ξ +

1

ξ

)
.

Thus, by induction, (4.28) holds for all n ∈ N.
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Using Proposition 4.2.1, the characteristic equation (4.5) can be reformulated in terms
of F̃n as follows.

Corollary 4.2.3. Let λ, σ, τ be related by (3.6), let u,v, σ, τ solve (4.1)-(4.2), and let σ, τ 6∈
{µn, . . . , µ1}. Then λ = (σ + τ)/2 is a simple eigenvalue of Ac, and

F̃n(σ)F̃n(τ) = −1. (4.29)

The equation (4.29) can also be deduced from Theorem 4.1.7 and Proposition 4.2.2.
We now verify the reformulation of Conjecture 1.3.3 given as in Theorem 1.3.4(iii).

Proof of Theorem 1.3.4(iii). Let λ, σ, τ be related by (3.6). Then, by Corollary 4.2.3, λ is a
non-real eigenvalue of Ac if and only if σ, τ ∈ C \ R satisfy (4.29). We have by (3.6) that
Im(λ) = Im(σ) = Im(τ). Moreover, by Lemma 3.1.3 we have the symmetry λ→ λ, which
implies σ → σ and τ → τ . Therefore it is sufficient to consider the non-real solutions of
(4.29) with Im(σ) = Im(τ) > 0.

We omit the proof of part (ii) since its reformulation is immediate by (4.26).
It is easy to see that if |σ| ≥ 2 and |τ | ≥ 2, then there is no such (σ, τ) ∈ C2 which

satisfies (4.29). This is due to the following lemma.

Lemma 4.2.4. If |ζ| ≥ 2, then
∣∣∣F̃n(ζ)

∣∣∣ > 1 for all n ≥ 1.

Proof. We proceed by induction. For n = 1, the statement is obvious. Now assume that∣∣∣F̃n(ζ)
∣∣∣ > 1 holds for some n ∈ N. Then∣∣∣∣∣∣|ζ| − 1∣∣∣F̃n(ζ)

∣∣∣
∣∣∣∣∣∣ ≤

∣∣∣∣∣ζ − 1

F̃n(ζ)

∣∣∣∣∣ =
∣∣∣F̃n+1(ζ)

∣∣∣ .
Since |ζ| ≥ 2 and

1∣∣∣F̃n(ζ)
∣∣∣ < 1, the left-hand side of the inequality is greater than one, and

therefore
∣∣∣F̃n+1(ζ)

∣∣∣ > 1. Then, by induction, the statement holds for all n ∈ N.

Using the three term recurrence relation (4.27), the function F̃n can be written in a
continued fraction expansion

F̃n(ζ) = ζ −
1

ζ −
1

. . . −
1

ζ

.
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However, the main problem in here is that ζ is a complex number. In addition, since
the functions F̃n(ζ) can be expressed in terms of the ratios of Chebyshev polynomials of
the second kind, we can treat Conjecture 1.3.3 as a ratio of orthogonal polynomials. In
Section 4.5.2, we will apply the ratio asymptotics, which were mentioned in Section 2.3.4,
and obtain some bounds on the function F̃n(ζ).

4.2.2 The area between |z| = 1 and |z ± i|2 < 2

In Section 4.1.2, we used the change of variables (4.8) to re-write the characteristic equa-
tion in terms of z and w, as in Lemma 4.1.7(a) and (c). Therefore another way of ex-
pressing Conjecture 1.3.3 is looking at the equivalent statements of λ in terms of z and
w, which was stated in the introduction. Our goal in this subsection is to prove and clarify
Theorem 1.3.4(iv). We will then give some numerical examples to support this result. We
will illustrate z and w values correspond to the non-real eigenvalues of Ac on the same
complex plane. We also give the Gershgorin-type localisation result and its illustration in
Section 4.5.3.3.

Remark 4.2.5. The characteristic equation of the pencil problem for non-real eigenvalues
was given in Theorem 4.1.7(c). In fact, the equation (4.15) holds also for the real eigen-
values of Ac as long as zn 6= z−n and wn 6= w−n. This is due to Theorem 4.1.7(a), and
that

fn(z, w)

(zn − z−n)(wn − w−n)
= Gn(z)Gn(w)− 1.

It is also easy to see that if λ is non-real, then by Theorem 4.1.7(b), we have zn 6= z−n

and wn 6= w−n.

A direct calculation leads to the following auxiliary result.

Lemma 4.2.6. The roots of |z + 1/z| = 2 are exactly z = ±i +
√

2eiϕ where ϕ ∈ [0, 2π],
and therefore ∣∣∣∣z +

1

z

∣∣∣∣ < 2 ⇔ |z ± i| <
√

2. (4.30)

We can now clarify the reformulation of Conjecture 1.3.3 in terms of corresponding z

and w.

Proof of Theorem 1.3.4(iv). Recall that if λ is a non-real eigenvalue of the pencil Ac, we
then define z, w to be the unique solutions of (4.9) and (4.10), respectively, which satisfy
|z| > 1 and |w| > 1. Then by Theorem 4.1.7(b), λ is non-real if and only if z, w ∈ C\R with
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|z| > 1 and |w| > 1. By Lemma 4.2.6, we can re-write the statement of the conjecture as
any solutions z, w of (4.15) should lie in the set Z1 ∪ Z2 where

Z1 = D(i,
√

2) \ D(0, 1), Z2 = D(−i,
√

2) \ D(0, 1),

where D(o, r) denotes the closure of the disk D(o, r).

We present some numerical experiments in Figure 4.2. For simplicity, we omit the
values of z and w which lie on the unit circle ∂D(0, 1) and on the real line. It is clear
from (4.18)-(4.20) that these values correspond to the real eigenvalues of Ac. We take
the set of non-real eigenvalues in the λ-plane and plot them in a different complex plane
using (4.8). We superimpose corresponding values of z and w in the same complex
plane by solving the quadratic equations (4.9) and (4.10) on a finely spaced grid of c
values. The black dashed circle represents the unit circle ∂D(0, 1), the orange circle
represents ∂D(i,

√
2) and the light-orange shaded area represents the set Z1. The green

circle represents ∂D(−i,
√

2) and the light-green shaded area represents the set Z2. The
red and blue curves, which correspond to values of z and w respectively, are exactly
the non-real eigenvalue curves of the pencil Ac under the change of variables (4.8). For
presentation purposes, in the four illustrations we zoom in on an area near the unit circle.

In Figure 4.2 we illustrate all non-real eigenvalue curves, however we would like to
know only whether (1.19) is satisfied. Without seeing the dynamics, it is difficult to under-
stand which two values (z and w) correspond to the same c. The only thing we know from
Remark 4.1.8 is that Imλ > 0 implies Im(z) > 0 and Im(w) > 0. According to the figure,
the eigenvalues (in terms of z and w) always appear from the unit circle and disappear
to the unit circle. Conjecture 1.3.3 will be broken if one eigenvalue escapes from the unit
circle and then travels to the real axis. In this case, it would have to cross the forbidden
region. The important thing in this figure is that they do not cross the boundary of Z1

and Z2. Conjecture 1.3.3 appear to be true since whatever escapes from the unit circle,
returns to the unit circle without going through the forbidden area. Hence, both z and w,
which correspond to the non-real eigenvalues, seem to lie in Z1 ∪ Z2.

4.2.3 Intersection of Gershgorin disks

Recall that G(A) represents the Gershgorin set of A. Our main aim was to enhance
the Gershgorin Theorem when applied to the non-real eigenvalues of the pencil Ac (or
the non-self-adjoint matrix Ac), but we could not. In this section, we apply the Gersh-
gorin Theorem to our problem. In Section 4.5.3, we will discuss the application of known
Gershgorin-type results mentioned in Section 2.2 to our problem in more detail.
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Figure 4.2: Z1 (orange dashed region), ∂D(i,
√

2) (orange circle), Z2 (green dashed
region), ∂D(−i,

√
2) (green circle), ∂D(0, 1) (black dashed circle), drawn in the complex

plane, together with the superimposition of z (red curves) and w (blue curves) values,
which correspond to the non-real eigenvalues only, for c values between 0 and 2 with
step-size of 10−3. Left top: n = 3. Right top: n = 4. Left bottom: n = 7. Right bottom:
n = 14.

The Gershgorin set G(Ac) consists of four different disks defined by

G1(Ac) = D(c, 1), Gi(Ac) = D(c, 2),

Gj(Ac) = D(−c, 2), G2n(Ac) = D(−c, 1)
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where i = 2, . . . , n and j = n+ 1, . . . , N − 1. Then G1(Ac) ⊂ Gi(Ac) and G2n(Ac) ⊂ Gj(Ac),
and therefore

n⋃
i=1

Gi(Ac) = D(c, 2),
2n⋃

j=n+1

Gj(Ac) = D(−c, 2).

Hence, we obtain
Spec(Ac) ⊆ G(Ac) = D(c, 2) ∪ D(−c, 2).

We illustrate the union in Figure 4.3.

Figure 4.3: For n = 11, red dots represent the eigenvalues of Ac and the blue shaded
region is the Gershgorin set G(Ac), i.e. the union D(c, 2) ∪ D(−c, 2). The boundaries of
each disk are represented by the blue circles. Left: c = 0.3. Right: c = 1.4.

However, when we focus on the non-real eigenvalues of Ac, we observe that they all
seem to lie in the intersection of the Gershgorin disks. Note that

D(c, 2) ∩ D(−c, 2) = {λ ∈ C : |λ− c| < 2 and |λ+ c| < 2}.

Then this leads us to another reformulation of the conjecture as in Theorem 1.3.4(v), i.e.
if λ ∈ Spec(Ac) \ R, then λ ∈ D(c, 2) ∩ D(−c, 2).

As shown in Section 2.2, there exists no Gershgorin-type localisation result which
gives a bound only for the non-real eigenvalues of a matrix. All existing results give a
bound for the whole spectrum of a matrix. In this case, we see that Conjecture 1.3.3 is
somewhat stronger than Gershgorin Theorem. Unfortunately, we could not obtain any
such region which contains only the non-real spectrum of Ac. Nevertheless, we have the
following result.

Lemma 4.2.7. Conjecture 1.3.3 is satisfied for those λ ∈ Spec(Ac) \ R for which |σ| = |τ |
with λ, σ, τ related by (3.6).
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Proof. The case |σ| = |τ | implies that

|λ− c| = |λ+ c| ⇔ c = 0 or Re(λ) = 0,

i.e. λ is equidistant from both c and −c. In other words, these eigenvalues lie on the
imaginary axis in the complex plane. Since the Gershgorin disks D(c, 2) and D(−c, 2)

are symmetric with respect to the imaginary axis, the intersection as well as the union of
two Gershgorin disks always cover the imaginary axis by Gershgorin Theorem. Therefore
these purely imaginary eigenvalues always lie in the intersection of two Gershgorin disks
which implies that both |σ| = |λ − c| and |τ | = |λ + c| are smaller than two. Note that the
boundaries does not play a role since the characteristic equation (4.29) is not satisfied by
Lemma 4.2.4 if |σ| = |τ | = 2.

4.3 Partial cases

The goal of this section is to prove that the Conjecture 1.3.3 holds for n = 2 and for
n = 3. We will prove the equivalent statement of the conjecture given in Theorem 1.3.4(iii).
The purpose of this section is to see that even for small size, the result is non-trivial,
computations get messy and there is no pattern.

When n = 1, it is straightforward to see that Conjecture 1.3.3 is satisfied:

στ = −1 ⇒ τ = − 1

σ
= −Re(σ)− iIm(σ)

|σ|2

and since Im(σ) = Im(τ), we obtain

Im(τ) =
Im(σ)

|σ|2
⇒ |σ| = 1 ⇒ |τ | = 1

|σ|
= 1,

as required.
Now, set

σ = x+ iy, τ = t+ iy, (4.31)

where x, t ∈ R and y ∈ R \ {0}, and look for solutions of the characteristic equation (4.29)
when n = 2 and n = 3. We will see in each situation that there are two cases: either
|σ| = |τ | or |σ| 6= |τ |. We know by Lemma 4.2.7 that Conjecture 1.3.3 is satisfied in the
case |σ| = |τ | for all n ∈ N. Nevertheless, we emphasise that we will include the proof of
this case for the sake of completeness. In addition, recall from Corollary 3.1.8 that |y| ≤ 1.
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4.3.1 The case n = 2

For n = 2, the equation becomes(
σ − 1

σ

)(
τ − 1

τ

)
= −1 ⇔ −στ = (σ2 − 1)(τ 2 − 1),

substituting (4.31) into (4.29) gives

−(x+ iy)(t+ iy) = (x2 − y2 − 1 + i2xy)(t2 − y2 − 1 + i2ty).

Separating the real and imaginary parts of the equation gives the system of two equations

y2 − xt = (x2 − y2 − 1)(t2 − y2 − 1)− 4xty2, (4.32)

−(xy + yt) = 2ty(x2 − y2 − 1) + 2xy(t2 − y2 − 1). (4.33)

Re-arranging equation (4.33) gives

(x+ t)(1 + 2y2 − 2xt) = 0. (4.34)

We now have two cases, either t = −x or 1 + 2y2 − 2xt = 0.

The first case: |σ| = |τ |

Let t = −x which also implies that |σ| = |τ |. Then using this in (4.32), we have, after
simplification, that

4x2 − 1 = (x2 + y2)2 + (x2 + y2)

and since 4x2 − 1 < 4|σ|2 − 1, the above equation reduces to

|σ|4 + |σ|2 < 4|σ|2 − 1

which implies (
|σ|2 − 3

2

)2

− 5

4
< 0,

and so

3

2
−
√

5

4
< |σ|2 < 3

2
+

√
5

4
,

and since |σ| = |τ |, we obtain |σ|, |τ | < 2.
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The second case: |σ| 6= |τ |

Take t 6= −x. Re-arranging (4.32), we have

0 = (x2 − y2 − 1)(t2 − y2 − 1)− 4xty2 − y2 + xt

= x2t2 − x2y2 − x2 − y2t2 + y4 + y2 − t2 + y2 + 1− 4xty2 − y2 + xt

= (xt)2 + xt− y2(x2 + t2)− (x2 + t2) + y4 + y2 + 1− 4y2(xt)

Then using xt = y2 + 1/2 into the above equation, we obtain

0 = (y4 + y2 +
1

4
)− (y2 + 1)(x2 + t2) + y4 + y2 + 1− 4y4 − 2y2 + y2 +

1

2

= −(y2 + 1)(x2 + t2)− 2y4 + 1 +
1

4
+ y2 +

1

2

= −(y2 + 1)(x2 + t2 + 2y2) + 2y4 + 2y2 − 2y4 + y2 +
7

4

= −(y2 + 1)(|σ|2 + |τ |2) + 3y2 +
7

4

which implies

|σ|2 + |τ |2 =
3y2 + 7

4

y2 + 1
= 3− 5

4(y2 + 1)
< 3

for all y. Thus, |σ|, |τ | < 2. Hence the conjecture is true for n = 2.

4.3.2 The case n = 3

When n = 3, equation (4.29) becomes(
σ − 1

σ − 1
σ

)(
τ − 1

τ − 1
τ

)
= −1 ⇔

(
σ − σ

σ2 − 1

)(
τ − τ

τ 2 − 1

)
= −1

⇔ (σ3 − 2σ)(τ 3 − 2τ) = −(σ2 − 1)(τ 2 − 1). (4.35)

First, re-arranging the imaginary part of LHS of (4.35), we have

Im[(σ3 − 2σ)(τ 3 − 2τ)]

= Im[(x3 − 3xy2 − 2x+ i(3x2y − 2y − y3))(t3 − 3ty2 − 2t+ i(3t2y − 2y − y3))]

= (x3 − 3xy2 − 2x)(3t2y − 2y − y3) + (t3 − 3ty2 − 2t)(3x2y − 2y − y3)

= −x3y3 + 3x3t2y − 2x3y + 3xy5 − 9xt2y3 + 8xy3 − 6xt2y + 4xy

− t3y3 + 3x2t3y − 2t3y + 3ty5 − 9x2ty3 + 8ty3 − 6x2ty + 4ty

= −y3(x3 + t3) + 3x2t2y(x+ t)− 2y(x3 + t3) + 3y5(x+ t)
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− 9xty3(x+ t) + 8y3(x+ t)− 6xty(x+ t) + 4y(x+ t)

= (x+ t)y[(−y2 − 2)(x2 + t2 − xt) + 3x2t2 + 3y4 − 9xty2 + 8y2 − 6xt+ 4], (4.36)

and re-arranging the imaginary part of RHS of (4.35), we have

Im[−(σ2 − 1)(τ 2 − 1)] = Im[−(x2 − y2 − 1 + i2xy)(t2 − y2 − 1 + i2ty)]

= −(2ty(x2 − y2 − 1) + 2xy(t2 − y2 − 1))

= −2y(tx2 − ty2 − t+ xt2 − xy2 − x)

= −2y[(x+ t)(xt− y2 − 1)]. (4.37)

Equating (4.36) and (4.37) we obtain

(x+ t)y
[
(−y2 − 2)(x2 + t2 − xt) + 3x2t2 + 3y4 − 9xty2 + 6y2 − 4xt+ 2

]
= 0. (4.38)

Since y 6= 0, we again have two cases; either |σ| = |τ | or |σ| 6= |τ |.

The first case: |σ| = |τ |

The first case; let t = −x, i.e. |σ| = |τ |. Then from the real part of LHS of (4.35), we have

Re[(σ3 − 2σ)(τ 3 − 2τ)]

= Re[(x3 − 3xy2 − 2x+ i(3x2y − 2y − y3))(t3 − 3ty2 − 2t+ i(3t2y − 2y − y3))]

= (x3 − 3xy2 − 2x)(t3 − 3ty2 − 2t)− (3x2y − 2y − y3)(3t2y − 2y − y3)

= −(x3 − 3xy2 − 2x)2 − (3x2y − 2y − y3)2

= −(x6 + 3x4y2 + 3x2y4 + y6 − 4x4 + 4x2 + 4y4 + 4y2)

= −[(x2 + y2)3 − 4x4 + 4y4 + 4(x2 + y2)]

= −|σ|6 − 4|σ|2 + 4x4 − 4y4

= −|σ|6 − 4|σ|2 + 4(x2 + y2)2 − 8x2y2 − 8y4

= −|σ|6 − 4|σ|2 + 4|σ|4 − 8y2|σ|2, (4.39)

and from the real part of RHS of (4.35),

Re[−(σ2 − 1)(τ 2 − 1)] = Re[−(x2 − y2 − 1 + i2xy)(z2 − y2 − 1 + i2zy)]

= −(x2 − y2 − 1)(z2 − y2 − 1) + 2xy2zy

= −(x4 + y4 + 1− 2x2y2 − 2x2 + 2y2 + 4x2y2)

= −[(x2 + y2)2 − 2x2 + 2y2 + 1]

= −|σ|4 + 2|σ|2 − 4y2 − 1. (4.40)
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Equating (4.39) and (4.40) yields

|σ|6 − 5|σ|4 + |σ|2(6 + 8y2)− 4y2 − 1 = 0. (4.41)

Let s := |σ|2 and denote

f̃y(s) := s3 − 5s2 + (6 + 8y2)s− 4y2 − 1,

then the equation (4.41) becomes

f̃y(s) = 0.

We now need to show that if s0 is a root of f̃y(s) for some y > 0, then s0 < 4. First, note
that when s = 4, the function is positive for all y, i.e.

f̃y(4) = 7 + 28y2 > 0.

Now, we want to show that the function is increasing for all y > 0 and s > 4. Taking the
derivative with respect to s gives

f̃
′

y(s) = 3s2 − 10s+ 6 + 8y2.

f̃
′
y(s) is increasing in s for s ≥ 5/3, therefore for s ≥ 4,

f̃
′

y(s) ≥ f̃
′

y(4) = 14 + 8y2 > 0.

Thus, f̃ ′y(s) > 0 for s ≥ 4, and if there exists s0 such that f̃y(s0) = 0, then s0 < 4. Hence
we prove that if |σ| = |τ |, then |σ|, |τ | < 2.

The second case: |σ| 6= |τ |

The second case is to show if |σ| 6= |τ | then |σ|, |τ | < 2. Proving this case is not as easy
as the first case. We will see that all calculations get messy and the problem involves
finding zeros of high degree polynomials.

Dividing (4.38) by y(x+ t) and re-arranging it gives

3x2t2 − 2xt(4y2 + 1)− (x2 + t2)(y2 + 2) + 3y4 + 6y2 + 2 = 0,

which implies

3x2t2 = 2xt(4y2 + 1) + (|σ|2 + |τ |2)(y2 + 2)− 2y4 − 4y2 − 3y4 − 6y2 − 2.
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Let p := xt and A := |σ|2 + |τ |2, then

3p2 − p(8y2 + 2)− A(y2 + 2) + 5y4 + 10y2 + 2 = 0. (4.42)

Now, the real part of (4.35), after simplification, is

x3t3 + x2t2(−9y2 + 1) + xt(−(3y2 + 2)(x2 + t2) + 9y4 + 8y2 + 4)

+(x2 + t2)(3y4 + 5y2 − 1)− y6 − 3y4 − 2y2 + 1 = 0.

Using p = xt and A = |σ|2 + |τ |2 yields

p3 + p2(−9y2 + 1) + p
(
−A(3y2 + 2) + 15y4 + 12y2 + 4

)
+ A(3y4 + 5y2 − 1)− 7y6 − 13y4 + 1 = 0. (4.43)

The equation (4.42) implies that

3p2 = p
(
8y2 + 2

)
+ A

(
y2 + 2

)
−
(
5y4 + 10y2 + 2

)
. (4.44)

Multiplying (4.44) by p and substituting this into (4.43) gives

p2

(
8y2 + 2

3
− 9y2 + 1

)
+ p

(
A
y2 + 2

3
− 5y4 + 10y2 + 2

3
− A(3y2 + 2) + 15y4 + 12y2 + 4

)
+ A(3y4 + 5y2 − 1)− 7y6 − 13y4 + 1 = 0,

which implies

p2
(
−19y2 + 5

)
+ p

(
A(−8y2 − 4) + 40y4 + 26y2 + 10

)
+ 3A(3y4 + 5y2 − 1)− 3(7y6 + 13y4 − 1) = 0.

Substituting equation (4.44) into the above equation yields(
−19y2 + 5

) [
p
(
8y2 + 2

)
+ A

(
y2 + 2

)
−
(
5y4 + 10y2 + 2

)]
+3p

(
A(−8y2 − 4) + 40y4 + 26y2 + 10

)
+9A(3y4 + 5y2 − 1)− 9(7y6 + 13y4 − 1) = 0,

which implies

p
((
−19y2 + 5

) (
8y2 + 2

)
− 3A(8y2 + 4) + 120y4 + 78y2 + 30)

)
+ A

((
−19y2 + 5

) (
y2 + 2

)
+ 27y4 + 45y2 − 9

)
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+
(
19y2 − 5

) (
5y4 + 10y2 + 2

)
− 9(7y6 + 13y4 − 1) = 0,

and so

p
(
3A(8y2 + 4) + 32y4 − 80y2 − 40

)
= A(8y4 + 12y2 + 1) + 32y6 + 48y4 − 12y2 − 1.

Resolving the last equation with respect to p and substituting back into (4.42) gives

f̂y(A) :=
−144A3(y2 + 2)(2y2 + 1)2 + 9A2(640y6 + 1776y4 + 1208y2 + 243)

16(A(6y2 + 3) + 8y4 − 20y2 − 10)2

− 9A
(512y8 + 3584y6 + 6256y4 + 3328y2 + 558)

16(A(6y2 + 3) + 8y4 − 20y2 − 10)2

+
20736y8 + 75456y6 + 77328y4 + 27432y2 + 3123

16(A(6y2 + 3) + 8y4 − 20y2 − 10)2
= 0.

We want to show that if A0 is a root of f̂y(A) for some 0 < y ≤ 1, then A0 < 4. First, we
show that f̂y(4) is negative for all y ∈ (0, 1]:

f̂y(4) =
9(256y8 + 192y6 − 304y4 − 152y2 − 45)

64(4y4 + 2y2 + 1)2
.

The denominator of f̂y(4) is positive. By using y8 < y6 < y4 and −y2 < −y4 we obtain

64(4y4 + 2y2 + 1)2f̂y(4) = 2304y8 + 1728y6 − 2736y4 − 1368y2 − 405

< 2304y4 + 1728y4 − 2736y4 − 1368y4 − 405

= −72y4 − 405 < 0

which implies

f̂y(4) < 0, ∀y ∈ (0, 1]. (4.45)

Second, taking the derivative with respect to A, we will show that f̂y(A) is decreasing for
all 0 < y ≤ 1 and A > 4. A direct calculation gives

f̂
′

y(A) =
k3A

3 + k2A
2 + k1A+ k0

k−1

,

where

k3(y) = −1728y8 − 6048y6 − 6480y4 − 2808y2 − 432,

k2(y) = −6912y10 − 3456y8 + 44928y6 + 61344y4 + 28080y2 + 4320,

k1(y) = 59904y10 + 116352y8 − 73008y6 − 185472y4 − 92466y2 − 14337,

k0(y) = −18432y12 − 207360y10 − 394560y8 − 85824y6 + 164376y4 + 98946y2 + 15741
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k−1(A, y) = 8(A(6y2 + 3) + 8y4 − 20y2 − 10)3.

It is easy to see that the denominator k−1(A, y) is always positive when A > 4, and
therefore we will ignore it since it does not play a role to the sign of f̂ ′y(A). To understand
the sign of the numerator of f̂ ′y(A), we need the following result.

Lemma 4.3.1. For any 0 < y ≤ 1,

(i) 43k3 + 42k2 + 4k1 + k0 < 0.

(ii) k1 + k2 + k3 < 0.

(iii) k1 + k3 < 0.

Proof.

(i) We have

43k3 + 42k2 + 4k1 + k0 = −18432y12 − 78336y10 − 95040y8 − 46080y6 − 10728y4

− 1350y2 − 135

which is always negative.

(ii) We have

k1 + k2 + k3 = 52992y10 + 111168y8 − 34128y6 − 130608y4 − 67194y2 − 10449.

By using y10 < y8 < y4 and −y2 < −y4, we obtain

k1 + k2 + k3 < 52992y4 + 111168y4 − 34128y6 − 130608y4 − 67194y4 − 10449

= −34128y6 − 33642y4 − 10449

which is also negative.

(iii) We have

k1 + k3 = 59904y10 + 114624y8 − 79056y6 − 191952y4 − 95274y2 − 14769.

By using y10 < y8 < y6 and −y4 < −y6, we get

k1 + k3 < 59904y6 + 114624y6 − 79056y6 − 191952y6 − 95274y2 − 14769

= −96480y6 − 95274y2 − 14769 < 0

as required.
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Now, consider the numerator of f̂ ′y(A). Using, consecutively, Lemma 4.3.1(i), (ii) and
then (iii), we have

k3A
3 + k2A

2 + k1A+ k0 < k3(A3 − 43) + k2(A2 − 42) + k1(A− 4)

< k3(A3 − 43 − A2 + 42) + k1(−A2 + 42 + A− 4)

< k3(A3 − 43 − A2 + 42 + A2 − 42 − A+ 4)

= k3(A− 4)(A2 + 4A+ 15) < 0,

for all 0 < y ≤ 1 and all A ≥ 4. Thus,

f̂
′

y(A) < 0 ∀A ≥ 4,∀y ∈ (0, 1]. (4.46)

Combining (4.45) and (4.46), we conclude that if there exists A0 such that f̂y(A0) = 0,
then A0 < 4.

4.4 Formal asymptotic expansion as c→ 0

As we mentioned in Theorem 3.1.2, all eigenvalues of A0 (i.e. Ac when c = 0) are non-
real, and Davies and Levitin [19] determined the asymptotic behaviour of the eigenvalues
of the pencil Ac for large n. When c increases, each complex conjugate pair moves
towards each other and meets on the real line. Numerical experiments show that eigen-
values move along a curve until each pair collide for the first time on the real line (see
Level-1 in Table 5.1). Our aim in this section is to understand and describe the curve
corresponding to the non-real eigenvalues of Ac as c goes to zero. The investigation will
be carried out by using a formal asymptotic expansion method.

Recall the substitution (4.8) and note that each non-real eigenvalue λ corresponds to
one non-real z and one non-real w value, which lie outside of the unit disk. When c = 0,
the relation (4.8) reduces to

λ0 = z0 +
1

z0

= w0 +
1

w0

, (4.47)

where λ0 denotes the eigenvalues of A0. In addition, z0, w0 ∈ C\R such that |z0|, |w0| > 1.
Then, for simplicity, we can take z0 = w0. Therefore, when c = 0 the reduced characteristic
equation (4.15) becomes

(Gn(z0))2 = −1 ⇒ Gn(z0) = ±i. (4.48)
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Davies and Levitin [19] found that as n → ∞ any solutions of (4.48), which lie in the first
quadrant, satisfy

z0 = reiθ, (4.49)

where

r =

(
tan

(
π

4
+
θ

2

))1/2n

, θ =
2πk

2n+ 1
, k = 1, . . . ,

⌊n
2

⌋
,

up to order O (n−1). We then extend the result to the other quadrants by using symmetries
described in Lemma 3.1.3 and the relation (4.47). If n is odd, there are additionally two
purely z0 values which satisfy

z0 = ±i
(

1 +
log(n)

n
(1 + o(1))

)
. (4.50)

The idea is to fix the size of matrix n ∈ N and seek a solution of the form of a power
series in c, i.e.

λ = λ0 + cλ1 + c2λ2 +O
(
c3
)
, (4.51)

z = z0 + cz1 + c2z2 +O
(
c3
)
, (4.52)

w = w0 + cw1 + c2w2 +O
(
c3
)
. (4.53)

We will then find λ1, λ2, z1, z2, w1, w2 in terms of z0. Afterwards, using the asymptotics
for λ0 and z0 = w0, i.e. (4.49), we will find an approximate solution to the behaviour
of the eigenvalues of Ac when c is small. We will mainly use the relation (4.8) and the
characteristic equation (4.15).

Before stating our main result, we introduce some functions. Let ζ ∈ C, then define

gn = gn(ζ) := ζn + ζ−n, (4.54)

bn = bn(ζ) := ζn − ζ−n, (4.55)

Qn(ζ) =
(n+ 1)gn+1 − ngnGn(ζ)

ζbn
, (4.56)

Q̂n(ζ) = ζ−2

(
Gn(ζ)

(
n
ζn

bn
+ n2 g

2
n

b2
n

)
− n+ 1

bn

(
ζ−n−1 + n

gngn+1

bn

))
. (4.57)

Our main result in this section is the following.

Theorem 4.4.1. Let λ0 6∈ R be an eigenvalue of A0, let z0 be the unique solution of (4.47)
outside the unit disk. Then there is an eigenvalue λ of Ac such that

λ = z0 +
1

z0

+ c2

(
z2

0

2 (z2
0 − 1)

(
Q2
n(z0)− 2Gn(z0)Q̂n(z0)

Gn(z0)Qn(z0)

)
+

z0

(z2
0 − 1)2

)
+O

(
c3
)
, (4.58)
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and moreover

z = z0 + c

(
z2

0

1− z2
0

)
+ c2

(
z4

0

2 (z2
0 − 1)

2

(
Q2
n(z0)− 2Gn(z0)Q̂n(z0)

Gn(z0)Qn(z0)

))
+O

(
c3
)
,

w = z0 − c
(

z2
0

1− z2
0

)
+ c2

(
z4

0

2 (z2
0 − 1)

2

(
Q2
n(z0)− 2Gn(z0)Q̂n(z0)

Gn(z0)Qn(z0)

))
+O

(
c3
)
,

where λ, z, w are related by (4.8).

Remark 4.4.2. Combining (4.58) and (4.51), we can easily deduce that λ1 = 0, thus the
perturbation of eigenvalues is quadratic in c. Note that our asymptotic procedure uses
the fact that the eigenvalues are simple. Therefore the results will not work after the first
collisions, because when we have a double eigenvalue, the characteristic equation is no
longer an analytic function of a parameter, and therefore we cannot expand it into a series.

Before proving the result, we start with some numerical experiments. The results are
illustrated in the (Reλ, 2nImλ)-plane in Figure 4.4, and in terms of z and w values in the
complex plane in Figure 4.5. We know that all eigenvalues of Ac are non-real when c = 0.
As c increases, the figures show that our asymptotics catch the eigenvalues until they
become real for the first time (or until z and w hit the unit circle for the first time). We can
see that our asymptotics, as expected, do not catch the eigenvalues after they become
real. The corresponding z and w values move along the unit circle whereas the asymptotic
expansion that we found keep moving as c increases.

Figure 4.4: Spec(Ac) in the (Reλ, 2nImλ)-plane with λ values (red stars) and their asymp-
totic values (white circles) given by Theorem 4.4.1. Left: for n = 20 and c = 0.015. Right:
for n = 50 and c = 0.01.

In order to prove Theorem 4.4.1, we need some auxiliary results. The next result
provides a formula which converts a ratio of two polynomials to a geometric series.
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Figure 4.5: Spec(Ac) in the complex plane with z values (red stars), w values (blue trian-
gles), asymptotic values of z (white circles), asymptotic values of w (white diamonds), the
unit circle ∂D(0, 1) (dotted circle). Left: for n = 20 and c = 0.015. Right: for n = 50 and
c = 0.01.

Lemma 4.4.3. Let a, b, γ, δ, ρ, φ ∈ C. As c→ 0,

a+ cγ + c2ρ

b+ cδ + c2φ
=
a

b
+ c

(
γ

b
− a δ

b2

)
+ c2

(
ρ

b
− γδ + aφ

b2
+
aδ2

b3

)
+O

(
c3
)
.

Proof. As c → 0, expanding the ratio as a geometric series up to terms of order O (c3)

gives

a+ cγ + c2ρ

b+ cδ + c2φ
=
a+ cγ + c2ρ

b

(
1

1 + c δ
b

+ c2 φ
b

)
+O(c3)

=
a+ cγ + c2ρ

b

(
1− cδ

b
− c2φ

b
+

(
c
δ

b
+ c2φ

b

)2
)

+O(c3)

=
a+ cγ + c2ρ

b

(
1− cδ

b
+ c2

(
δ2

b2
− φ

b

))
+O(c3)

=
(
a+ cγ + c2ρ

)(1

b
− δ

b2
c+ c2

(
δ2

b3
− φ

b2

))
+O(c3)

=
a

b
+ c

(
γ

b
− a δ

b2

)
+ c2

(
ρ

b
− γδ + aφ

b2
+
aδ2

b3

)
+O(c3).

In the next result, we derive an asymptotic expansion for the function Gn(z) by using
Lemma 4.4.3.
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Lemma 4.4.4. Suppose that c→ 0, and z = z0 + cz1 + c2z2 +O(c3). Then

Gn(z) = Gn(z0) + cz1Qn(z0) + c2
(
z2Qn(z0) + z2

1Q̂n(z0)
)

+O
(
c3
)
,

where the functions Qn, Q̂n depend only z0 and are as given in (4.56)-(4.57).

Proof. Substituting the asymptotic expansion (4.52) into the function Gn(z) we have

Gn(z) = Gn(z0 + cz1 + c2z2 +O(c3))

=
(z0 + cz1 + c2z2)n+1 − (z0 + cz1 + c2z2)−n−1

(z0 + cz1 + c2z2)n − (z0 + cz1 + c2z2)−n
+O(c3). (4.59)

Now, calculating each power separately we get

zn+1 = (z0 + cz1 + c2z2)n+1 = zn+1
0 + c(n+ 1)zn0 z1 + c2(n+ 1)zn−1

0

(
z0z2 +

n

2
z2

1

)
+O

(
c3
)

and

z−n−1 =
(
zn+1

)−1
=
(
zn+1

0 + c(n+ 1)zn0 z1 + c2(n+ 1)zn−1
0

(
z0z2 +

n

2
z2

1

))−1

+O
(
c3
)

= z−n−1
0

(
1 + c(n+ 1)

z1

z0

+ c2(n+ 1)

(
z2

z0

+
n

2

z2
1

z2
0

))−1

+O
(
c3
)

= z−n−1
0

(
1− c(n+ 1)

z1

z0

− c2(n+ 1)

(
z2

z0

+
n

2

z2
1

z2
0

)
+ c2(n+ 1)2 z

2
1

z2
0

)
+O

(
c3
)

= z−n−1
0

(
1− c(n+ 1)

z1

z0

− c2(n+ 1)

(
z2

z0

−
(n

2
+ 1
) z2

1

z2
0

))
+O

(
c3
)

= z−n−1
0 − c(n+ 1)

z1

zn+2
0

− c2(n+ 1)

(
z2

zn+2
0

−
(n

2
+ 1
) z2

1

zn+3
0

)
+O

(
c3
)

Similarly,

zn = zn0 + cnzn−1
0 z1 + c2nzn−2

0

(
z0z2 +

n− 1

2
z2

1

)
+O

(
c3
)

z−n = z−n0 − cn
z1

zn+1
0

− c2n

(
z2

zn+1
0

−
(
n+ 1

2

)
z2

1

zn+2
0

)
+O

(
c3
)
.

Then

zn+1 − z−n−1 = zn+1
0 − z−n−1

0 + c(n+ 1)z1(zn0 + z−n−2
0 )

+ c2(n+ 1)
(
z2

(
zn0 + z−n−2

0

)
+ z2

1z
−2
0

n

2

(
zn+1

0 − z−n−1
0

)
− z2

1z
−n−3
0

)
+O(c3), (4.60)

and

zn − z−n = zn0 − z−n0 + cnz1(zn−1
0 + z−n−1

0 )
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+ c2n

(
z2

(
zn−1

0 + z−n−1
0

)
+ z2

1z
−2
0

n− 1

2

(
zn0 − z−n0

)
− z2

1z
−n−2
0

)
+O(c3). (4.61)

Substituting (4.60) and (4.61) into the function (4.59), we have a ratio of two polynomials
in c of degree 2. Therefore we will apply to Lemma 4.4.3 so as to write the function Gn as
a polynomial in c. The complex constants in Lemma 4.4.3 can be matched as

a = zn+1
0 − z−n−1

0 ,

b = bn = zn0 − z−n0 ,

γ = (n+ 1)z1z
−1
0 gn+1,

δ = nz1z
−1
0 gn,

ρ = (n+ 1)
(
z2z
−1
0 gn+1 +

n

2
z2

1z
−2
0

(
zn+1

0 − z−n−1
0

)
− z2

1z
−n−3
0

)
,

φ = n

(
z2z
−1
0 gn +

n− 1

2
z2

1z
−2
0

(
zn0 − z−n0

)
− z2

1z
−n−2
0

)
.

Then applying Lemma 4.4.3 gives, at order O(c0),

a

b
=
zn+1

0 − z−n−1
0

zn0 − z−n0

= Gn(z0),

and at order O(c1),

γ

b
− aδ

b2
= z1

(
(n+ 1)z−1

0 gn+1 − nz−1
0 gnGn(z0)

zn0 − z−n0

)
= z1Qn(z0).

To find the coefficient of c2 in (4.59), we have

ρ

b
− γδ + aφ

b2
+
aδ2

b3
=
ρ

b
− γδ

b2
− φ

b
Gn(z0) +

δ2

b2
Gn(z0).

Then at order O(c2),

(n+ 1)

(
z2z
−1
0

gn+1

bn
+
n

2
z2

1z
−2
0 Gn(z0)− z2

1z
−n−3
0

bn

)
− n(n+ 1)z2

1z
−2
0

gngn+1

bn

− nGn(z0)

(
z2z
−1
0

gn
bn

+

(
n− 1

2

)
z2

1z
−2
0 −

z2
1z
−n−2
0

bn

)
+ n2Gn(z0)z2

1z
−2
0

g2
n

b2
n

which can be simplified to

z2Qn(z0) + z2
1Q̂n(z0),

as required.

The next result will be helpful when determining the terms at order O(c).
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Lemma 4.4.5. Suppose z ∈ C \ R such that |z| > 1 and G2
n(z) = −1. Then Qn(z) 6= 0.

Proof. Suppose that ∃z ∈ C \ R such that G2
n(z) = −1 and Qn(z) = 0. We have

G2
n(z) =

z2n+2 + z−2n−2 − 2

z2n + z−2n − 2
= −1 ⇔ z2n+2 + z−2n−2 = −z2n − z−2n + 4.

Then

Qn(z) = 0⇔ (n+ 1)(zn+1 + z−n−1) = n(zn + z−n)Gn(z)

⇒ (n+ 1)2(z2n+2 + z−2n−2 + 2) = n2(z2n + z−2n + 2)(−1)

⇔ (n2 + 2n+ 1)(−z2n − z−2n + 6) = −n2(z2n + z−2n + 2).

Now let t = z2n + z−2n. Then

(n2 + 2n+ 1)(−t+ 6) = −n2(t+ 2) ⇔ 6n2 − n2t+ 12n− 2nt+ 6− t = −n2t− 2n2

⇔ 8n2 + 12n+ 6 = t(2n+ 1).

Looking at the imaginary parts of the last equation, we deduce that

Im(t) = 0 ⇔ Im(z2n + z−2n) = 0 ⇔ Im(z2n) = −Im

(
1

z2n

)
=

Im(z2n)

|z2n|2
⇔ |z|4n = 1.

Therefore, if ∃z such that G2
n(z) = −1 and Qn(z) = 0, then |z| = 1 which is a contradiction.

We can now prove our main result.

Proof of Theorem 4.4.1. First, recall that z0 and w0 correspond to the eigenvalues of A0

which are all non-real and |z0|, |w0| > 1. Also, we take z0 = w0. Note that the functions
Qn, Q̂n depend only on z0 and therefore, we have from Lemma 4.4.4 that

Gn(z) = Gn(z0) + cz1Qn(z0) + c2
(
z2Qn(z0) + z2

1Q̂n(z0)
)

+O
(
c3
)
, (4.62)

and

Gn(w) = Gn(z0) + cw1Qn(z0) + c2
(
w2Qn(z0) + w2

1Q̂n(z0)
)

+O
(
c3
)
. (4.63)

Then substituting (4.62) and (4.63) into the characteristic equation (4.15), and then equat-
ing powers of c, we find at order O (c0) that

(Gn(z0))2 = −1 ⇒ Gn(z0) = ±i.
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Note that Qn(z0) 6= 0 by Conjecture 4.4.5, then we have at order O (c1) that

(z1 + w1)Qn(z0)Gn(z0) = 0 ⇒ w1 = −z1,

and at order O (c2) that

(z2 + w2)Gn(z0)Qn(z0) + 2z2
1Gn(z0)Q̂n(z0)− z2

1Q
2
n(z0) = 0. (4.64)

Now, recall equation (4.8):

λ = z +
1

z
+ c = w +

1

w
− c

Expanding z + 1/z we have

z +
1

z
= z0 + cz1 + c2z2 +

1

z0 + cz1 + c2z2

+O
(
c3
)

(4.65)

= z0 + cz1 + c2z2 +
1

z0

(
1

1 + c z1
z0

+ c2 z2
z20

)
+O

(
c3
)

= z0 + cz1 + c2z2 +
1

z0

(
1− cz1

z0

− c2 z2

z2
0

+

(
c
z1

z0

+ c2 z2

z2
0

)2
)

+O
(
c3
)

= z0 +
1

z0

+ cz1

(
1− 1

z2
0

)
+ c2

(
z2

(
1− 1

z2
0

)
+
z2

1

z3
0

)
+O

(
c3
)
. (4.66)

Similarly,

w +
1

w
= w0 +

1

w0

+ cw1

(
1− 1

w2
0

)
+ c2

(
w2

(
1− 1

w2
0

)
+
w2

1

w3
0

)
+O

(
c3
)
. (4.67)

Substituting the asymptotic expansions (4.66) and (4.67) into (4.8), and equating terms at
each order we have at order O (c0) that

λ0 = z0 +
1

z0

= w0 +
1

w0

and we take w0 = z0. At order O (c1) we get

λ1 = z1

(
1− 1

z2
0

)
+ 1 = w1

(
1− 1

w2
0

)
− 1 ⇒ λ1 =

z1 + w1

2

(
1− 1

z2
0

)
= 0,

which also implies

w1 = −z1 =
z2

0

z2
0 − 1

. (4.68)

We have at order O (c2) that

λ2 = z2

(
1− 1

z2
0

)
+
z2

1

z3
0

= w2

(
1− 1

w2
0

)
+
w2

1

w3
0

⇒ z2 = w2. (4.69)
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Now, substituting w1 = −z1 and w2 = z2 into (4.64) gives

2z2Gn(z0)Qn(z0) = z2
1

(
Q2
n(z0)− 2Gn(z0)Q̂n(z0)

)
,

then substituting (4.68) into above, we can write z2 in terms of z0 as

z2 =
z4

0

2 (z2
0 − 1)

2

(
Q2
n(z0)− 2Gn(z0)Q̂n(z0)

Gn(z0)Qn(z0)

)
.

Now substituting z1 and z2 into (4.69), we find λ2 in terms of z0 as

λ2 =
z2

0

2 (z2
0 − 1)

(
Q2
n(z0)− 2Gn(z0)Q̂n(z0)

Gn(z0)Qn(z0)

)
+

z0

(z2
0 − 1)2

.

4.5 Improved bounds and ways to bound

4.5.1 Block-structure estimates

In this section, we apply Theorem 2.1.6 to our problem immediately. Take X = S−1H
(2n)
c .

First, remark that Theorem 2.1.6 is most informative if δ = |〈A12v,u〉| is very small, which
can happen even if ‖A12‖ is not small. Moreover, |Imλ| ≤ |b| by Lemma 2.1.1, and Davies
and Levitin [19] showed that one cannot hope for a result better than |b| = |〈A12v,u〉| =

O(1/N), and that even this is only possible if |Reλ| is not too close to 0. Proving such a
bound depends on using the explicit expressions for u, v and A12.

Now, take A11 = H0 + cI, A22 = −H0 − cI, and the dimension of X is N = 2n. Recall
that the eigenvalues µj of H0 are as given in (2.37). Then

a1 = µn + c = 2 cos

(
πn

n+ 1

)
+ c = −2 cos

(
π

n+ 1

)
+ c = −2 + c+ ε,

and similarly

a2 = µ1 + c = 2 cos

(
π

n+ 1

)
= 2 + c− ε,

d1 = −2 cos

(
π

n+ 1

)
− c = −2− c+ ε,

d2 = −2 cos

(
πn

n+ 1

)
− c = 2− c− ε.

In all these formulae

ε := 2− µ1 = 2− 2 cos

(
π

n+ 1

)
= O(n−2).
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The inequality of Theorem 2.1.6 reads then

−2 + c+ ε− δ ≤ Reλ ≤ 2− c− ε+ δ.

As we want to prove (in the ”real parts” version of the conjecture as opposed to the
possibly harder ”modulus” version)

−2 + c ≤ Reλ ≤ 2− c,

the comparison shows that we actually need a bound δ = |〈A12v,u〉| ≤ ε = O(n−2) (and
for all n, not just asymptotically) which is very difficult, by the remark in the beginning of
this subsection without additional careful analysis.

4.5.2 Bounds on the ratios of Chebyshev polynomials of the second
kind

The behaviour of the ratio for orthogonal polynomials of finite index is still an open ques-
tion. As mentioned in Section 2.3.4, there exists a function for the limit on the ratio which
is given by Simon [66]. However, we will show in this section that Simon’s estimate when
applied to our particular problem is not enough to prove the conjecture. In this section,
we wish to provide a better understanding of the asymptotic behaviour on the finite ratios
of the orthogonal polynomials since Simon’s estimate is not sufficient.

Recall that the functions F̃n(ζ), defined by (4.26), equal the ratio of Chebyshev poly-
nomials of the second kind, i.e.

F̃n(ζ) =
Un(ζ/2)

Un−1(ζ/2)
,

where ζ ∈ C \ Spec
(
H

(n−1)
0

)
. In Corollary 4.2.3, we wrote the characteristic equation of

the pencil Ac in terms of F̃n. We start the investigation by applying Theorem 2.3.8 to our
particular problem.

Lemma 4.5.1. Let σ, τ ∈ C \ [−2, 2]. Then

lim
n→∞

[
F̃n(σ)F̃n(τ)

]
= −1 ⇒ σ = −τ,

which implies λ = 0.

Proof. Using the formula (2.51), we have

lim
n→∞

[
F̃n(σ)F̃n(τ)

]
= lim

n→∞
F̃n(σ) lim

n→∞
F̃n(τ) = −1
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⇔ 1

2
(σ +

√
σ2 − 4)

1

2
(τ +

√
τ 2 − 4) = −1

⇔ (σ +
√
σ2 − 4)(τ +

√
τ 2 − 4) = −4. (4.70)

Note that (τ +
√
τ 2 − 4)(τ −

√
τ 2 − 4) = 4, then using this in (4.70) yields

σ +
√
σ2 − 4 =

√
τ 2 − 4− τ,

⇒ σ + τ =
√
τ 2 − 4−

√
σ2 − 4,

⇒ σ2 + τ 2 + 2στ = τ 2 − 4 + σ2 − 4− 2
√

(σ2 − 4)(τ 2 − 4),

⇒ στ + 4 = −
√

(σ2 − 4)(τ 2 − 4),

⇒ σ2τ 2 + 16 + 8στ = σ2τ 2 + 16− 4(σ2 + τ 2),

⇒ 4(σ2 + τ 2) + 8στ = 0,

⇒ 4(σ + τ)2 = 0,

⇒ σ = −τ,

as required.

Remark 4.5.2. Note that the formula (2.51) does not depend on n. Indeed, Davies and
Levitin [19] showed that the spectrum of the pencil Ac converge to the real line as n tends
to infinity.

Unfortunately, Proposition 2.3.10 does not give us much information either. Using part
(i), we deduce the next two result.

Corollary 4.5.3. For all ζ ∈ C, we have∣∣∣F̃n(ζ)
∣∣∣ ≥ min

j

∣∣∣ζ − µ(n)
j

∣∣∣ . (4.71)

Proof. Taking the absolute value of the equation (2.52) that∣∣∣∣∣ 1

F̃n(ζ)

∣∣∣∣∣ ≤
n∑
j=1

∣∣∣∣∣ α
(n)
j

ζ − µ(n)
j

∣∣∣∣∣
≤

∑n
j=1 α

(n)
j

minj |ζ − µ(n)
j |

≤ 1

minj |ζ − µ(n)
j |

,

as required.

107



Corollary 4.5.4. For all ζ ∈ C, we have∣∣∣F̃n(ζ)− ζ
∣∣∣ ≤ 1

mink

∣∣∣ζ − µ(n−1)
k

∣∣∣ .
Proof. We have

F̃n(ζ) =

∏n
j=1

(
ζ − µ(n)

j

)
∏n−1

k=1

(
ζ − µ(n−1)

k

) ,
then doing long divisions of polynomials

F̃n(ζ) = ζ +
n−1∑
k=1

a
(n−1)
k

ζ − µ(n−1)
k

⇒
∣∣∣F̃n(ζ)− ζ

∣∣∣ ≤ n−1∑
k=1

∣∣∣∣∣ a
(n−1)
k

ζ − µ(n−1)
k

∣∣∣∣∣ ,
≤

∑n−1
k=1

∣∣∣a(n−1)
k

∣∣∣
mink

∣∣∣ζ − µ(n−1)
k

∣∣∣ ,
=

1

mink

∣∣∣ζ − µ(n−1)
k

∣∣∣
as required.

Proposition 2.3.10(ii) tells us if Imζ > 0, then

ImF̃n(ζ)

|F̃n(ζ)|
≤ 1

Imζ
.

Part (iii), which was Imζ ≤ ImF̃n(ζ), will be shown in Lemma 4.5.5(ii). We see that the
results given in Section 2.3.4 do not give anything new for our case.

Now, we want to investigate the finite ratios of the Chebyshev polynomials of the sec-
ond kind, i.e. the function F̃n, in more detail. The general idea is to obtain better estimates
for the function F̃n, not only as the size n of the matrix H(n)

0 goes to infinity but also for
finite size matrix. We obtain various new inequalities. The following collection of lemmas
reveals sharper estimates on some areas for the finite ratio of orthogonal polynomials
and/or the moduli of the real part

∣∣∣Re
(
F̃n

)∣∣∣. The original purpose of these inequalities
was to obtain a contradiction to the case that one of |σ| and |τ | can be greater than two.
We have obtained many inequalities, however we failed to obtain a contradiction. The
main problem is that we cannot introduce the condition Im(σ) = Im(τ) easily. Nonethe-
less, we still believe that they are new and useful bounds. The results up to the end of
this subsection are joint with Sabine Bögli (unpublished).
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Before stating the results, first recall from the basic properties of complex numbers
that ∣∣∣F̃n(ζ)

∣∣∣ =

∣∣∣∣∣ζ − 1

F̃n−1(ζ)

∣∣∣∣∣ ≥ |ζ| − 1∣∣∣F̃n−1(ζ)
∣∣∣ . (4.72)

We now list several bounds related with the function F̃n. In all results in this section, we
always assume that ζ ∈ C \ Spec

(
H

(n−1)
0

)
.

Lemma 4.5.5.

(i) If Imζ > 0, then ImF̃n(ζ) > Imζ > 0 for all n ≥ 2.

(ii) If |ζ| > 2 and Reζ > 0, then 0 < ReF̃n(ζ) < Reζ for all n ≥ 2.

(iii) If |ζ| > 2 and Reζ < 0, then ReF̃n(ζ) < Reζ < 0 for all n ≥ 2.

Proof.

(i) Let Imζ > 0. Then we have for n = 2 that

ImF̃2(ζ) = Imζ +
Imζ

|ζ|2
> Imζ,

so (i) holds for n = 2. Now assume that (i) is true for some n ∈ N, i.e. ImF̃n(ζ) > Imζ.
Then

ImF̃n+1(ζ) = Imζ +
ImF̃n(ζ)∣∣∣F̃n(ζ)

∣∣∣2 > Imζ +
Imζ∣∣∣F̃n(ζ)

∣∣∣2 > Imζ.

Then, by induction, (i) holds for all n ≥ 2.

(ii) Let |ζ| > 2 and Reζ > 0. Then we have for n = 2 that

ReF̃2(ζ) = Reζ − Reζ

|ζ|2
= Reζ

(
1− 1

|ζ|2

)
< Reζ

so (ii) is true for n = 2. Now assume that the inequality holds for some n ∈ N and consider
n+ 1;

ReF̃n+1(ζ) = Reζ − ReF̃n(ζ)∣∣∣F̃n(ζ)
∣∣∣2 < Reζ,

since 0 < ReF̃n(ζ). Thus, by induction, (ii) holds for all n ∈ N.

(iii) The proof follows in a similar way to part (ii).

The next result gives a bound on the moduli of the function F̃n(ζ) without assuming
any condition on ζ.
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Lemma 4.5.6. For all n ∈ N and all ζ ∈ C \ Spec
(
H

(n)
0

)
, the function F̃n(ζ) satisfies∣∣∣F̃n(ζ)

∣∣∣ ≥ F̃n(|ζ|). (4.73)

Proof. For n = 1, (4.73) is trivial. For n = 2, we have

∣∣∣F̃2(ζ)
∣∣∣ =

∣∣∣∣∣ζ − 1

F̃1(ζ)

∣∣∣∣∣ =

∣∣∣∣ζ − 1

ζ

∣∣∣∣ ≥ |ζ| − 1

|ζ|
= F̃2(|ζ|),

so (4.73) holds for n = 2. Now assume (4.73) holds for some n ∈ N and consider n+ 1;

∣∣∣F̃n+1(ζ)
∣∣∣ =

∣∣∣∣∣ζ − 1

F̃n(ζ)

∣∣∣∣∣ ≥ |ζ| − 1∣∣∣F̃n(ζ)
∣∣∣

≥ |ζ| − 1

F̃n(|ζ|)
= F̃n+1(|ζ|),

i.e. (4.73) holds with n replaced by n+ 1. By induction (4.73) holds for all n ∈ N.

The next result gives monotonicity of the function F̃n(ζ) on the real line.

Lemma 4.5.7. For every n ∈ N, F̃n(ζ) is a strictly increasing function on each real interval
(µ

(n−1)
j−1 , µ

(n−1)
j ), j = 1, . . . , n, where we set µ(n−1)

0 := −∞ and µ(n−1)
n := +∞.

Proof. First, it can be seen from the definition of F̃n that the zeros of F̃n(ζ) occur at the
zeros of Fn(ζ), which are ζ = µ

(n)
j , and F̃n(ζ) is a continuous function except at the zeros

of F̃n−1(ζ), which are ζ = µ
(n−1)
k .

Now, it is easy to see that for n = 1, F̃1(ζ) = ζ is strictly increasing on (−∞,∞). For
n = 2,

F̃2(ζ) = ζ − 1

ζ
,

which is strictly increasing as z increases on (−∞, 0) and (0,∞), and blow-up occurs
when F̃1(ζ) = ζ = 0. Suppose that for n ∈ N, F̃n(ζ) is strictly increasing function except
at the zeros of Fn−1, then −1/F̃n(ζ) is strictly increasing function except at the zeros of
Fn(ζ). Using F̃n+1(ζ) = ζ − 1/F̃n(ζ), we have that F̃n+1(ζ) is strictly increasing function
except at the zeros of Fn(ζ). Then the result follows.

We show in the next result that, for some values of |ζ|, we can actually calculate the
precise values of the function F̃n(|ζ|).
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Lemma 4.5.8. For each n ∈ N, we have

F̃n(2) = 1 +
1

n
. (4.74)

Proof. For n = 1, we have F̃1(2) = 2 and for n = 2, we have F̃2(2) = 2−1/2 = 3/2 = 1+1/2

so (4.74) holds. Suppose (4.74) holds for some n ∈ N. Then

F̃n+1(2) = 2− 1

F̃n(2)
= 2− 1

1 + 1
n

= 2− n

n+ 1
=
n+ 2

n+ 1
= 1 +

1

n+ 1
,

i.e. (4.74) holds with n replaced by n+ 1. By induction (4.74) holds for all n ∈ N.

Now, using Lemma 4.5.6, Lemma 4.5.7 and Lemma 4.5.8, we deduce two bounds on
the moduli of F̃n(ζ).

Corollary 4.5.9. We have for all n ∈ N and all |ζ| > 2 that∣∣∣F̃n(ζ)
∣∣∣ > 1 +

1

n
. (4.75)

Proof. It immediately follows from Lemma 4.5.6, Lemma 4.5.7 and Lemma 4.5.8 that∣∣∣F̃n(ζ)
∣∣∣ ≥ F̃n(|ζ|) > F̃n(2) = 1 +

1

n
.

Lemma 4.5.10. For all n ∈ N and |ζ| > 2, we have∣∣∣F̃n(ζ)
∣∣∣ > |ζ| − 1 +

1

n
. (4.76)

Proof. Using (4.72) and Corollary 4.5.9, we have∣∣∣F̃n(ζ)
∣∣∣ ≥ |ζ| − 1∣∣∣F̃n−1(ζ)

∣∣∣
> |ζ| − 1

F̃n−1(2)

= |ζ| − 1

1 + 1
n−1

= |ζ| − n− 1

n

= |ζ| − 1 +
1

n
,

as required.
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Using Lemma 4.5.10, we deduce an enclosure for the moduli of F̃n(ζ).

Lemma 4.5.11. For all n ∈ N and |ζ| > 2, we have∣∣∣|F̃n(ζ)| − |ζ|
∣∣∣ < 1

|ζ| − 1 + 1
n−1

. (4.77)

Proof. Using equation (4.72) and Lemma 4.5.10 together, we have for |ζ| > 2:∣∣∣F̃n(ζ)
∣∣∣ ≥ |ζ| − 1∣∣∣F̃n−1(ζ)

∣∣∣ > |ζ| − 1

|ζ| − 1 + 1
n−1

. (4.78)

On the other hand, we have

|F̃n(ζ)| − |ζ| =

∣∣∣∣∣ζ − 1

F̃n−1(ζ)

∣∣∣∣∣− |ζ|
≤ |ζ|+

∣∣∣∣∣ 1

F̃n−1(ζ)

∣∣∣∣∣− |ζ|
=

1∣∣∣F̃n−1(ζ)
∣∣∣

<
1

|ζ| − 1 + 1
n−1

, (4.79)

where we used Lemma 4.5.10 to obtain the last inequality. Combining (4.78) and (4.79)
we arrive at (4.77).

Next, we prove an enclosure for the imaginary part of F̃n(ζ).

Lemma 4.5.12. Assume that Imζ > 0. Then we have for all n ∈ N and ζ ∈ C that

Imζ ≤ Im
(
F̃n(ζ)

)
< Imζ + 1 (4.80)

with equality only for n = 1.

Proof. For the lower bound, we showed in Lemma 4.5.5(i) that Imζ < Im
(
F̃n(ζ)

)
for all

n ≥ 2. In addition, the equality holds clearly only for n = 1. For the upper bound, we have

Im
(
F̃n(ζ)

)
= Imζ − Im

(
1

F̃n−1(ζ)

)
,

= Imζ +
Im
(
F̃n−1(ζ)

)
∣∣∣F̃n−1(ζ)

∣∣∣2
≤ Imζ + 1.
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The following easy result gives a bound on the imaginary part of F̃n(ζ).

Corollary 4.5.13. If |ζ| > 2, then for all n ∈ N, we have

Im
(
F̃n(ζ)

)
< Imζ +

Im
(
F̃n−1(ζ)

)
|ζ| − 1 + 1

n−1

Proof. Using Lemma 4.5.10 we have

Im
(
F̃n(ζ)

)
= Imζ +

Im
(
F̃n−1(ζ)

)
∣∣∣F̃n−1(ζ)

∣∣∣2 ≤ Imζ +
Im
(
F̃n−1(ζ)

)
|ζ| − 1 + 1

n−1

.

Now, we prove an enclosure on the real part of F̃n(ζ).

Lemma 4.5.14. If |ζ| > 2, then∣∣∣Re
(
F̃n(ζ)

)
− Reζ

∣∣∣ < (|ζ| − 1 +
1

n− 1

)−1

< 1.

Proof. Using Lemma 4.5.10 we have∣∣∣Re
(
F̃n(ζ)

)
− Reζ

∣∣∣ =

∣∣∣∣∣Re

(
1

F̃n−1(ζ)

)∣∣∣∣∣ < 1∣∣∣F̃n−1(ζ)
∣∣∣ <

(
|ζ| − 1 +

1

n− 1

)−1

< 1.

Now, we give a bound on the moduli and on the real part of the function F̃n(ζ) assuming
the real part of the parameter ζ is greater than two.

Lemma 4.5.15. If |Reζ| > 2, then

|F̃n(ζ)| >
√

4 + (Imζ)2 − n− 1

n
> 1. (4.81)

Proof. Using equation (4.78) and |Re(z)| > 2, we obtain

|F̃n(ζ)| >
√

4 + (Imζ)2 − 1√
4 + (Imζ)2 − 1 + 1

n−1

> 1.

Let

a :=
√

4 + (Imζ)2 ≥ 2,

b(a) :=a− 1

a− 1 + 1
n−1

,

113



then we have

b(2) = 2− 1

1 + 1
n−1

= 2− n− 1

n
=
n+ 1

n
,

b
′
(a) = 1 +

1(
a− 1 + 1

n−1

)2 > 1,

so that using the Taylor series for b(a) at 2, we obtain

b(a) = b(2) + b
′
(2)(a− 2) + · · · ≥ n+ 1

n
+ (a− 2) + · · · = a− n− 1

n
+ . . . ,

i.e. we obtain ∣∣∣F̃n(ζ)
∣∣∣ > b(a) ≥

√
4 + (Imζ)2 − n− 1

n
.

Lemma 4.5.16. If |Reζ| > 2, then

Re
(
F̃n(ζ)

)
> 2−

(√
4 + (Imζ)2 − n− 2

n− 1

)−1

> 1.

Proof. We have ∣∣∣Re
(
F̃n(ζ)

)
− Reζ

∣∣∣ < 1∣∣∣F̃n−1(ζ)
∣∣∣

which implies using equation (4.78)

−

(
|ζ| − 1

|ζ| − 1 + 1
n−2

)−1

< Re
(
F̃n(ζ)

)
− Reζ <

(
|ζ| − 1

|ζ| − 1 + 1
n−2

)−1

,

which then implies

Re
(
F̃n(ζ)

)
> Reζ −

(
|ζ| − 1

|ζ| − 1 + 1
n−2

)−1

> 2−

(
|ζ| − 1

|ζ| − 1 + 1
n−2

)−1

> 2−

(√
4 + (Imζ)2 − 1√

4 + (Imζ)2 − 1 + 1
n−2

)−1

> 1.

Let

a :=
√

4 + (Im(ζ))2,
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d(a) :=a− 1

a− 1 + 1
n−2

,

then we have

d(2) =2− 1

1 + 1
n−2

= 2− n− 2

n− 1
=

n

n− 1
,

d′(a) =1 +
1(

a− 1 + 1
n−2

)2 > 1,

so that using the Taylor series expansion for d(a) at 2

d(a) = d(2) + d
′
(2)(a− 2) + · · · ≥ n

n− 1
+ a− 2,

which implies

−(d(a))−1 ≥ −
(

n

n− 1
+ a− 2

)−1

= −
(
a− n− 2

n− 1

)−1

,

i.e. we have

Re
(
F̃n(ζ)

)
> 2−

(√
4 + (Imζ)2 − n− 2

n− 1

)−1

.

4.5.3 Gershgorin-type localisation

4.5.3.1 Application of known results to the pencil problem

Recall that Ac = H
(N)
c + λS is the linear pencil and Ac = S−1H

(N)
c is the non-self-adjoint

block matrix, and that Spec(Ac) ≡ Spec(Ac). We already mentioned the Gershgorin set
G(Ac) of Ac in Section 4.2.3. In this section, we apply the well-known Gershgorin-type
eigenvalue localisations, mentioned in Section 2.2, to our problem. Note that, in this
section, the letters i, j, p, q may represent different number sequences in each of the
bullet points.

(i) The Brauer set K(Ac) consists of seven different Brauer Cassini ovals given by

K1,j(Ac) = D(c,
√

2), Ki,j(Ac) = D(c, 2),

Kp,N(Ac) = D(−c,
√

2), Kp,q(Ac) = D(−c, 2),

K1,N(Ac) = {z ∈ C : |z2 − c2| ≤ 1},

Ki,N(Ac) = K1,q(Ac) = {z ∈ C : |z2 − c2| ≤ 2},

Kp,j(Ac) = Ki,q(Ac) = {z ∈ C : |z2 − c2| ≤ 4},
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where i, j = 2, . . . , n with i 6= j, and p, q = n + 1, . . . , N − 1 with p 6= q. Note that
K1,j(Ac) ⊂ Ki,j(Ac), Kp,N(Ac) ⊂ Kp,q(Ac), K1,N(Ac) ⊂ Ki,N(Ac) ⊂ Kp,j(Ac) and also
Kp,j(Ac) ⊂ Ki,j(Ac) ∪ Kp,q(Ac). Then we obtain

Spec(Ac) ⊆ K(Ac) = D(c, 2) ∪ D(−c, 2),

which is the same region as the Gershgorin set.

(ii) We have from Theorem 2.2.5 that

N∑
i=1

ri(Ac)

max
j∈Ji
|ai,j|

= 2 + 2(N − 2) = 2N − 2 ≤ α(1 + α).

However, for any n ≥ 2 (or N ≥ 4), we have α ≥ 2, and so it gives a bigger region
than Gershgorin set for our case.

(iv) The set Ω(Ac) given in Theorem 2.2.6 produces a complicated expression and there
is a freedom of choice of the set J̃i. In addition, it takes a large amount of time to find
the sets as n increases. Nevertheless, it gives a smaller region than the Gershgorin
set for our case. First, we discuss this set in more detail at the end of this section.
We then illustrate the set along with its comparison with other sets in Figure 4.7.

(v) Numerical experiments suggest that the set given in Theorem 2.2.7 gives the same
region as the Gershgorin set when c = 0. However, the region gets much bigger as
c increases. Therefore, we omit the mathematical argument for this set.

(vi) When we consider the sets given by Melman [51] and Li et al. [44], which were
stated in Theorem 2.2.8 and Theorem 2.2.10 respectively, they both give the same
region as the Gershgorin union.

(vii) Consider the union
⋃N
i=1 Si

(
H

(N)
c , S

)
given in Theorem 2.2.12. In our case, since

di,j = 0 when i 6= j, the union yields the same region as the Gershgorin set.

(viii) The union
⋃N
i=1 S̃i

(
H

(N)
c , S

)
given in Theorem 2.2.13 consists of four different re-

gions that are

S̃1

(
H(N)
c , S

)
=

{
z ∈ C :

|z − c|√
1 + |z|2

≤ 1

}
; S̃j

(
H(N)
c , S

)
=

{
z ∈ C :

|z − c|√
1 + |z|2

≤ 2

}
,

S̃k
(
H(N)
c , S

)
=

{
z ∈ C :

|z + c|√
1 + |z|2

≤ 1

}
; S̃N

(
H(N)
c , S

)
=

{
z ∈ C :

|z + c|√
1 + |z|2

≤ 2

}
,
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where j = 2, . . . , n and k = n+ 1, . . . , N − 1. Note that S̃1

(
H

(N)
c , S

)
⊂ S̃j

(
H

(N)
c , S

)
and S̃N

(
H

(N)
c , S

)
⊂ S̃k

(
H

(N)
c , S

)
. Therefore we obtain

Spec
(
H(N)
c − λS

)
⊂

N⋃
i=1

S̃i
(
H(N)
c , S

)
≡ S̃j(H(N)

c , S) ∪ S̃k(H(N)
c , S),

which covers the whole complex plane when |c| ≤ 2 and excludes a region when
|c| > 2.

(ix) Applying Gershgorin set for block matrices (b.m.) (Theorem 2.2.14) with A11 = Hc,
A22 = −Hc and ‖A12‖ = 1 gives

Spec(Ac) ⊂ {ζ ∈ C : dist (ζ, Spec(Hc) ∪ Spec(−Hc)) ≤ 1} ,

which means that in the complex plane, there are n disks with centre (µj + c) and
radius one; n disks with centre (µj − c) and radius one; and eigenvalues that lie
within the union of 2n disks. In addition, we get

Spec(Ac) ∩ R ⊂ [µn − c, µ1 + c] ⊂ [−2− c, 2 + c],

which was already known. Nevertheless, this result also supports that Imλ ≤ 1 for
all n ∈ N.

(x) Applying Brauer set for b.m. (Theorem 2.2.15) to our problem, we obtain

Spec(Ac) ⊂ {ζ ∈ C : dist(ζ, Spec(Hc)) dist(ζ, Spec(−Hc)) ≤ 1} .

As discussed above, some results do not give better bounds than Gershgorin The-
orem when applied to the pencil Ac problem. Namely, Fan and Hoffmann (Theorem
2.2.5) is worse for n ≥ 2, Theorem 2.2.7 produces a bigger region when c 6= 0, and
weighted Stewart-Sun (Theorem 2.2.13) gives nothing. On the other hand, some results
do not improve classical Gershgorin, however they produce the same region as Gersh-
gorin theorem. Namely, these are classical Brauer, Theorem 2.2.8 and Theorem 2.2.10,
Unweighted Stewart-Sun (Theorem 2.2.12).

In addition to the ones which were mentioned in Section 2.2, there are many other
Gershgorin-type regions which were obtained, for instance, by Ostrowski [79], Fan and
Hoffman [79], Dashnic and Zusmanovich [18], Nakatsukasa [58], Li et al. [44], Anna et
al. [17], Herzog and Schmoeger [29]. We, however, exclude these as they do not give a
better spectral enclosure than the Gershgorin union for our particular case.

117



We note that we do not attempt to find the minimal Gershgorin set of Ac as the algo-
rithms are suitable for small or medium size matrices. This result was reviewed due to its
importance.

In our case, there are three results which improve classical Gershgorin Theorem. Ger-
shgorin set for b.m. given by Tretter in Theorem 2.2.14, Brauer set for b.m. given by
Freingold-Varga in Theorem 2.2.15, and the set given by Melman in Theorem 2.2.6. We
first turn our attention to the set Ω(Ac) given by Melman in Theorem 2.2.6. We will com-
pare these sets at the end of this subsection.

We choose J̃i ≡ Ji to obtain the smallest region. Let

Ω(Ac) = Ω̃(Ac) ∪ Ω̂(Ac)

where

Ω̃(Ac) :=
n⋃
i=1

Ω̃i(Ac) =
n⋃
i=1

⋂
j∈J̃i

Ωi,j(Ac)

 ,

Ω̂(Ac) :=
2n⋃

k=n+1

Ω̂k(Ac) =
2n⋃

k=n+1

⋂
j∈J̃k

Ωk,j(Ac)

 .

There are 2n sets in the union Ω(Ac) and we divided the union into two; those whose
centre are at c called Ω̃(Ac) and those whose centre at −c called Ω̂(Ac). In other words,
Ω̃(Ac) and Ω̂(Ac) are symmetric with respect to imaginary axis. Note that each set Ω̃i(Ac)

consists of intersection of more than one regions, however we omit the mathematical
expression of these sets for clarity and illustrate them instead. Numerical experiments
suggest that when n ≥ 4, the union Ω̃(Ac) contains four possible geometric shapes and
the union Ω̂(Ac) contains their symmetric regions with respect to the Imλ-axis. We illus-
trate these regions in Figure 4.6, without specifying their centre. Nevertheless, when we
take the union of these sets, we then see that⋃

i∈J3

Ω̃i(Ac) ⊂ Ω̃3(Ac),

i.e. Ω̃(Ac) ≡ Ω̃3(Ac). Similarly, we have Ω̂(Ac) ≡ Ω̂2n−3(Ac).

Remark 4.5.17. The illustration of the set Ω̃n(Ac) in Figure 4.6 may change as c changes,
however Ω̃n(Ac) ⊂ Ω̃3(Ac) will always hold.

Looking at Ω̃3(Ac) and Ω̂2n−3(Ac), we see that

Ω̃3(Ac) =
⋂
j∈J̃3

Ω3,j(Ac) ≡ {z ∈ C : |z − c|2 ≤ 2|z − c| and |z2 − c2| ≤ 2|z + c|}
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Figure 4.6: Without specifying their coordinates, four possible regions are illustrated from
the union Ω̃(Ac). Dark orange shaded regions from left to right: Ω̃1(Ac), Ω̃2(Ac), Ω̃3(Ac)

and Ω̃n(Ac). Other coloured regions represent their corresponding intersected sets.

∩ {z ∈ C : |(z − c)2 − 1| ≤ 1 + |z − c|}

≡ {z ∈ C : |(z − c)2 − 1| ≤ 1 + |z − c|},

and similarly

Ω̂2n−3(Ac) =
⋂

j∈J̃2n−3

Ω2n−3,j(Ac) ≡ {z ∈ C : |(z + c)2 − 1| ≤ 1 + |z + c|}.

Hence

Spec(Ac) ⊂ Ω(Ac) = Ω̃3(Ac) ∪ Ω̂2n−3(Ac).

We now compare these there sets in Figure 4.7. It seems that Gershgorin set for
b.m is contained in Brauer set for b.m., and they both support that Im(λ) ≤ 1. On the
one hand Tretter’s result improves away on Re(λ), on the other hand Freingold-Varga’s
result is better for small n, however it seems that the set is asymptotically the same as
Gershgorin set for b.m. for large n. Moreover, the set Ω(Ac) gives the same bound on
Re(λ) as classical Gershgorin and very close bound to the Gershgorin for b.m. on Im(λ).
However, when c is close to 2, it gives a better bound on Im(λ) for the eigenvalues whose
real parts are close to zero.

4.5.3.2 Gershgorin-type region for the two-parameter eigenvalue problem

Now, let us apply Corollary 2.2.16 to our problem. Let A = H
(n)
0 , D = H

(m)
0 and (C)n,1 = κ,

then we have

Specp(M) ⊂M
(
H

(n)
0 , H

(m)
0

)
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Figure 4.7: Spec(Ac) (red dots), the classical Gershgorin disks G(Ac) (black dotted cir-
cles), Gershgorin sets for b.m. (brown shaded region), Brauer set for b.m. (blue shaded
region) and Melman’s set Ω(Ac) (orange shaded region) are drawn for the non-self-adjoint
matrix Ac. Top-left: c = 0.3 and n = 7. Top-right: c =

√
2 and n = 8. Bottom-left: c = 1.85

and n = 10. Bottom-right: c = 1.85 and n = 25.

where

M
(
H

(n)
0 , H

(m)
0

)
=

(α, β) ∈ C2 :

 inf
a∈Spec

(
H

(n)
0

) |α− a|
 inf

d∈Spec
(
H

(m)
0

) |β − d|
 ≤ ‖C‖2


which can be re-written as

M
(
H

(n)
0 , H

(m)
0

)
=

n⋃
i=1

m⋃
j=1

{
(α, β) ∈ C2 :

∣∣∣α− µ(n)
i

∣∣∣ ∣∣∣β − µ(m)
j

∣∣∣ ≤ κ2
}
,

where µ(n)
i ∈ Spec

(
H

(n)
0

)
. Illustration of Gershgorin-type localisation of the two-parameter

eigenvalue problem in the (Re(α),Re(β))-plane can be seen for n = m in Figure 4.8 and
for n 6= m in Figure 4.9.

4.5.3.3 Gershgorin circles under the mapping z + 1/z

In this section, we want to apply the Gershgorin Theorem to the problem (4.22) to ob-
tain equivalent statements in terms of z and w values and we illustrate the region in the
complex plane.

Let

µj = 2 cos θj, θj = πj/(n+ 1), j = 1, . . . , n. (4.82)
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Figure 4.8: S̃pec(M) with A = D = H
(n)
0 and κ = 1, and blue shaded region is the union

M
(
H

(n)
0 , H

(n)
0

)
. Left: n = 4. Right: n = 5.

Figure 4.9: S̃pec(M) with A = H
(3)
0 and D = H

(7)
0 and blue shaded region is the union

M
(
H

(3)
0 , H

(7)
0

)
. Left: κ = 0.3. Right: κ =

√
3.

Recall that ψj,k =
√

2
n+1

sin
(
πjk
n+1

)
. Define

r̂j := |ψj,n|
n∑
k=1

|ψk,n|. (4.83)

Now, consider the problem (4.22):

Ãc

(
u
v

)
=



µ1 + c ψ1,nψn,n · · · ψ1,nψ1,n

. . . ...
...

µn + c ψn,nψn,n · · · ψn,nψ1,n

−ψ1,nψn,n · · · −ψ1,nψ1,n −(µ1 + c)
...

... . . .
−ψn,nψn,n · · · −ψn,nψ1,n −(µn + c)





u1
...
un
v1
...
vn


= λ

(
u
v

)
.
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Note that µj are symmetric. Then applying Gershgorin Theorem to Ãc gives that

Spec
(
Ãc

)
⊂ G

(
Ãc

)
=

n⋃
j=1

Gj
(
Ãc

)
,

where

Gj
(
Ãc

)
= D (µj + c, r̂j) ∪ D (−µj − c, r̂j) .

To understand the geometry of G
(
Ãc

)
, we illustrate each set in the union ∪

j
D (µj + c, r̂j)

in Figure 4.10, without specifying its coordinates. Again, the union ∪
j
D (µj − c, r̂j) and

∪
j
D (µj + c, r̂j) are symmetric with respect to the imaginary axis. We then compare G

(
Ãc

)
and G (Ac) in Figure 4.11.

Figure 4.10: Without specifying the coordinates, each set in the union ∪jD (µj + c, r̂j) are
drawn as blue dashed lines in (Re(λ), Im(λ))-plane. Left: for n = 5. Right: for n = 25.

Figure 4.11: Spec(Ac) (red dots), the union G
(
Ãc

)
(blue shaded region) and the Gerhs-

gorin set G(Ac) (black dotted circles) are drawn in (Reλ, Imλ)-plane. Left: for n = 5 and
c = 0.4. Right: for n = 25 and c = 1.6.

In order to plot the Gershgorin set G
(
Ãc

)
using the mapping λ 7→ z and λ 7→ w with

(4.8), we need the following auxiliary result.
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Lemma 4.5.18. Let ζ ∈ C \ {0}, and µj and θj are as in (4.82). Then∣∣∣∣ζ +
1

ζ
− µj

∣∣∣∣ =
|ζ − eiθj ||ζ − e−iθj |

|ζ|
,

∣∣∣∣ζ +
1

ζ
+ µj

∣∣∣∣ =
|ζ + eiθj ||ζ + e−iθj |

|ζ|
.

Proof. We prove the first of these equations, the second is similar. We have∣∣∣∣ζ +
1

ζ
− µj

∣∣∣∣ =
|ζ2 − µjζ + 1|

|ζ|

=
|ζ2 − 2ζ cos θj + cos2 θj + sin2 θj|

|ζ|

=
|(ζ − cos θj)

2 − i2 sin2 θj|
|ζ|

=
|ζ − cos θj − i sin θj||ζ − cos θj + i sin θj|

|ζ|

=
|ζ − eiθj ||ζ − e−iθj |

|ζ|
.

Lemma 4.5.19. Let λ, z, w be related by (4.8). Then λ is an eigenvalue of Spec(Ac) if and
only if z and w lies in the union

Gζ :=
n⋃
j=1

{
ζ ∈ C \ {0} :

|ζ − eiθj ||ζ − e−iθj |
|ζ|

≤ r̂j

}
, (4.84)

where θj and r̂j are as in (4.82) and (4.83) respectively.

Proof. We have

|λ− µj − c| = |σ − µj| =
∣∣∣∣z +

1

z
− µj

∣∣∣∣ , |λ+ µj + c| = |τ + µj| =
∣∣∣∣w +

1

w
+ µj

∣∣∣∣ .
Applying Gershgorin Theorem to Ãc and then using Lemma 4.5.18 gives the union{

ζ ∈ C \ {0} :
|ζ − eiθj ||ζ − e−iθj |

|ζ|
≤ r̂j

}
∪
{
ζ ∈ C \ {0} :

|ζ + eiθj ||ζ + e−iθj |
|ζ|

≤ r̂j

}
.

Note that there is a symmetry: |ζ − eiθj | = |ζ + eiθn+1−j | and |ψj,k| = |ψn+1−j,k|. Therefore,
when taking the union for all j = 1, . . . , n, the union reduces to Gζ due to the symmetries.
We then have that λ ∈ Spec(Ac) iff z, w ∈ Gζ where Gζ is as given in (4.84).

We illustrate each set in the union Gζ in Figure 4.12. Recall that if λ 6∈ R, then |z|, |w| >
1. Note that the union consists of n sets and the boundary of each set is drawn with blue
dashed lines. It can be seen that both the inner boundary and the outer boundary of the
union Gζ get smoother as n increases. In Figure 4.13, we compare the region Gζ with the
region Z1 ∪ Z2, which was defined in Theorem 1.3.4(iv).
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Figure 4.12: The union Gζ (blue shaded region) and the boundary of each set in the union
Gζ (blue dashed lines) are drawn in the complex plane. Left: for n = 5. Right: for n = 10.

Figure 4.13: Superimposition of Gζ (blue shaded area), Z1 (orange shaded area), Z2

(green shaded area), z values (red dots) and w values (blue dots). Left: for n = 5. Right:
for n = 10.
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Chapter 5

Numerics and heuristics

In this chapter, we present some heuristics related to the non-real eigenvalues of a two-
parameter eigenvalue problem and the pencil problem. There is a complicated interplay
between the eigenvalues of the pencil Ac. We start by describing the dynamics of the
eigenvalues of Ac as the parameter c changes in Section 5.1. In Section 5.2 we give
illustrative examples related to a two-parameter eigenvalue problem. We examine the
non-real pair-eigenvalues in different coordinate systems and we illustrate some interest-
ing patterns in their location and behaviour. In Section 5.3, we conclude the chapter with
a brief discussion of the double eigenvalues of Ac. We propose several conjectures about
the location and the quantity of double eigenvalues based on numerical experiments.

5.1 Dynamics of the eigenvalues of the pencil Ac

When c = 0, all the eigenvalues of Ac are non-real and Davies and Levitin [19] were able
to determine the asymptotics of complex eigenvalues of Ac as n → ∞. However, as c

changes, tracing the behaviour of the eigenvalues of Ac remains difficult. In this section,
we describe the dynamics of the eigenvalues of Ac as c increases from 0 to 2. Since
the spectrum Spec(Ac) is invariant under reflections about the real and imaginary axes,
we are able to describe the behaviour that occurs in the right half plane, i.e. Re(λ) > 0.
First, we recall the collision types from Figure 3.12; two real eigenvalues collide and
produce a complex conjugate pair, called Type-A, and a complex conjugate pair collides
and produces real eigenvalues, called Type-B.

Numerical experiments demonstrate that as c goes from 0 to 2, for arbitrary n each
complex conjugate pair approach to each other along a curve, as opposed to a straight
line, until they collide for the first time on the real axis. We refer to this as Level-1 which
consists only of Type-B collisions that occur for the first time. All collisions in Level-1 occur
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in order, i.e. the pair with the greatest real part collide first and the pair who has the least
real part collide last.

After the first collisions occur, each pair travels along the real axis, where one heads
to the right and the other to the left. If two real eigenvalues meet, they become a double
eigenvalue at the point at which they meet. Subsequently they split and escape from
the real line as a conjugate pair. In the complex plane, they make a small jump (in the
sense that the eigenvalues travels a half-loop) in directions opposite to the origin. Then
this jump is followed by another collision on the real line. This is what we refer to as
Level-2, where eigenvalues have two collisions in total; first Type-A collisions occur and
each complex conjugate pair makes a small jump in the complex plane and then Type-B
collisions occur. The process in Level-2 is repeated in the following levels.

These collisions and jumps in each level are illustrated in Table 5.1 for n = 7. For
simplicity, we plot jumps that occur only in the first quadrant. There are some collisions
which takes place at the origin, i.e. λ = 0. When Type-A collisions occur at the origin,
they then escape to the complex plane as a purely imaginary pair and they never leave
the imaginary axis. They come back and collide on the real line at the origin again.
Note that in Table 5.1 we do not show the jumps that occur at the origin in any level as
the eigenvalues move along the imaginary axis only. However, the final collision always
occurs at the origin.

We observe the following generic behaviour from numerics:

(i) Each pair always collide, separately and independently of other pairs.

(ii) All jumps occur in the direction opposite to the origin.

(iii) At each Level-j, j = 2, . . . , n − 1, the eigenvalue whose real part is closest to the
origin reaches higher point while jumping in the complex plane.

(iv) At Level-1, the collisions are monotonic in c. This, however, is not true for any
other levels. The collisions occur without order, that is for sufficiently large n, some
eigenvalues at Level-j may be produced earlier than those which are still in Level-
(j − 1) or Level-(j − 2). Nevertheless, collisions and jumps occur with sufficient
speed such that the eigenvalues are unable to overtake each other on the real line.

5.2 Heuristics for the non-real pair-eigenvalues of M

In this section we discuss some heuristic results and conjectures for the behaviour of the
non-real pair-eigenvalues of a two-parameter eigenvalue problem. The pair-eigenvalues
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Table 5.1: For n = 7, blue dots represents the dynamics of the non-real eigenvalues of
Ac in the first quadrant of the complex plane (Re(λ), Im(λ)), as c increases from 0 to 2.
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provide a better perspective in the (c,Re(λ))-plane than they do in the (Re(α),Re(β))-
plane. We therefore present them in (c,Re(λ)) coordinates. Recall the substitution (3.17),

α− β = 2λ; α + β = −2c. (5.1)

This substitution allows us to change the coordinate system from (c,Re(λ)) to (α, β).
Therefore, we can equivalently write all results in Section 3.2 in the (c,Re(λ))-plane.

It appears from the numerical experiments that the patterns we show in here occur only
for our specific example, that is, Specp(M) when A = D = H0. Recall the two-parameter
eigenvalue problem: (

H0 − α κB
κB H0 − β

)(
u
v

)
= 0, (5.2)

or equivalently

Ac,κ

(
u
v

)
=

(
Hc κB
−κB −Hc

)(
u
v

)
= λ

(
u
v

)
,

where κ ∈ R and B = B∗ with Bn,n = 1 and all other entries of B are equal to zero. Note
that when κ = 1, the problem is equivalent to the pencil problem considered in [19], i.e.
Ac = Ac,1. In the following, we present some illustrations about the non-real-eigenvalues
of Ac,κ.

When κ ≥ 1, the proportion of non-real eigenvalues of Ac,κ tends to usually decrease
with κ, whereas κ ≤ 1 it tends to increase with κ. We note that we show a typical picture
for some κ ≥ 1 in Figure 5.2(left). On the other hand, if we fix κ and change the size of
the matrix n, then proportion of non-real eigenvalues becomes more stable, see Figure
5.2(right). Although the proportion of non-real eigenvalues become more stable for a spe-
cific value of c and κ as n increases, it remains difficult to estimate the range of possible
values.

Another example is given in Figure 5.3 where we illustrate the eigenvalues which es-
cape from the real line. In Figure 5.3, we take n = 10 and superimpose the real parts of
the non-real eigenvalues of Ac,κ, with respect to c, for different values of κ between 0.001

and 5. One can see a similar pattern to Chess Board structure in this figure, however, not
in the real eigenvalues but in the non-real eigenvalues.

In the top panel of Figure 5.4, the non-real eigenvalues of Ac,κ is superimposed by
taking n from 2 to 50. If one takes κ to be either closer to zero or large, then this pattern
somehow gets clearer, see the bottom Figure 5.4 when κ = 4. In the next section, we will
look at the escape points (i.e. collision points) in more details.
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Figure 5.2: Proportion of the non-real eigenvalues of Ac,κ as c goes from 0 to 2.2. Left:
for n = 500, with κ = 1 (red line), κ = 2 (purple line), κ = 5 (orange line). Right: for κ = 1,
with n = 500 (red line), n = 1000 (blue line).

Figure 5.3: For n = 10, this figure shows the superimposition of the non-real eigenvalues
of Ac,κ in the (c,Re(λ))-plane, when the values of κ ranges from 0.001 to 5 with the step-
size of 0.04.

5.3 Double eigenvalues of Ac

In this section we provide illustrative numerical examples for the location and the number
of double eigenvalues of the pencil Ac (or, equivalently Ac,1). Recall that the pencil Ac has
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Figure 5.4: In the (c,Re(λ))-plane, the superimposition of the non-real eigenvalues of
Ac,κ by taking n from 2 to 50. Top: for κ = 1. Bottom: for κ = 4.
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dimension 2n. Most conjectures in this section are supported by numerical calculations
for n = 1, . . . , 30 and for a wide range of c. As n gets bigger, it takes a relatively large
amount of time to find the location of the double eigenvalues of Ac. First, we note the
following:

Conjecture 5.3.1. For each given value of n ∈ N and c ∈ (0, 2) there are no non-real
double eigenvalues of Ac.

We provide two examples as illustrations. First, we plot all the double eigenvalues in
the (c, λ)-plane for a fixed size, n = 20, in Figure 5.5. Although some double eigenvalues
appear to lie on the same line, it is difficult to see a pattern. However, if one superimposes
the double eigenvalues by taking the values of n from 2 to 30, then one would see that
they form an interesting pattern in the (c, λ)-plane, as shown in Figure 5.6.

Figure 5.5: The double eigenvalues of Ac in the (c, λ)-plane when n = 20.

As mentioned in Lemma 3.7.3, the collisions of the eigenvalues (or, equivalently, dou-
ble eigenvalues) of the pencil Ac occur when dc/dλ = 0 (or, equivalently dβ/dα = −1).
These are the critical points along eigenvalue curves.

Assume that we are in the situation of the simple Chess Board Theorem. Recall
from Chapter 3 that the real pair-eigenvalues of (5.2) when κ = 1 consists of curves
(α, β(α)) which are continuous except at α ∈ Spec(H0). We denote by Λi, i = 1, . . . , n,
both branches of the curve (α, βi(α)), such that βi(αi ± 0) → ±∞. A typical enumeration
of the curves Λi can be seen in Figure 5.7 for n = 6. Note that the eigenvalue curves
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Figure 5.6: The superimposition of the double eigenvalues of Ac in the (c, λ)-plane when
n is between 2 and 30.

Figure 5.7: For n = 6, Spec(Ac,1) when c ∈ (−2, 2) in the (Re(α),Re(β))-plane. Black
dotted lines represent α = αi ∈ Spec(H0) in the vertical direction and β = αi ∈ Spec(H0)
in the horizontal direction.

in Figure 3.11 look a bit different than they do in Figure 5.7. This is because we take
c ∈ (−2, 2) in Figure 5.7 whereas we considered c ∈ R in Figure 3.11.
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From numerical experiments we observe the following:

Conjecture 5.3.2. Let c ∈ (−2, 2). Then each curve Λi, i = 1, . . . , n has exactly 2n critical
points such that

dβi(α)

dα
= −1.

As can be seen from Figure 5.7 each curve has exactly n Type-A collisions and n

Type-B collisions. We may be able to determine the location of some double eigenvalues
of the pencil Ac. Indeed, we can count the number of double eigenvalues of Ac which
occur at λ = 0. Recall the pencil problem

Acf =
(
H(2n)
c − λS

)
f =

(
H

(2n)
0 + cI − λS

)
f = 0.

We observe that if λ = 0, then

H
(2n)
0 f = −cf ,

which implies that c = −µ(2n)
j , and since µ(2n)

j are symmetric, the double eigenvalues λ∗ of
Ac that occur at the origin, i.e. at λ = 0, occur when

c = µ
(2n)
j = 2 cos

πj

2n+ 1
, j = 1, . . . , 2n,

and therefore

#
⋃

c∈(−2,2)

{λ∗ ∈ Spec (Ac) : λ∗ = 0} = 2n. (5.3)

One should note that the real pair-eigenvalue spectrum viewed in (Re(α),Re(β))-plane
covers the spectra of the corresponding pencils Ac for all real c. To find the real eigenval-
ues of Ac0 for a particular c0 ∈ R, one has to look at the intersection of the real eigenvalue
curves (blue curves) with the straight line α + β = −2c, see (5.1). Every line will intersect
with the eigenvalue curves at most 2n points, cf. Figure 5.7. If, additionally, at each inter-
section point, the curve has gradient −1, then it is a double eigenvalue intersection point.
Note that for some particular c’s, there may be or may not be any double eigenvalues of
Ac since it is rare. So the number of all critical points as a union of all c’s and all λ’s is the
number of double eigenvalues. Therefore λ∗ do not depend continuously on c and they
form a discrete set. If we look at the union of all c’s, then we look at the whole picture, c.f.
Figure 5.5 for n = 20. On the other hand, in Figure 5.5, if one wants to look at the picture
or count the double eigenvalues of Ac for a given c, then one needs to take a straight
vertical line in the (c, λ)-plane, and count how many of them are on the line, which will
give the number of double eigenvalues.
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Lemma 5.3.3. Subject to Conjecture 5.3.2, for a fixed n, the double real eigenvalues λ∗

of Ac satisfy

(i) #
⋃

c∈(−2,2)

{λ∗ ∈ Spec (Ac) : −4 ≤ λ∗ ≤ 4} = 2n2.

(ii) #
⋃

c∈(−2,2)

{λ∗ ∈ Spec (Ac) : 0 < λ∗} = n(n− 1).

Proof. The statement (i) follows by multiplying the number of curves, which is n, and the
number of critical points in each curve, which is 2n by Conjecture 5.3.2. To prove (ii),
using (5.3) we see that there are 2n2 − 2n critical points which do not lie at λ = 0. Then
the statement follows from dividing by 2, as we consider the upper-half plane λ > 0.

In the next result, we conjecture that all double eigenvalues of the pencil Ac are lo-
calized to a specific area. Numerical experiments suggest that double eigenvalues of Ac
occur only when λ < 2 − |c|. In fact, if the only time when the eigenvalues of Ac escape
from the real line and rejoin the real line are after the collisions, then Conjecture 1.3.3 is
a consequence of the following conjecture.

Conjecture 5.3.4. The double eigenvalues λ∗ of the pencil Ac satisfy

(i) #
⋃

c∈(−2,2)

{λ∗ ∈ Spec (Ac) : 0 < λ∗ + |c| < 2} = n(n− 1),

(ii) #
⋃

c∈(−2,2)

{λ∗ ∈ Spec (Ac) : 2 ≤ λ∗ + |c| ≤ 4} = 0.

Remark 5.3.5. Note that as c increases from 0 to 2, the double eigenvalues do not over-
take each other when they collide and while they jump. Thus, Conjecture 5.3.4 implies
that the rate at which eigenvalues become double eigenvalues should be lower than the
rate at which c decreases.
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