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Abstract

This thesis is a collection of published, submitted and developing papers. Each paper is pre-
sented as a chapter of this thesis, in each paper we advance the field of vectorial Calculus of
Variations in L∞. This new progress includes constrained problems, such as the constraint
of the Navier-Stokes equations studied in Chapter 2. Additionally the combination of con-
straints, including a nonlinear operator and a supremal functional, deliberated in Chapter
3. Finally, Chapter 4 presents an alternative supremal constraint, in the contemplation of
the second order generalised ∞-eigenvalue problem.

In Chapter 2 we introduce the joint paper with Nikos Katzourakis and Boris Muha. We
study a minimisation problem in Lp and L∞ for certain cost functionals, where the class of
admissible mappings is constrained by the Navier-Stokes equations. Problems of this type
are motivated by variational data assimilation for atmospheric flows arising in weather
forecasting. Herein we establish the existence of PDE-constrained minimisers for all p, and
also that Lp minimisers converge to L∞ minimisers as p → ∞. We further show that Lp

minimisers solve an Euler-Lagrange system. Finally, all special L∞ minimisers constructed
via approximation by Lp minimisers are shown to solve a divergence PDE system involving
measure coefficients, which is a divergence form counterpart of the corresponding non-
divergence Aronsson-Euler system.

In Chapter 3 we present the joint paper with Nikos Katzourakis. We study minimisation
problems in L∞ for general quasiconvex first order functionals, where the class of admissible
mappings is constrained by the sublevel sets of another supremal functional and by the
zero set of a nonlinear operator. Examples of admissible operators include those expressing
pointwise, unilateral, integral isoperimetric, elliptic quasilinear differential, Jacobian and
null Lagrangian constraints. Via the method of Lp approximations as p → ∞, we illustrate
the existence of a special L∞ minimiser which solves a divergence PDE system involving
certain auxiliary measures as coefficients. This system can be seen as a divergence form
counterpart of the Aronsson PDE system which is associated with the constrained L∞

variational problem.
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Chapter 4 provides part of the corresponding developing preprint, joint work with Nikos
Katzourakis. We consider the problem of minimising the L∞ norm of a function of the
Hessian over a class of maps, subject to a mass constraint involving the L∞ norm of a
function of the gradient and the map itself. We assume zeroth and first order Dirichlet
boundary data, corresponding to the “hinged” and the “clamped” cases. By employing
the method of Lp approximations, we establish the existence of a special L∞ minimiser,
which solves a divergence PDE system with measure coefficients as parameters. This is
a counterpart of the Aronsson-Euler system corresponding to this constrained variational
problem.
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Chapter 1

Background and Motivations

In this chapter we review several background concepts that will be assumed throughout
the thesis.

1.1 Sobolev spaces

During the early 20th century, there was a substantial development in the theory of differ-
ential equations. Specifically, most partial differential equations (PDEs), either linear or
nonlinear, cannot be “solved” in the classical sense of writing an explicit formula represent-
ing a solution as differentiable as the equation would suggest. This was the beginning of
analytic PDE theory, abandoning to a large extent the search for new calculus techniques
to represent formulas of solutions.

A related problem, which arose almost simultaneously, is that in general we have to
extend our search for solutions to functions of lower regularity. In fact, for the vast majority
of PDEs, it is impossible to prove existence of a solution as differentiable as the terms
within the equation. Let alone find an explicit formula to describe the solution in terms of
elementary functions.

The modern approach to PDEs consists of searching for appropriately defined gen-
eralised solutions. Firstly, we ascertain existence, given a specific domain and certain
prescribed boundary/initial conditions. The relevant vector spaces to initiate these ques-
tions are the Sobolev spaces. Before we can introduce their definition, we must discuss
what it means for a function to have a derivative in the weak sense.
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Definition 1.1.1. Let Ω ⊆ Rn, with n ∈ N. Suppose u, v ∈ L1
loc(Ω) and α = (α1, ..., αn)

is a multiindex of order |α| = α1 + ... + αn = k. We say that v ∈ L1
loc(Ω) is the αth-weak

partial derivative of u, written as
∂αu = v,

provided ∫
Ω
u ∂αϕ dLn = (−1)|α|

∫
Ω
vϕ dLn,

for all test functions ϕ ∈ C∞
c (Ω). Additionally, our integration is with respect to the

n-dimensional Lebesgue measure Ln.

Theorem 1.1.2 (Uniqueness of weak derivatives). A weak αth-partial derivative of u, if it
exists, is uniquely defined up to a set of measure zero.

Proof of Theorem 1.1.2. Let v, w ∈ L1
loc(Ω) such that:∫

Ω
u ∂αϕ dLn = (−1)|α|

∫
Ω
vϕ dLn = (−1)|α|

∫
Ω
wϕ dLn ∀ϕ ∈ C∞

c (Ω).

Then, ∫
Ω
vϕ dLn =

∫
Ω
wϕ dLn.

Consequently, ∫
Ω
(v − w)ϕ dLn = 0.

Thus, v − w = 0 a.e and v = w a.e. Hence, we have uniqueness up to a set of measure
zero.

Let us consider some elementary examples of functions possessing weak derivatives.

Example 1.1.3. If u ∈ Ck(Ω) then its classical partial derivatives are indeed weak partial
derivatives for |α| ≤ k.

Example 1.1.4. Suppose n = 1 with Ω = (0, 3) and

u(x) =
4x− 6 if 0 < x ≤ 2,

2 if 2 < x < 3.

Let

v(x) =
4 if 0 < x ≤ 2,

0 if 2 < x < 3.
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We intend to show that u′ = v in the weak sense. Choose any ϕ ∈ C∞
c (Ω), we must show

that ∫ 3

0
uϕ′ dL = −

∫ 3

0
vϕ′ dL.

Using additivity and integration by parts, we easily compute∫ 3

0
uϕ′ dL =

∫ 2

0
uϕ′ dL +

∫ 3

2
uϕ′ dL =

∫ 2

0
(4x− 6)ϕ′(x) dL +

∫ 3

2
2ϕ′(x) dL

=
[
ϕ(x)(4x− 6)

]2

0
−
∫ 2

0
4ϕ(x) dL + 2

[
ϕ(x)

]3

2

= 2ϕ(2) −
∫ 2

0
4ϕ(x) dL − 2ϕ(2)

= −
∫ 2

0
4ϕ(x) dL = −

∫ 3

0
vϕ dL,

as required.

Example 1.1.5. The discontinuous function f : (0, 2) → R

f(x) =
0 if 0 < x ≤ 1,

1 if 1 < x < 2,

is not weakly differentiable. For any ϕ ∈ C∞
c (0, 2), we compute∫ 2

0
fϕ′ dL =

∫ 1

0
(0)ϕ′ dL +

∫ 2

1
ϕ′ dL =

[
ϕ(x)

]2

1
= ϕ(2) − ϕ(1) = −ϕ(1).

Consequently, the weak derivative g = f ′ must satisfy∫ 2

0
gϕ dL = ϕ(1),

for any ϕ ∈ C∞
c (0, 2). Suppose for contradiction and assume there exists a g ∈ L1

loc(0, 2)
that satisfies the above. Suppose we have test functions with ϕ(1) = 0, then gϕ = 0 a.e for
any ϕ ∈ C∞

c (0, 2), so g = 0 a.e. This must also hold for test functions where ϕ(1) = 1, but∫ 2

0
gϕ dL = 0 ̸= 1,

we have a contradiction. As a result, f is not weakly differentiable.
Note that the pointwise derivative of f exists and is zero except at the discontinuity,

however the function is not weakly differentiable.
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Definition 1.1.6. Let Ω ⊆ Rn be open and p ∈ [1,∞], then we define the Sobolev spaces
as follows:

W k,p(Ω) :=
{
u ∈ Lp(Ω) : Dαu ∈ Lp(Ω), for |α| ≤ k

}
,

where the derivatives are taken in the weak sense. If u ∈ W k,p(Ω) we define its norm to
be:

∥u∥W k,p(Ω) : =
∑

|α|≤k

∥Dαu∥Lp(Ω), 1 ≤ p < ∞,

∥u∥W k,∞(Ω) : =
∑

|α|≤k

∥Dαu∥L∞(Ω).

Remark 1.1.7. An alternative choice of norm is given as follows

∥u∥W k,p(Ω) : =
 ∑

|α|≤k

∥Dαu∥p
Lp(Ω)

 1
p

, 1 ≤ p < ∞,

∥u∥W k,∞(Ω) : = max
|α|≤k

∥Dαu∥L∞(Ω).

These norms are equivalent to the previous choices, in the sense they generate the same
topology. However, throughout this thesis we will employ the norms used in Definition
1.1.6, since they significantly simplify our calculations.

The Sobolev spaces are the correct setting to obtain information for divergence structure
PDEs. They also allow us to solve equations in a weaker sense through multiplying by test
functions and integrating by parts. Conveniently, the Sobolev spaces inherit functional
analytic attributes of the Lebesgue spaces.

Theorem 1.1.8. The Sobolev spaces are Banach spaces for 1 ≤ p ≤ ∞. Additionally, they
are separable and reflexive, for 1 < p < ∞.

In infinite dimensions, the closed unit ball is not sequentially compact, correspondingly
we need some additional properties to establish weak versions of compactness, see [73].
Consequently, the above result is of paramount importance, when constructing bounds to
substantiate compactness, to justify limiting processes.

We intend to use Sobolev spaces as means to study PDEs, consequently we must extend
the notion of boundary values. A stepping stone to resolving this issue relies on introducing
an appropriate closed subspace.
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Definition 1.1.9. We denote by
W k,p

0 (Ω)
the closure of C∞

c (Ω) in W k,p(Ω).

Consequently, u ∈ W k,p
0 (Ω) if and only if there exists functions um ∈ C∞

c (Ω) with
um −→ u in W k,p(Ω). We see the closed subspace W k,p

0 (Ω) as functions within W k,p(Ω)
that exhibit the additional property

Dαu = 0 on ∂Ω for all |α| ≤ k − 1.

We must introduce the Trace operator for this expression to make sense, otherwise we have
a problem. In the classical setting of u ∈ C(Ω), u has boundary values in the usual sense.
However, there is a substantial issue when we encounter functions in a Sobolev space that
are not continuous, or only defined a.e. As ∂Ω is an n-dimensional Lebesgue null set, there
is no clear interpretation for the meaning of “u restricted to ∂Ω”.

Theorem 1.1.10 (Trace Theorem). Assume Ω is bounded and ∂Ω is C1. Then there exists
a bounded linear operator

T : W 1,p(Ω) −→ Lp(∂Ω)
such that
(i) Tu = u|∂Ω if u ∈ W 1,p(Ω) ∩ C(Ω)
and
(ii)

∥Tu∥Lp(∂Ω) ≤ C∥u∥W 1,p(Ω),

for each u ∈ W 1,p(Ω), with the constant C depending only on p and Ω.

Definition 1.1.11. We call Tu the trace of u on ∂Ω.

Theorem 1.1.12. (Trace-zero functions in W 1,p). Assume u is bounded and ∂Ω is C1.
Suppose furthermore that u ∈ W 1,p(Ω). Then

u ∈ W 1,p
0 (Ω) if and only if Tu = 0 on ∂Ω.

There are some extremely useful inequalities within Sobolev space theory that we use
throughout this thesis. The Poincaré and Poincaré Wirtinger inequality are two such
examples.

5



Theorem 1.1.13 (Poincaré’s inequality). Suppose that 1 ≤ p < ∞ and Ω is a bounded
open set. Then there exits a constant C (depending on Ω and p) such that

∥u∥Lp(Ω) ≤ C∥Du∥Lp(Ω),

for any u ∈ W k,p
0 (Ω).

Theorem 1.1.14 (Poincaré Wirtinger inequality). Assume that 1 ≤ p < ∞ and Ω is
a bounded, connected open set with Lipschitz boundary. Then there exits a constant C,
depending only on n, p and Ω, such that∥∥∥∥u− −

∫
Ω
u dLn

∥∥∥∥
Lp(Ω)

≤ C∥Du∥Lp(Ω),

for each function u ∈ W 1,p(Ω).

These results are highly significant, as they allow us to bound the norm of a function,
using only the norm of its gradient.

Another useful bound is the Morrey estimate.

Theorem 1.1.15 (Morrey’s inequality). Assume n < p ≤ ∞. Then there exists a constant
C, depending only on p and n such that

∥u∥C0,γ(Ω) ≤ C∥u∥W 1,p(Ω)

for all u ∈ C1(Ω), where
γ := 1 − n

p
.

Thus, if u ∈ W 1,p(Ω), then u is in fact Hölder continuous of exponent γ. This embedding
can actually be made compact. The notion of compact embeddings is used throughout
linear and nonlinear functional analysis, it is of the utmost importance within the realm
of differential equations.

Definition 1.1.16. Let X and Y be Banach spaces, X ⊂ Y . We say that X is compactly
embedded in Y , written

X ⋐ Y

provided
(i) ∥u∥Y ≤ C∥u∥X(u ∈ X) for some constant C
and
(ii) each bounded sequence in X is precompact in Y .

6



The second condition means that if (uk)∞
k=1 is a sequence in X with supk ∥uk∥X < ∞,

then some subsequence (ukj
)∞

j=1 ⊆ (uk)∞
k=1 converges in Y to some limit u:

lim
j→∞

∥ukj
− u∥Y = 0.

Theorem 1.1.17 (Rellich-Kondrachov). Suppose that Ω is bounded with C1 boundary.
Then, for p > n, the embedding W 1,p(Ω) ⊂ C(Ω) is compact, i.e W 1,p(Ω) ⋐ C(Ω).

This result allows us to prove the existence of a uniformly convergent subsequnce,
through a W 1,p(Ω) norm bound.

We refrain from discussing this topic any further, as there is a great deal of accessible
literature on Sobolev spaces. The reader should consult [1, 21, 42] for a comprehensive
exploration. These references also contain the proofs of the results quoted in this section.

1.2 Variational problems

The study of minimisation problems has been undertaken by a variety of mathematicians
for diverse intentions. There has been a substantial focus in understanding the relationship
between minimality conditions of a functional and the appreciation of PDEs. As there
is no general theory for all PDEs, we must exploit the PDE structure where possible.
An important collection of such problems are when we can view minimality through a
variational approach, this is a corner stone of Calculus of Variations. For instance, suppose
we have some potentially nonlinear PDE with the form

A[u] = 0, (1.1)

where A[u] is a given differential operator and u is the unknown. Equation (1.1) can be
characterised as the minimiser of an appropriate energy functional E[u], such that

E ′[u] = A[u]. (1.2)

The practicality of this method is that now we can prove existence of extrema for the
energy functional E[·] and consequently the solution of (1.1). This approach provides a
much more tractable method than the direct consideration of problem (1.1).

In this thesis we will not explore the Calculus of Variations as a means to study non-
linear PDEs. Neither will we pursue classical problems from the well established field of
minimising integral functionals. However, a strong foundation in the study of integral

7



Calculus of Variations is necessary to examine the problems we face in this thesis. We will
recap some of these fundamental ideas in a subsequent subsection. Our interest lie at the
heart of minimising constrained vectorial supremal functionals and finding the necessary
conditions these minimisers must satisfy. This is the field of vectorial Calculus of Variations
in L∞ and will be the topic of this thesis.

1.3 Literature review

Due to the extensive nature of this branch of mathematics, it is rather challenging to include
and produce a completely comprehensive literature review. A substantial quantity of the
appropriate literature is reviewed in the introductions of the papers that are presented in
this thesis. However, we will briefly outline the most important previous considerations
that have inspired the new progress in this thesis.

1.4 Integral Calculus of Variations

We will now recap some rudimentary details, essentially textbook material of integral Cal-
culus of Variations. See [36, 42, 90] for further details.

Let X be a vector space and E : X −→ R, a real valued continuously differentiable
integral functional. Our first natural question of interest concerns the existence of min-
imisers, this can be investigated through the well established direct method in the Calculus
of Variations.

Theorem 1.4.1 (The Direct Method in the Calculus of Variations). Suppose X is a reflex-
ive Banach space with norm ∥ · ∥, and let M ⊆ X be a weakly closed subset of X. Suppose
E : M −→ R ∪ {+∞} is coercive and sequentially weakly lower semi-continuous on M
with respect to X, that is, suppose the following conditions are fulfilled:

• E(u) −→ ∞ as ∥u∥ −→ ∞, u ∈ X.

• For any u ∈ M , any sequence (um) ∈ M such that um −−⇀ u weakly in X there holds:

E(u) ≤ lim inf
m→∞

E(um).

Then E is bounded from below on M and attains its infimum in M .

8



Remark 1.4.2. Notice that the direct method is not only restricted to proving the exis-
tence of integral functionals.

Once we have established existence of solutions, our next point of inquisition is deter-
mining necessary conditions that these minima or maxima must satisfy. These necessary
conditions will be in form of PDEs. For vectorial problems these necessary conditions will
manifest as a system of PDEs.

If E has local extrema (local minima or maxima) at a point x0 ∈ X, then

E ′(x0) = 0.

Under further regularity of E, specifically a C2 functional, we can deduce that

E ′′(x0) ≥ 0,

if x0 is a local minimum.

Figure 1.1: Local Extrema

We can intuitively visualise lower dimensional problems like the figure above.

Similarly,
E ′′(x0) ≤ 0.

if x0 is a local maximum.
Now let E be a C1 real valued functional over the bounded open set Ω ⊆ Rn. Then

for some u0 ∈ Ω and ϕ ∈ C∞
c (Ω;Rn) and for some sufficiently small ε0 > 0 the function

E(u0 + εϕ) is also continuously differentiable, when |ε| < ε0. The first variation is then

9



defined as the derivative of E at point u0 along the direction of ϕ for ε = 0. When u0 is a
critical point we conclude that

d
dε

∣∣∣∣
ε=0

E(u0 + εϕ) = 0. (1.3)

We can visualise an elementary situation as follows.

Figure 1.2: Directional Derivative

Consider the functional E defined as above, where L ∈ C1(Ω×RN ×RN×n) is the Lagrangian

d
dϵ

∣∣∣∣
ε=0

E(u0 + εϕ) =
∫

Ω

d
dε

∣∣∣∣
ε=0

L(·, u+ εϕ,Du+ εDϕ) dLn

=
∫

Ω

(
Lη(·, u,Du) · ϕ+ LP (·, u,Du) : Dϕ

)
dLn.

Where Lη := DηL =
(
Lηi

)i=1,...,N and LP := DPL =
(
LPij

)j=1,...,n

i=1,...,N
. Additionally, our

integration is with respect to the n-dimensional Lebesgue measure Ln. Finally, for any
A,B ∈ RN×n we denote A : B := tr(ATB).

If E(u) = min
v∈W 1,p(Ω)

E(v) (u is a minimiser of E) then E(u) ≤ E(u+ ϵϕ) and
d
dε

|ε=0E(u0 + εϕ) = 0. Thus, if u minimises E, then for all ϕ ∈ C∞
c (Ω;RN) we have∫

Ω

(∑
i

Lηi
(·, u,Du) · ϕi +

∑
ij

LPij
(·, u,Du) : Djϕi

)
dLn = 0,

as this equality holds for all test functions ϕ we conclude that u solves the Euler-Lagrange
PDE system

Div
(
LP (·, u,Du)

)
= Lη(·, u,Du), in Ω. (1.4)

10



This can be rewritten in the following index notation∑
i

Di

(
LPij

(·, u,Du)
)

+ Lηj
(·, u,Du) = 0, j = 1, ..., N in Ω.

For example, consider the p-Dirichlet integral functional

Ep(u) :=
∫

Ω
|Du|p dLn, u ∈ W 1,p(Ω;RN).

The corresponding Euler-Lagrange equations are given by the renowned p-Laplacian

∆pu := Div(|Du|p−2Du) = 0 in Ω. (1.5)

Note that for any P ∈ RN×n, the notation |P | denotes its Euclidean (Frobenius) norm:

|P | =
(

N∑
i=1

N∑
j=1

(Pij)2
) 1

2

.

1.5 Calculus of Variations in L∞

Calculus of Variations in L∞ has a reasonably short history, with the first developments
being made by Gunnar Arronsson in the 1960s. He considered L∞ variational problems
in the scalar case [4]-[9]. The evolution of vectorial problems did not begin till much
later, with Nikos Katzourakis initiating its growth in the 2010s. In this thesis we will
study constrained vectorial problems, only a very small quantity of previous literature
existed at the commencement of this project [65, 66]. There has already been substantial
advancements in the the scalar case, where this interest has arisen from both theoretic and
applied settings. Motivations based on applications arise from the following; minimisation
of the maximum can provide more realistic models when compared to the case of integral
functionals, where instead the average is minimised.

The area of Calculus of Variations in L∞ is concerned with the study of supremal
functionals, alongside their associated PDE systems (as the analogue of Euler-Lagrange
equations). Specifically, let L ∈ C2(Ω × RN × RN×n) be a Lagrangian, with its arguments
denoted as (x, η, P ). The vectorial first order case of an L∞ functional applied to maps
u : Rn ⊇ Ω −→ RN has the form

E∞(u,O) := ∥L(·, u,Du)∥L∞(O), u ∈ W 1,∞
loc (Ω,RN), O ⋐ Ω. (1.6)

11



As mentioned, in the classical setting of integral functionals, where

E(u) =
∫

Ω
L(·, u,Du) dLn,

Euler-Lagrange equations are reasonably well behaved. Specifically, they are of the form

Div
(
LP (·, u,Du)

)
= Lη(·, u,Du),

hence exhibiting a divergence form PDE structure, this potentially allows for weak solutions
to be characterised via integration by parts. Whilst the PDE system related to (1.6) is
degenerate, non-divergence and exhibits discontinuous coefficients, no matter how convex
or smooth the Lagrangian might be. Explicitly, the system of associated PDEs generated
from (1.6) is given by

F∞(·, u,Du,D2u) = 0, on Ω, (1.7)
where F∞ : Ω × RN × RN×n × RN×n2

s −→ RN is the discontinuous Borel measurable map

F∞(x, η, P,X) :=
(

LP (x, η, P ) ⊗ LP (x, η, P ) + L(x, η, P )
[
LP (x, η, P )

]⊥
LP P (x, η, P )

)
: X

+ L(x, η, P )
[
LP (x, η, P )

]⊥(
LP η(x, η, P ) : P + LP x(x, η, P ) : I

− Lη(x, η, P )
)

+ LP (x, η, P )
(

Lη(x, η, P )TP + Lx(x, η, P )
)
.

(1.8)

Where LPij
≡ ∂L

∂Pij
, Lηi

≡ ∂L
∂ηi

and ⊗ is the tensor product. Additionally, for any matrix
A ∈ RN×n, [A]⊥ is the orthogonal projection on the orthogonal complement of the Range
R(A) ⊆ RN of the linear map A : Rn −→ RN :

[A]⊥ := ProjR(A)⊥ . (1.9)

Although, L ∈ C2(Ω × RN × RN×n) the coefficient
[
LP (x, η, P )

]⊥
is discontinuous where

the rank of LP (x, η, P ) changes. We refer to these types of equations as Aronsson-Euler
PDE systems.

An important example of such an equation is given when L(x, η, P ) = |P |2 (the Eu-
clidean Matrix norm on RN×n squared). Then the relevant associated PDE system is called
the ∞-Laplacian:

∆∞ :=
(

Du⊗ Du+ |Du|2[Du]⊥ ⊗ I
)

: D2u = 0. (1.10)
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A standard difficulty, when dealing with these types of problems, is the complexity of
the PDE system given in (1.8). As previously mentioned, these systems do not possess
a divergence structure, hence weak solutions via Sobolev space methods are inadequate.
Furthermore, we can not utilise the notion of Viscosity Solutions, since they are only per-
mitted in the scalar setting [61]. Some recent developments have been made to understand
the applicable concept for the vectorial setting, the idea of solutions in the D sense [63].
However, given the nature of the problems we will study, it will not be necessary to ex-
plore this intricate notion of PDE solution. We will bypass these complications, through
appropriate rescaling and convergence arguments that will be discussed in the upcoming
chapters.

1.6 Notation convention

In this area of mathematics, we use compactness arguments throughout. This involves
employing modes convergence, through multiple subsequences. We avoid using a multitude
of subscripts, instead we simplify our notation. For example, up −−⇀ u∞ in W 1,q

0 (Ω;Rn)
as pj → ∞, for any fixed q ∈ (p,∞) (this means that the convergence holds along the
subsequence of indices (pj)∞

1 , namely upj
−−⇀ u∞ as j → ∞).

1.7 Thesis structure

The aim of this thesis is to advance recent ideas concerning constrained supremal func-
tionals. Our intentions are to further develop the theoretical framework required for estab-
lishing PDE conditions for these minimisation problems. However, we can not tackle the
L∞ problem instantaneously. Instead, we employ the standard technique of Lp approxi-
mations, this is a well established idea in the theory of vectorial problems. Specifically, we
consider the Lp problem for finite p and pass to the limit to deduce information about the
L∞ problem. This approach is motivated by knowing the Lp norm tends to the L∞ norm
(for fixed essentially bounded functions on a domain of finite measure).

We have reached our goal by producing, submitting and publishing papers on a selection
of intricate problems within this field of study. Consequently, this thesis is a collection of
papers, where each paper is presented as a chapter. A summary of each chapter is outlined
below.

In Chapter 2 we provide the joint paper with Nikos Katzourakis and Boris Muha. This
paper was published online in the journal Nonlinearity in December 2021. We start with
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some motivational ideas into why we consider the problem, specifically what is variational
data assimilation and how this could support weather prediction. Subsequently, we can
pose our research question as a constrained supremal minimisation problem. Once we have
established the theoretical foundations, introduced appropriate vector spaces and devised
an admissible class of functions, we start to inspect some fundamental questions. The first
is clearly existence of minimisers, indeed our initial theorem in this chapter. Once existence
has been ascertained, we can pursue PDE conditions that these minimisers satisfy, this is
the contents of our second and third theorems. It turns out that our L∞ minimisers
solve a divergence PDE system involving measure coefficients. This is a divergence form
counterpart of the corresponding non-divergence Aronsson-Euler systems that have been
previously mentioned. Given that measures are present in our equation, we also investigate
some of their properties in our third result.

Chapter 3 presents the joint paper with Nikos Katzourakis. This paper was accepted to
the journal Advances in Calculus of Variations in March 2023. Here we investigate a more
abstract problem: The minimisation of a general quasiconvex first order L∞ functional
that is constrained by two quantities. Specifically, the sublevel set of another supremal
functional and the zero set of a nonlinear operator.
The chapter begins as before, by assembling an outline of the problem. Given the anatomy
of the research, the same natural questions must be examined. Thus, our first result
provides existence of minimisers through utilisation of the direct method, subsequently
constructing the connection between minimisers of the Lp and L∞ problem. Our next
step involves exploiting the generalised Kuhn-Tucker theory to discover equations that the
constrained minimisers satisfy. The final result is rather challenging to prove, we can not
pass to the limit as easily as we did the previous chapter. The issue is we have products
that converge in a weak sense and we can not use duality to overcome it. Due to the
specificity of the problem, we can bypass the comprehensive machinery of Young measures
and employ the theory of Hutchinson’s measure function pairs. This allows us to pass to
the limit and produce the desired PDE condition. However, this still requires a substantial
body of work. Throughout this project, we must impose ever increasing restrictions upon
the nonlinear operator Q. The final section illustrates the variety of problems still available
to us, despite the initial limitations of assumptions in our previous results. For instance,
examples of potential operators include those expressing pointwise, unilateral, integral
isoperimetric, elliptic quasilinear differential, Jacobian and null Lagrangian constraints.

In Chapter 4 we illustrate a component of the developing preprint paper, joint work
with Nikos Katzourakis. The complete paper was submitted to the journal Proceedings of
the Royal Society of Edinburgh, in March 2023. In this final piece of research, we examine
an extension of the previously existing first order problem [67]. Specifically, allowing the
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functional in question to depend on Hessians as opposed to gradients. Additionally, the
constraint depends on the gradient and the function itself. Following an analogous line of
inquiry, we determine PDE conditions for constrained minimisers, utilising our knowledge
of the approximating problems.

In Chapter 5 we discuss the conclusions and future work.
Appendix A provides the derivation of a bound stated in Chapter 2.
Appendix B contains a simple computational proof of the modified Hölder inequality

utilised in Chapter 2.
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Chapter 2

Vectorial Variational Problems in L∞

Constrained by the Navier Stokes
Equations

2.1 Introduction and main results

Let Ω ⊆ Rn be an open bounded set and let also n ≥ 2 and ν, T > 0. Consider the
Navier-Stokes equations

∂tu − ν∆u + (u · D)u + Dp − f = y, in Ω × (0, T ),
div u = 0, in Ω × (0, T ),
u(·, 0) = u0, on Ω,
u = 0, on ∂Ω × (0, T ),

(2.1)

and for brevity let us henceforth symbolise ∇u := (Du, ∂tu) and ΩT := Ω × (0, T ), where
Du = (∂x1u, ..., ∂xnu) ∈ Rn×n symbolises the spatial gradient. The system of PDEs (2.1)
describes the velocity u : ΩT −→ Rn and the pressure p : ΩT −→ R of a flow, for some
given initial data u0 : Ω −→ Rn with source f : ΩT −→ Rn. Here the map y : ΩT −→ Rn is
a parameter and should be understood as a (deterministic) noise or error. Let also N ∈ N
and suppose we are given a mapping noise or error. Let also N ∈ N and suppose we are
given a mapping

Q : ΩT ×
(
Rn × R(n+1)×n × R

)
−→ RN . (2.2)
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A problem of interest in the geosciences, in particular in data assimilation for atmospheric
flows in relation to weather forecasting (see e.g. [22, 23, 24]), can be formulated as follows:
find solutions (u, p) to (2.1) such that, in an appropriate sense,{

y ≈ 0,
Q(·, ·, u,∇u, p) − q ≈ 0,

(2.3)

where q : ΩT −→ RN is a vector of given measurable “data” arising from some specific
measurements, taken through the “observation operator” Q of (2.2). In (2.1) and (2.3),
y represents an error in the measurements which forces the Navier-Stokes equations to
be satisfied only approximately for solenoidal (divergence-free) vector fields. Namely, we
are looking for solutions to (2.1) such that simultaneously the error y vanishes, and also
the measurements q match the prediction of the solution (u, p) through the observation
operator (2.2). In application, Q is typically some component (e.g. linear projection or
nonlinear submersion) of the atmospheric flow that we can observe. Unfortunately, the
data fitting problem (2.3) is severely ill-posed; an exact solution may well not exist, and
even if it does, it may not be unique.

In this paper, inspired by the methodology of data assimilation, especially variational
data assimilation in continuous time (for relevant works we refer e.g. to [18, 25, 39, 47, 48,
75, 77, 86]), we seek to minimise the misfit functional

(u, p, y) 7→ (1 − λ)
∥∥∥Q(·, ·, u,∇u, p) − q

∥∥∥ + λ
∥∥∥y∥∥∥

over all admissible triplets (u, p, y) which satisfy (2.1), for a fixed weight λ ∈ (0, 1). The
role of this weight is to obtain essentially a Pareto family of extremals, one for each value
λ, even though in this paper we do not pursue further this viewpoint of vector-valued
minimisation (the interested reader may e.g. consult [29]). The standard approach to data
assimilation is to use Hilbert space methods (or least squares in the discrete case), hence
minimising in L2. The novelty of our approach, which is also justified from the viewpoint
of applications, is to consider instead minimisation in L∞, namely by interpreting the
norms above as L∞ ones (or maxima in the discrete case). There is a significant advantage
of considering a min-max problem instead of minimising the squared averages: the misfit
becomes uniformly small throughout the space-time domain ΩT and not just on average,
hence large “spikes” of deviations from zero are at the outset excluded.

When one passes from a variational problem for an integral norm to one for the supre-
mum norm, even though this is justified from the viewpoint of desired outputs, it poses
some serious challenges. The L∞ norm is neither differentiable nor strictly convex, and
the space L∞ is neither reflexive nor separable. Additionally, with respect to the domain

17



argument, the L∞ norm is not additive but only sub-additive. Further, one would also
need estimates for (2.1) in appropriate subspaces of L∞ for weakly differentiable func-
tions, which, to the best of our knowledge, do not exist even for linear strongly elliptic
systems (see e.g. [52]). Even then, if one somehow solves the L∞ minimisation problem
(by using, for instance, the direct method of the Calculus of Variations as in [36], under
the appropriate quasiconvexity assumptions for |Q − q| + |y| as in [17]), the analogue of
the Euler-Lagrange equations for the L∞ problem cannot be derived directly by perturba-
tion/sensitivity methods due to the lack of smoothness of the L∞ norm.

In this paper, to overcome the difficulties described above, we follow the methodology
of the relatively new field of Calculus of Variations in L∞ (see e.g. [34, 61] for a general
introduction to the scalar-valued theory), and in particular the ideas from [64, 65, 66,
68] involving higher order and vectorial problems, as well as problems involving PDE-
constraints, which have only recently started being investigated. To this end, we follow the
approach of solving the desired L∞ variational problem by solving respective approximating
Lp variational problems for all p, and obtain appropriate compactness estimates which allow
to pass to the limit as p → ∞. The case of finite p > 2 studied herein is also of independent
interest, especially for numerical discretisation schemes in L∞ (see e.g. [70, 71]), but in this
paper we treat it mostly as an approximation device to solve efficiently the L∞ problem.
The idea of this approach is based on the observation that, for a fixed essentially bounded
function on a domain of finite measure, the Lp norm tends to the L∞ norm of the function
as p → ∞.

In order to state our hypotheses and main results, let us set

K
(
x, t, η, A, a, r

)
:= Q

(
x, t, η, A, a, r

)
− q(x, t) (2.4)

(note that in (2.4) (x, t) ∈ ΩT is treated as two arguments and the two arguments (A, a) are
for ∇u = (Du, ∂tu), which we conveniently display abbreviated as one) and, by considering
the (strong) divergence operator div : W 1,1(Ω;Rn) −→ L1(Ω), we henceforth assume that

(a) Ω is bounded and has C2 boundary ∂Ω,

(b) u0 ∈
(
W 2,∞ ∩W 1,∞

0

)
(Ω;Rn) ∩ ker(div),

(c) f ∈ L∞(ΩT ;Rn) & q ∈ L∞(ΩT ;RN),
(d) K(x, t, ·, ·, ·, ·) is C1 for almost every (x, t),
(e) K(·, ·, η, A, a, r) is L∞ for all (η, A, a, r),
(f) |K(x, t, η, A, ·, ·)|2 is convex for all (x, t, η, A).

(2.5)
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Then, for any p ∈ (1,∞), we define the Lp misfit Ep : Xp(ΩT ) −→ R by setting

Ep

(
u, p, y

)
:= (1 − λ)

∥∥∥K(·, u,∇u, p)
∥∥∥

L̇p(ΩT )
+ λ∥y∥L̇p(ΩT ). (2.6)

We note that in (2.6) and subsequently, the dotted L̇p quantities are regularisations of
the respective norms at the origin, obtained by regularising the Euclidean norm in the
respective target space:

∥h∥L̇p(ΩT ) :=
∥∥∥|h|(p)

∥∥∥
Lp(ΩT )

, | · |(p) :=
√

| · |2 + p−2. (2.7)

Further, since we will only be dealing with finite measures, we will always be using the
normalised Lp norms in which we replace the integral over the domain with the respective
average, for example for Lp(ΩT ) with the (n+ 1)-Lebesgue measure, the norm will be

∥h∥Lp(ΩT ) :=
(

−
∫

ΩT

|h|p dLn+1
)1/p

.

The admissible minimisation class Xp(ΩT ) over which Ep is considered, is defined as follows:

Xp(ΩT ) :=
{

(u, p, y) ∈ Wp(ΩT ) : (u, p, y) satisfies weakly (2.1)
}
, (2.8)

where
Wp(ΩT ) := W 2,1;p

L,σ (ΩT ;Rn) ×W 1,0;p
♯ (ΩT ) × Lp(ΩT ;Rn). (2.9)

The rather complicated functional spaces appearing in (2.9) are defined as follows. The
space W 2,1;p

L,σ (ΩT ;Rn) consists of solenoidal maps which are W 2,p in space and W 1,p in time,
and also laterally vanishing on ∂Ω × (0, T ):

W 2,1;p
L,σ (ΩT ;Rn) := Lp

(
(0, T );W 2,p

0,σ (Ω;Rn)
)⋂

W 1,p
(
(0, T );Lp(Ω;Rn)

)
,

W 2,p
0,σ (Ω;Rn) :=

(
W 2,p ∩W 1,p

0

)
(Ω;Rn) ∩ ker(div).

(2.10)

The space W 1,0;p
♯ (ΩT ) consists of scalar-valued functions which are W 1,p in space with zero

average, and Lp in time:
W 1,0;p

♯ (ΩT ) := Lp
(
(0, T );W 1,p

♯ (Ω)
)
,

W 1,p
♯ (Ω) :=

{
g ∈ W 1,p(Ω) :

∫
Ω
g dLn = 0

}
.

(2.11)
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The associated norms in these spaces are the expected ones, namely
∥v∥W 2,1;p

L,σ (ΩT ) := ∥v∥Lp(ΩT ) + ∥∇v∥Lp(ΩT ) + ∥D2v∥Lp(ΩT ),

∥g∥W 1,0;p
♯

(ΩT ) := ∥g∥Lp(ΩT ) + ∥Dg∥Lp(ΩT ).
(2.12)

Note also that the divergence-free condition for u in (2.1) has now been incorporated
in the functional space W 2,1;p

L,σ (ΩT ). Finally, the L∞ misfit E∞ : X∞(ΩT ) −→ R is defined
by setting

E∞
(
u, p, y

)
:= (1 − λ)

∥∥∥K(·, ·, u,∇u, p)
∥∥∥

L∞(ΩT )
+ λ∥y∥L∞(ΩT ), (2.13)

where the admissible class X∞(ΩT ) is given by

X∞(ΩT ) :=
⋂

1<p<∞
Xp(ΩT ). (2.14)

Note that the natural topology of X∞(ΩT ) is not induced by a complete norm in a Banach
space, but instead its topology is defined as the locally convex topology induced from the
ambient Frechét space ⋂1<p<∞ Wp(ΩT ). Notwithstanding, no difficulties will arise from
this fact, which is a necessity that stems from the lack of W 2,∞-W 1,∞ estimates for (2.1).
In particular, X∞(ΩT ) is not obtained by considering the strictly smaller Cartesian product
space

W∞(ΩT ) = W 2,1;∞
L,σ (ΩT ) ×W 1,0;∞

♯ (ΩT ) × L∞(ΩT ;Rn).
However, we will assume that the solution (u, p) to (2.1) is strong and satisfies W 2,p-W 1,p

estimates for any finite p. This is deducible under assumption (2.5) in the case of n = 2
(see e.g. [50, 87]), and also under smallness conditions on u0 in any dimension n ≥ 3 (see
e.g. [3, 53, 88]). Hence, our additional hypothesis is

Either
n = 2,

or, n ≥ 3 but for any p ∈ (1,∞), exists C > 0 depending only on p and
on ∂Ω, T , ∥u0∥L2(Ω), ∥f∥L2(ΩT ), such that

∥u∥W 2,1;p
L,σ (ΩT ) + ∥p∥W 1,0;p

♯
(ΩT ) ≤ C

(
∥u0∥

W
2− 2

p ,p(Ω)
+ ∥f∥Lp(ΩT )

)
,

when (u, p) solves weakly (2.1) with y ≡ 0.

(2.15)
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Assumption (2.15), albeit restrictive, is compatible with situations of interest in weather
forecasting (see e.g. [22, 23, 24]). Our first main result concerns the existence of Ep-
minimisers in Xp(ΩT ), the existence of E∞-minimisers in X∞(ΩT ) and the approximability
of the latter by the former as p → ∞.

Theorem 2.1.1 (E∞-minimisers, Ep-minimisers & convergence as p → ∞). Suppose that
(2.5) and (2.15) hold true. Then, for any p ∈ (n + 2,∞], the functional Ep (given by
(2.6) for p < ∞ and by (2.13) for p = ∞) has a constrained minimiser (up, pp, yp) in the
admissible class Xp(ΩT ):

Ep

(
up, pp, yp

)
= inf

{
Ep

(
u, p, y

)
:
(
u, p, y

)
∈ Xp(ΩT )

}
. (2.16)

Additionally, there exists a subsequence of indices (pj)∞
1 such that the sequence of respective

Epj
-minimisers (upj

, ppj
, ypj

) satisfies (up, pp, yp) −−⇀ (u∞, p∞, y∞) in Wq(ΩT ) for any
q ∈ (1,∞), as pj → ∞. Additionally,

up −−⇀ u∞, in W 2,1;q
L,σ (ΩT ;Rn),

up −→ u∞, in C
(
ΩT ;Rn

)
,

Dup −→ Du∞, in C
(
ΩT ;Rn×n

)
,

pp −−⇀ p∞, in W 1,0;q
# (ΩT ;Rn),

yp −−⇀ y∞, in Lq(ΩT ),

(2.17)

for any q ∈ (1,∞), and also

Ep(up, pp, yp) −→ E∞(u∞, p∞, y∞) (2.18)

as pj → ∞.

Given the existence of constrained minimisers established by Theorem 2.1.1 above, the
next natural question concerns the existence of necessary conditions in the form of PDEs
governing the constrained minimisers. We first consider the case of p < ∞. Unsurprisingly,
the PDE constraint of (2.1) used in defining (2.8) gives rise to a generalised Lagrange
multiplier in the Euler-Lagrange equations, obtained by utilising well-known results on the
Kuhn-Tucker theory from [94]. Interestingly, however, the incorporation of the solenoidality
constraint into the functional space (recall (2.10)), allows us to have only one generalised
multiplier corresponding only to the parabolic system in (2.1), instead of two.
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To state our second main result, we first need to introduce some notation. For any
M ∈ N and p ∈ (1,∞), we define the operator

Mp : Lp(ΩT ;RM) −→ Lp′(ΩT ;RM),

where p′ := p/(p− 1), by setting

Mp(V ) :=
|V |p−2

(p) V(
∥V ∥L̇p(ΩT )

)p−1 . (2.19)

Here | · |(p) is the regularisation of the Euclidean norm of RM , as defined in (2.7). By
Hölder’s inequality it is immediate to verify that (for the normalised Lp′ norm) we actually
have ∥∥∥Mp(V )

∥∥∥
Lp′ (ΩT )

≤ 1,

and therefore Mp is valued in the unit ball of Lp′(ΩT ;RM). Further, for brevity we will
use the notation 

K[u, p] := K
(
·, ·, u,∇u, p

)
,

Kη[u, p] := Kη

(
·, ·, u,∇u, p

)
,

K(A,a)[u, p] := K(A,a)
(
·, ·, u,∇u, p

)
,

Kr[u, p] := Kr

(
·, ·, u,∇u, p

)
,

(2.20)

for K and its partial derivatives Kη,K(A,a),Kr with respect to the arguments for u,∇u and
p respectively.

Theorem 2.1.2 (Variational Equations in Lp). Suppose that (2.5) and (2.15) hold true.
Then, for any p ∈ (n+ 2,∞), there exists a Lagrange multiplier

Ψp ∈
(
W

2− 2
p

,p

0,σ (Ω;Rn)
)∗

(2.21)

associated with the constrained minimisation problem (2.16), such that the minimising
triplet (up, pp, yp) ∈ Xp(ΩT ) satisfies the relations

(1 − λ)
∫

ΩT

(
Kη[up, pp] · u + K(A,a)[up, pp] : ∇u

)
· Mp

(
K[up, pp]

)
dLn+1

= −λ
∫

ΩT

(
∂tu− ν∆u+ (u · D)up + (up · D)u

)
· Mp(yp) dLn+1 +

〈
Ψp, u(·, 0)

〉
,

(2.22)

22



(1 − λ)
∫

ΩT

Kr[up, pp] p · Mp

(
K[up, pp]

)
dLn+1 = −λ

∫
ΩT

Dp · Mp(yp) dLn+1 (2.23)

for all test mappings
(u, p) ∈ W 2,1;p

L,σ (ΩT ;Rn) ×W 1,0;p
♯ (ΩT ),

where the operators K,Kη,K(A,a),Kr are given by (2.20).

Now we consider the case of p = ∞. For this extreme case, which is obtained by an
appropriate passage to limits as p → ∞ in Theorem 2.1.2, we need to assume additionally
that the operator K[u, p] does not depend on (∂tu, p), hence in this case we will symbolise

K[u] := K
(
·, ·, u,Du

)
,

Kη[u] := Kη

(
·, ·, u,Du

)
,

KA[u] := KA

(
·, ·, u,Du

)
,

(2.24)

for K and its partial derivatives Kη,KA with respect to the arguments for u,Du respectively,
all of which will also need to be assumed to be continuous. We note that, when p = ∞, there
is no direct analogue of the divergence structure Euler-Lagrange equations. Instead, one
of the central points of Calculus of Variations in L∞ is that Aronsson-Euler PDE systems
may be derived, under appropriate (stringent) assumptions. Even in the unconstrained
case, these PDE systems are always non-divergence and even fully nonlinear and with
discontinuous coefficients (see e.g. [12, 13, 35, 63, 70]). The case of L∞ problems involving
only first order derivative of scalar-valued functions is nowadays a well established field
which originated from the work of Aronsson in the 1960s [4, 5], today largely interconnected
to the theory of Viscosity Solutions to nonlinear elliptic PDE (for a general pedagogical
introduction see e.g. [34, 61]). However, vectorial and higher L∞ variational problems
involving constraints, have only recently been explored (see [65, 66], but also the relevant
earlier contributions [10, 11, 15]). For several interesting developments on L∞ variational
problems we refer the interested reader to [14, 16, 19, 20, 27, 39, 49, 76, 80, 81, 84].

In this paper, motivated by recent progress on higher order and on constrained L∞

variational problems made in [68] by the second author jointly with Moser and by the
second author in [65, 66] (inspired by earlier contributions by Moser and Schwetlick de-
ployed in a geometric setting in [79]), we follow a slightly different approach which does
not lead an Aronsson-Euler type system; instead, it leads to a divergence structure PDE
system. However, there is a toll to be paid, as the divergence PDEs arising as necessary
conditions involve measures as auxiliary parameters whose determination becomes part of
the problem. Notwithstanding, the central point of this idea is to use a scaling in the
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Euler-Lagrange equations before letting p → ∞, which is different from the scaling used
to (formally) derive the Aronsson-Euler equations as p → ∞.

In the light of the above comments, our final main result concerns the satisfaction
of necessary PDE conditions for the PDE-constrained minimisers in L∞ constructed in
Theorem 2.1.1, and reads as follows.
Theorem 2.1.3 (Variational Equations in L∞). Suppose that (2.5) and (2.15) hold true,
and that additionally K does not depend on (∂tu, p) with K,Kη,KA in (2.24) being contin-
uous on ΩT × Rn × Rn×n. Then, there exists a linear functional

Ψ∞ ∈
⋂

r>n+2

(
W

2− 2
r

,r
0,σ (Ω;Rn)

)∗
(2.25)

which is a Lagrange multiplier associated with the constrained minimisation problem (2.16)
for p = ∞. There also exist vector measures

Σ∞ ∈ M
(
ΩT ;RN

)
, σ∞ ∈ M

(
ΩT ;Rn

)
(2.26)

such that the minimising triplet (u∞, p∞, y∞) ∈ X∞(ΩT ) satisfies the relations
(1 − λ)

∫
ΩT

(
Kη[u∞] · u + KA[u∞] : Du

)
· dΣ∞

= −λ
∫

ΩT

(
∂tu− ν∆u+ (u · D)u∞ + (u∞ · D)u

)
· dσ∞ +

〈
Ψ∞, u(·, 0)

〉
,

(2.27)

∫
ΩT

Dp · dσ∞ = 0, (2.28)

for all test mappings

(u, p) ∈
(
W 2,1;∞

L,σ (ΩT ;Rn) ∩ C2
(
ΩT ;Rn

))
×
(
W 1,0;∞

♯ (ΩT ) ∩ C1
(
ΩT

))
.

Further, the multiplier Ψ∞ and the measures Σ∞, σ∞ can be approximated as follows:
Ψp

∗−−⇀ Ψ∞, in
(
W

2−2/r,r
0,σ (Ω;Rn)

)∗
, for all r > n+ 2,

Σp
∗−−⇀ Σ∞, in M

(
ΩT ;RN

)
,

σp
∗−−⇀ σ∞, in M

(
ΩT ;Rn

)
,

(2.29)

along a subsequence pj → ∞, where
Σp := Mp

(
K[up]

)
Ln+1⌞ΩT

,

σp := Mp(yp)Ln+1⌞ΩT
.

(2.30)
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Finally, Σ∞ concentrates on the set whereon |K[u∞]| is maximised over ΩT

Σ∞

({∣∣∣K[u∞]
∣∣∣ < ∥∥∥K[u∞]

∥∥∥
L∞(ΩT )

})
= 0, (2.31)

and σ∞ asymptotically concentrates on the set whereon |y∞| is approximately maximised
over ΩT , in the sense that for any ε > 0 small,

lim
p→∞

σp

({
|yp| < ∥y∞∥L∞(ΩT ) − ε

})
= 0. (2.32)

Even though the weak interpretation of the equations (2.22)-(2.23) is relatively obvious,
this is not the case for (2.27)-(2.28) despite having a simpler form. The reason is that the
limiting measures (Σ∞, σ∞) are not product measures on ΩT = Ω × [0, T ] in order to use
the Fubini theorem, therefore due to the temporal dependence, (2.28) cannot be simply
interpreted as “div(σ∞) = 0”. Similar arguments can be made for (2.27) as well. Since
this point is not utilised any further in this paper, we only provide a brief discussion in the
next section.

We conclude this introduction with some remarks regarding the organisation of this
paper. This introduction is followed by Section 2.2, in which we discuss some preliminaries
and also establish some basic estimates which are utilised subsequently to establish our
main results. In Section 2.3 we prove Theorem 2.1.1 by establishing the existence of con-
strained minimisers for all p including p = ∞, as well as the convergence of minimiser of
the former problems to those of the latter. In Section 2.4 we prove Theorem 2.1.2, deriv-
ing the necessary PDE conditions which constrained minimisers in Lp satisfy. Finally, in
Section 2.5 prove Theorem 2.1.3, deriving the necessary PDE conditions that constrained
minimisers in L∞ satisfy, as well as the additional properties that the measures arising in
these PDEs satisfy. A key ingredient here is that we establish appropriate weak* compact-
ness for the Lagrange multipliers arising in the Lp problems in order to pass to the limit
as p → ∞.

2.2 Preliminaries and the main estimates

We begin by recording for later use the following modified Hölder inequality for the dotted
L̇p regularised “norms” defined in (2.7): for any 1 ≤ q ≤ p < ∞ and h ∈ Lp(ΩT ), we have
the inequality

∥h∥L̇q(ΩT ) ≤ ∥h∥L̇p(ΩT ) +
√
q−2 − p−2,

25



which can be very easily confirmed by a direct computation. Next, we continue with
a brief discussion regarding the weak interpretation of the equations (2.27)-(2.28). As
already noted in the introduction, since (Σ∞, σ∞) are generally neither product measures
or absolutely continuous with respect to the (n+ 1)-Lebesgue measure on ΩT = Ω × [0, T ],
one needs to use the disintegration “slicing” theorem for Young measures in order to express
them appropriately, as follows. Since σ∞ is a vector measure in M(ΩT ;Rn), by the Radon-
Nikodym theorem, we may decompose

σ∞ = dσ∞

d∥σ∞∥
∥σ∞∥,

where ∥σ∞∥ ∈ M(ΩT ) is the scalar total variation measure and dσ∞/d∥σ∞∥ is the vector-
valued Radon-Nikodym derivative of σ∞ with respect to ∥σ∞∥. Fix any h ∈ L1(ΩT , ∥σ∞∥).
By the disintegration “slicing” theorem for Young measures (see se.g. [44, Theorem 3.2, p.
179]), we have the representation formula

∫
ΩT

h d∥σ∞∥ =
∫

[0,T ]

(∫
Ω
h(x, t) d∥σ∞∥t(x)

)
d∥σ∞∥o(t)

where the measure ∥σ∞∥o ∈ M([0, T ]) and the family of measures (∥σ∞∥t)t∈[0,T ] ⊆ M(Ω)
are defined as follows:

∥σ∞∥o := ∥σ∞∥
(
Ω × ·

)
, ∥σ∞∥t(A) :=

d∥σ∞∥
(
A× ·

)
d∥σ∞∥

(
Ω × ·

)(t), for A ⊆ Ω Borel.

Namely, ∥σ∞∥o is one of the marginals of σ∞ and for ∥σ∞∥o-a.e. t ∈ [0, T ], the measure
∥σ∞∥t evaluated at A is defined as the Radon-Nikodym derivative of the measure ∥σ∞∥

(
A×

·
)

with respect to ∥σ∞∥
(
Ω×·

)
at the point t ∈ [0, T ]. Then, in view of (2.28), by choosing

p in the form p(x, t) = π(x)τ(t), we have

0 =
∫

ΩT

Dp · dσ∞

=
∫

ΩT

(
Dp · dσ∞

d∥σ∞∥

)
d∥σ∞∥

=
∫

[0,T ]

(∫
Ω

(
Dp · dσ∞

d∥σ∞∥

)
(x, t) d∥σ∞∥t(x)

)
d∥σ∞∥o(t)

=
∫

[0,T ]

(∫
Ω

(
Dπ(x) · dσ∞

d∥σ∞∥
(x, t)

)
d∥σ∞∥t(x)

)
τ(t) d∥σ∞∥o(t).
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The arbitrariness of τ implies that for ∥σ∞∥o-a.e. t ∈ [0, T ], we have∫
Ω

(
Dπ(x) · dσ∞

d∥σ∞∥
(x, t)

)
d∥σ∞∥t(x) = 0.

When restricting our attention to those test function for which π|∂Ω ≡ 0, we obtain the
next weak interpretation of (2.28):

div
(

dσ∞

d∥σ∞∥
(·, t) ∥σ∞∥t

)
= 0, in Ω,

for ∥σ∞∥o-a.e. t ∈ [0, T ]. Similar considerations apply also to equation (2.27), but the
arguments are considerably more complicated.

Next we prove a general compact embedding lemma by means of interpolation theory.

Lemma 2.2.1. Suppose that p > n+ 2. Then, there exists α ∈ (0, 1) such that the space

W 2,1;p(ΩT ) := Lp
(
(0, T );W 2,p(Ω)

)⋂
W 1,p

(
(0, T );Lp(Ω)

)
is compactly embedded in the space C0,α

(
[0, T ];C1,α(Ω)

)
.

Proof of Lemma 2.2.1. Let us use the abbreviated space notation

X1 := W 2,p(Ω), X0 := Lp(Ω)

and select θ such that
p+ n

2p < θ <
p− 1
p

,

which is possible since
p− 1
p

− p+ n

2p = p− (n+ 2)
2p > 0.

Since 1 − θ > 1/p, direct application of the interpolation result in [2, Theorem 5.2] for the
exponents s0 := 1, s1 := 0 and p0 ≡ p1 := p yields that space W 2,1;p(ΩT ) is compactly
embedded in the space C0,α

(
[0, T ]; X

)
, where 0 < α < 1 − θ − 1/p and X = (X0,X1)θ,p

symbolises the real interpolation between the Banach spaces X0 and X1. Now it remains
to identify the space X. By using standard results in interpolation theory (see e.g. [92,
Theorem 4.3.1.1 and formula (2.4.2/9)] or [93] for Lipschitz domains) we get:(

Lp(Ω),W 2,p(Ω)
)

θ,p
= B2θ

pp(Ω) = W 2θ,p(Ω).
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Since 2θ > 1 +n/p, by the standard Sobolev embedding theorem for fractional spaces (e.g.
[38, Theorem 8.2], we have that W 2θ,p(Ω) is continuously embedded in the space C1,α(Ω),
where 0 < α ≤ 2θ − 1 − n/p. The conclusion ensues.

Remark 2.2.2. Let us now record for later use the following simple inclusion of space
(which is in fact a continuous embedding):

C0,α
(
[0, T ];C0,α(Ω)

)
⊆ C0,α

(
ΩT

)
.

Indeed, for any h ∈ C0,α
(
[0, T ];C0,α(Ω)

)
, we compute∣∣∣h(t1, x1) − h(t2, x2)

∣∣∣ ≤ |h(t1, x1) − h(t2, x1)| + |h(t2, x1) − h(t2, x2)|
≤ ∥h(t1, ·) − h(t2, ·)∥C(Ω) + ∥h(t2, ·)∥C0,α(Ω)|x1 − x2|α

≤
(
|t1 − t2|α + |x1 − x2|α

)
∥h∥C0,α([0,T ];C0,α(Ω))

which establishes the claim.

Lemma 2.2.3. Suppose that assumptions (2.5) and (2.15) are satisfied. We have that

X∞(ΩT ) ̸= ∅

(and consequently we have Xp(ΩT ) ̸= ∅ for all p > 1). Further, if (u, p, y) ∈ Xp(ΩT ) for
some p > 1 which satisfies

Ep(u, p, y) ≤ M

for some M > 0, then for any q ≤ p there exists C(q,M) > 0 such that

∥u∥W 2,1;q
L,σ (ΩT ) + ∥p∥W 1,0;q

♯
(ΩT ) + ∥y∥Lq(ΩT ) ≤ C(q,M).

Further, if p > n + 2 and q ∈ (n + 2, p], then there exists α ∈ (0, 1) and a constant
C(M, q) > 0 such that additionally

∥u∥C0,α(ΩT ) + ∥Du∥C0,α(ΩT ) ≤ C(q,M).

We note that the constants above also depend on n, ∂Ω, T, f, u0, λ, but as all these are
fixed throughout this paper, we suppress denoting the explicit dependence on them.

Proof of Lemma 2.2.3. By assumptions (2.5)(b)-(2.5)(c), we have that the triplet
(u0, 0, y0), where

y0 := −ν∆u0 + (u0 · D)u0 − f
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satisfies that (u0, 0, y0) ∈ X∞(ΩT ), and in fact lies also in the smaller space

W 2,1;∞
L,σ (ΩT ) ×W 1,0;∞

♯ (ΩT ) × L∞(ΩT ;Rn).

Next, if (u, p, y) ∈ Xp(ΩT ) with Ep(u, p, y) ≤ M , then we readily have that

∥y∥Lq(ΩT ) ≤ ∥y∥L̇p(ΩT ) ≤ M

λ
,

whilst by assumptions (2.15) and (2.5)(c) we have that

∥u∥W 2,1;q
L,σ (ΩT ) + ∥p∥W 1,0;q

♯
(ΩT ) ≤ C(q)

(
1 + M

λ

)
.

for some q-dependent constant C(q), for any q ∈ (n, p]. Further, suppose p > n + 2 and
n+ 2 < q ≤ p. Then, the above estimate in particular implies

∥u∥Lq(ΩT ) + ∥∇u∥Lq(ΩT ) ≤ C(q,M),

whereat application of the Morrey imbedding theorem yields

∥u∥C0,α′ (ΩT ) ≤ C(q,M),

for a new constant C(q,M) and some α′ ∈ (0, 1). Next, by Lemma 2.2.1, Remark 2.2.2
and the established estimate for q > n+ 2, we have

C(q)∥Du∥C0,α′′ (ΩT ) ≤ ∥u∥W 2,1;q(ΩT ) ≤ C(q,M),

for some α′′ ∈ (0, 1) and some constant C(q) > 0. By choosing α := min{α′, α′′}, the
conclusion ensues.

2.3 Minimisers of Lp problems and convergence as p →
∞

In this section we establish Theorem 2.1.1, by utilising the results of Section 2.2.

Proof of Theorem 2.1.1. Fix p ∈ (n + 2,∞). By Lemma 2.2.1, Xp(ΩT ) ̸= ∅, therefore
0 ≤ infXp(ΩT ) Ep < ∞. By Lemma 2.2.3, it follows that Xp(ΩT ) is sequentially weakly
compact. Note now that y 7→ ∥y∥p

L̇p(ΩT ) is trivially convex, and by the identity

∥∥∥K(·, u,Du, ∂tu, p
)∥∥∥p

L̇p(ΩT )
=
∫

ΩT

(∣∣∣K(·, u,Du, ∂tu, p
)
|2 + p−2

)p
2
dLn+1,
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assumption (2.5)(f) yields that

(∂tu, p) 7→
∥∥∥K(·, u,Du, ∂tu, p

)∥∥∥p

L̇p(ΩT )

is also convex. By standard results in the Calculus of Variations (see e.g. [36]) it follows that
Ep is weakly lower semicontinuous in Wp(ΩT ). Since the convex combination of p-th roots
of two weakly lower semicontinuous functionals is indeed a weakly lower semicontinuous
functional. By the bounds obtained in Lemma 2.2.3, it follows that Xp(ΩT ) is weakly
closed in Wp(ΩT ). Furthermore, Ep is weakly lower semicontinuous in Xp(ΩT ). Hence, Ep

attains its infimum at some (up, pp, yp) ∈ Xp(ΩT ).
Consider now the family of minimisers (up, pp, yp)p>n+2. For any (u, p, y) ∈ X∞(ΩT )

and any q ≤ p, minimality and the Hölder inequality for the dotted L̇p functionals yield

Ep(up, pp, yp) ≤ Ep(u, p, y) ≤ E∞(u, p, y) + p−1.

By choosing (u, p, y) = (u0, 0, y0), by Lemma 2.2.3 and a standard diagonal argument,
we have that the family of minimisers is weakly precompact in Wq(ΩT ) for all q ∈
(n + 2,∞). Further, by Lemma 2.2.1 and Remark 2.2.2, W 2,1;q

L,σ (ΩT ;Rn) is compactly
embedded in C0,α

(
[0, T ];C1,α(Ω;Rn)

)
. Hence, for any sequence of indices pj → ∞, there

exists (u∞, p∞, y∞) ∈ ∩q∈(n+2,∞)Wq(ΩT ) and a subsequence denoted again as (pj)∞
1 such

that (2.17) holds true. Additionally, due to these modes of convergence, it follows that
(u∞, p∞, y∞) solves (2.1), therefore in fact (u∞, p∞, y∞) ∈ X∞(ΩT ). Again now by mini-
mality and the Hölder inequality for the dotted L̇p functionals, for any (u, p, y) ∈ X∞(ΩT )
we have

Eq(up, pp, yp) −
√
q−2 − p−2 ≤ Ep(up, pp, yp) ≤ E∞(u, p, y) + p−1.

Since as we have already shown, Eq is weakly lower semicontinuous in Xq(ΩT ), by letting
p → ∞ along the subsequence in the above inequality yields

Eq(u∞, p∞, y∞) −
√
q−2 ≤ lim inf

pj→∞
Ep(up, pp, yp)

≤ lim sup
pj→∞

Ep(up, pp, yp)

≤ E∞(u, p, y).
By further letting q → ∞, we obtain

E∞(u∞, p∞, y∞) ≤ lim inf
pj→∞

Ep(up, pp, yp)

≤ lim sup
pj→∞

Ep(up, pp, yp)

≤ E∞(u, p, y),
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for any (u, p, y) ∈ X∞(ΩT ). The above inequality establishes on the one hand that
(u∞, p∞, y∞) minimises E∞ over X∞(ΩT ), and on the other hand by choosing (u, p, y) :=
(u∞, p∞, y∞) that (2.18) holds true. Hence, Theorem 2.1.1 has been established.

2.4 The equations for Lp PDE-constrained minimisers

In this section we establish the proof of Theorem 2.1.2. We begin with some preparation.
Firstly, it will be convenient to consider the functional Ep of (2.6) as being defined in the
wider Banach space Wp(ΩT ) defined in (2.9):

Ep : Wp(ΩT ) −→ R.

Next, we introduce a mapping on Wp(ΩT ) which incorporates the PDE constraint (2.1)
appearing in (2.8) as follows. We define

G =
[

G1
G2

]
: Wp(ΩT ) −→ Lp(ΩT ;Rn) ×W

2− 2
p

,p

0,σ (Ω;Rn)

by setting {
G1(u, p, y) := ∂tu − ν∆u + (u · D)u + Dp − (y + f),
G2(u, p, y) := u(·, 0) − u0.

Then, we may express (2.8) as

Xp(ΩT ) = Wp(ΩT ) ∩ {G = 0}.

We are now ready to prove our second main result.
Proof of Theorem 2.1.2. By assumption (2.5), for any p ∈ (n + 2,∞) the functional
Ep : Wp(ΩT ) −→ R is Frechét differentiable and its derivative

dEp : Wp(ΩT ) −→
(
Wp(ΩT )

)∗
,

(dEp)(ū,p̄,ȳ)(u, p, y) = d
dε

∣∣∣∣
ε=0

Ep

(
ū+ εu, p̄ + εp, ȳ + εy

)
can be easily computed and is given by the formula

(dEp)(ū,p̄,ȳ)(u, p, y) = p(1 − λ) −
∫

ΩT

(
Kη[ū, p̄] · u + K(A,a)[ū, p̄] : ∇u+ Kr[ū, p̄] p

)
·

· Mp

(
K[ū, p̄]

)
dLn+1 + pλ−

∫
ΩT

Mp(ȳ) · y dLn+1,
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where the operator Mp : Lp(ΩT ;RM) −→ Lp′(ΩT ;RM) (for M ∈ {N, n}) is given by (2.19)
and we have used the notation introduced in (2.20). Next, we note that the mapping G
which incorporates the PDE constraint is also Fréchet differentiable and it can be easily
confirmed that its derivative

dG : Wp(ΩT ) −→ B
(

Wp(ΩT ), Lp(ΩT ;Rn) ×W
2− 2

p
,p

0,σ (Ω;Rn)
)
,

(dG)(ū,p̄,ȳ)(u, p, y) = d
dε

∣∣∣∣
ε=0

G
(
ū+ εu, p̄ + εp, ȳ + εy

)
is given by the formula

(
dG
)

(ū,p̄,ȳ)
(u, p, y) =

 ∂tu− ν∆u+ (u · D)ū+ (ū · D)u+ Dp − y

u(·, 0)

 .
We now claim that the differential

(dG)(ū,p̄,ȳ) : Wp(ΩT ) −→ Lp(ΩT ;Rn) ×W
2− 2

p
,p

0,σ (Ω;Rn)

is a surjective map, for any (ū, p̄, ȳ) ∈ Wp(Ω). This is equivalent to the statement that for
any p > n+ 2, the linearised Navier-Stokes problem

∂tu− ν∆u+ (u · D)ū+ (ū · D)u+ Dp = F, in ΩT ,
div u = 0, in ΩT ,
u(·, 0) = v, on Ω,

u = 0, on ∂Ω × (0, T ),

has a solution (u, p) ∈ W 2,1;p
L,σ (ΩT ;Rn) × W 1,0;p

♯ (ΩT ), for any ū ∈ W 2,1;p
L,σ (ΩT ;Rn) and any

data
(F, v) ∈ Lp(ΩT ;Rn) ×W

2− 2
p

,p

0,σ (Ω;Rn).
This is indeed the case, and it is a consequence of a classical result of Solonnikov [87, Th.
4.2] for n = 3 and of Giga-Sohr [54, Th. 2.8] for n > 3, as a perturbation of the Stokes
problem. As a consequence, the assumptions of the generalised Kuhn-Tucker theorem hold
true (see e.g. Zeidler [94, Cor. 48.10 & Th. 48B]). Hence, there exists a Lagrange multiplier

Λp ∈
(
Lp(ΩT ;Rn) ×W

2− 2
p

,p

0,σ (ΩT ;Rn)
)∗

such that (
dEp

)
(up,pp,yp)

(u, p, y) =
〈(

dG
)

(up,pp,yp)
(u, p, y), Λp

〉
,
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for any (u, p, y) ∈ Wp(Ω). By standard duality arguments, the Riesz representation theo-
rem and by taking into account the form of the differentials dEp and dG, we may identify
Λp with a pair of Lagrange multipliers

(ϕp,Ψp) ∈ Lp′(ΩT ;Rn) ×
(
W

2− 2
p

,p

0,σ (ΩT ;Rn)
)∗

such that, the constrained minimiser
(
up, pp, yp

)
∈ Xp(ΩT ) satisfies the equation

(1 − λ)
∫

ΩT

(
Kη[up, pp] · u + K(A,a)[up, pp] : ∇u+ Kr[up, pp] p

)
· Mp

(
K[up, pp]

)
dLn+1 + λ

∫
ΩT

Mp(yp) · y dLn+1

=
∫

ΩT

(
∂tu− ν∆u+ (u · D)up + (up · D)u+ Dp − y

)
· ϕp dLn+1 + ⟨Ψp, u(·, 0)⟩,

for any (u, p, y) ∈ Wp(ΩT ). We note that here we have tacitly rescaled (ϕp,Ψp) by multi-
plying them with the factor p(Ln+1(ΩT ))−1, in order to remove the averages arising from Ep

on the left hand side and to be able to obtain non-trivial limits as p → ∞ of the multipliers
themselves later on. By using linear independence, the above equation actually decouples
to the triplet of relations

(1 − λ)
∫

ΩT

(
Kη[up, pp] · u + K(A,a)[up, pp] : ∇u

)
· Mp

(
K[up, pp]

)
dLn+1

=
∫

ΩT

(
∂tu− ν∆u+ (u · D)up + (up · D)u

)
· ϕp dLn+1 + ⟨Ψp, u(·, 0)⟩,

(1 − λ)
∫

ΩT

(
Kr[up, pp] p

)
· Mp

(
K[up, pp]

)
dLn+1 =

∫
ΩT

Dp · ϕp dLn+1,

λ
∫

ΩT

Mp(yp) · y dLn+1 = −
∫

ΩT

y · ϕp dLn+1.

The arbitrariness of y ∈ Lp(ΩT ;Rn) in the third equation readily yields that the multiplier
ϕp equals

ϕp = −λMp(yp).
By substituting this into the first two equations, we see that the theorem has been estab-
lished.
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2.5 The equations for L∞ PDE-constrained minimis-
ers

Proof of Theorem 2.1.3. By Theorem 2.1.2 it follows that for any p ∈ (n + 2,∞), the
minimising triplet (up, pp, yp) ∈ Xp(ΩT ) satisfies

(1 − λ)
∫

ΩT

(
Kη[up] · u + KA[up] : Du

)
· Mp

(
K[up]

)
dLn+1

= −λ
∫

ΩT

(
∂tu− ν∆u+ (u · D)up + (up · D)u

)
· Mp(yp) dLn+1 +

〈
Ψp, u(·, 0)

〉
,

and also ∫
ΩT

Dp · Mp(yp) dLn+1 = 0,

for all test mappings (u, p) ∈ W 2,1;p
L,σ (ΩT ;Rn) ×W 1,0;p

♯ (ΩT ). The first goal is to pass to the
limit as p → ∞ in these equations in order to obtain (2.27)-(2.28). Since by (2.19) we
readily have that Mp(yp) and Mp

(
K[up]

)
are valued in the unit balls of Lp′(ΩT ;Rn) and

of Lp′(ΩT ;RN) respectively, by defining Σp and σp as in (2.30), the existence of limiting
measures Σ∞, σ∞ is guaranteed along perhaps a further subsequence such that

Σp
∗−−⇀Σ∞ in M

(
ΩT ;RN

)
and σp

∗−−⇀σ∞ in M
(
ΩT ;Rn

)
,

as pj → ∞. Further, by Lemma 2.2.3 we have that up −→ u∞ and Dup −→ Du∞,
both uniformly on ΩT as pj → ∞. Also, by the continuity assumption on K,Kη,KA on
ΩT × Rn × Rn×n and again Lemma 2.2.3, it follows that

K[up] −→ K[u∞], Kη[up] −→ Kη[u∞] and KA[up] −→ KA[u∞],

all uniformly on ΩT as pj → ∞. Putting all this together, we see that the remaining main
point is to obtain a uniform estimate on the family of Lagrange multipliers (Ψp)p>n+2 in
order to deduce that

Ψp
∗−−⇀Ψ∞ in

(
W

2−2/r,r
0,σ (Ω;Rn)

)∗
, for all r > n+ 2,

which would allow to pass to the limit as pj → ∞. Once this has been achieved, passing
to the limit in the equations follows by standard duality pairing arguments, which are
made possible by restricting the class of test functions (u, p) to those which are continuous
together with those derivatives appearing in the relations.
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In order to derive the desired estimate on (Ψp)p>n+2, we argue as follows. Consider
(2.22) for Ka ≡ 0 (the first equation appearing in this proof) and let us fix the initial value
on Ω × {0}

u(·, 0) ≡ û ∈ W 2,∞
0,σ (Ω;Rn)

of the arbitrary test function u, but we will select u on ΩT such that the term in the
bracket in the integral on the right-hand-side becomes a gradient. Then, this term will
vanish identically as a consequence of (2.23) when Kr ≡ 0 (the second equation appearing
in this proof). Indeed, let p > n+ 2 and let also (ũ, p̃) be the (unique) solution to

∂tũ− ν∆ũ+ (ũ · D)up + (up · D)ũ+ Dp̃ = 0, in ΩT ,
div ũ = 0, in ΩT ,
ũ(·, 0) = û, on Ω,

ũ = 0, on ∂Ω × (0, T ),

The solvability of the above problem is a consequence of the classical result of Solonnikov
[87, Th. 4.2] for n = 3 and of Giga-Sohr [54, Th. 2.8] for n > 3, as a perturbation of the
Stokes problem: by choosing q > n + 2 in Solonnikov’s assumption (4.14), a solution as
claimed does exist. Further, since û is in W 2,∞

0,σ (Ω;Rn), by [87, Cor. 2, p. 489] we have the
uniform estimate

∥ũ∥W 2,1;r
L,σ (ΩT ) + ∥p̃∥W 1,0;r

♯
(ΩT ) ≤ C(r)∥û∥

W
2− 2

r ,r

0,σ (Ω)
,

for any r ∈ (1,∞). By Lemmas 2.2.1 and 2.2.3 and Remark 2.2.2, if we restrict our
attention to r ∈ (n+ 2,∞), we additionally have the bound

∥ũ∥L∞(ΩT ) + ∥Dũ∥L∞(ΩT ) ≤ C(r)∥û∥
W

2− 2
r ,r

0,σ (Ω)
,

for some new constant C(r) (which is unbounded as r ↘ n+ 2). By setting
K∞ := sup

{
|Kη| + |KA| : ΩT × Bn

R∞(0) × Bn×n
R∞ (0)

}
,

R∞ := sup
p>n+2

(
∥up∥L∞(ΩT ) + ∥Dup∥L∞(ΩT )

)
,

where Bn
R∞(0) and Bn×n

R∞ (0) denote the balls of radius R∞ centred at the origin of Rn and
of Rn×n respectively, we estimate by using (2.22)-(2.23) (for Ka ≡ 0, Kr ≡ 0) and that by
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(2.19) we have
∥∥∥Mp

(
K[up]

)∥∥∥
L1(ΩT )

≤ 1 (for the normalised L1 norm):
∣∣∣〈Ψp, û

〉∣∣∣ ≤ λ

∣∣∣∣∣
∫

ΩT

Dp̃ · Mp(yp) dLn+1
∣∣∣∣∣

+ (1 − λ)
∣∣∣∣∣
∫

ΩT

(
Kη[up] · ũ + KA[up] : Dũ

)
· Mp

(
K[up]

)
dLn+1

∣∣∣∣∣
= (1 − λ)TLn(Ω)

∣∣∣∣∣−
∫

ΩT

(
Kη[up] · ũ + KA[up] : Dũ

)
· Mp

(
K[up]

)
dLn+1

∣∣∣∣∣
≤ (1 − λ)TLn(Ω)K∞

(
∥ũ∥L∞(ΩT ) + ∥Dũ∥L∞(ΩT )

)
≤ (1 − λ)TLn(Ω)K∞C(r)∥û∥

W
2− 2

r ,r

0,σ (Ω)
,

for any r fixed. Therefore, for any r ∈ (n + 2,∞) and any û ∈ W 2,∞
0,σ (Ω;Rn), we have the

estimate ∣∣∣〈Ψp, û
〉∣∣∣ ≤

(
TLn(Ω)K∞

)
C(r)∥û∥

W
2− 2

r ,r

0,σ (Ω)
.

Since W 2,∞
0,σ (Ω;Rn) is dense in W

2−2/r,r
0,σ (Ω;Rn), by the Hahn-Banach theorem, the above

estimate implies that for any fixed p > n+ 2, the bounded linear functional

Ψp : W
2− 2

p
,p

0,σ (Ω;Rn) −→ R

can be (uniquely) extended to a functional Ψp : W 2−2/r,r
0,σ (Ω;Rn) −→ R for all r ∈ (n+2, p],

whose extension we denote again by Ψp. Therefore, Ψp can be extended to a unique
continuous linear functional

Ψp :
⋃

r>n+2
W

2− 2
r

,r
0,σ (Ω;Rn) −→ R

on the above Fréchet space, whose topology can be defined in the standard locally convex
sense by the family of seminorms{

∥ · ∥W 2−2/r,r(Ω) : r > n+ 2
}
.

Additionally, the uniformity of the estimate with respect to p implies that

(Ψp)p>n+2 is bounded in
( ⋃

r>n+2
W

2− 2
r

,r
0,σ (Ω;Rn)

)∗
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(in the locally convex sense). Hence, as it can be seen by a customary diagonal argument
in the scale of Banach spaces

{
W

2−2/r,r
0,σ (ΩT ;Rn) : r > n+ 2

}
comprising the Fréchet space,

there exists a continuous linear functional

Ψ∞ :
⋃

r>n+2
W

2− 2
r

,r
0,σ (Ω;Rn) −→ R

and a further subsequence as p → ∞ such that along which we have Ψp
∗−−⇀Ψ∞ in the

locally convex sense. Additionally, since

Ψ∞ ∈
⋂

r>n+2

(
W

2− 2
r

,r
0,σ (Ω;Rn)

)∗

the convergence Ψp
∗−−⇀Ψ∞ is equivalent to weak* convergence in the Banach space

W
2−2/r,r
0,σ (Ω;Rn) for any fixed r > n+ 2. In conclusion, we see that (2.27)-(2.28) have now

been established.
Now we complete the proof of Theorem 2.1.3 by establishing (2.31)-(2.32). Since

K[up] −→ K[u∞] in C
(
ΩT ;RN

)
, by applying [64, Prop. 10], we immediately obtain that

Σ∞ concentrates on the set whereon |K[u∞]| is maximised over ΩT :

Σ∞

({∣∣∣K[u∞]
∣∣∣ < max

ΩT

∣∣∣K[u∞]
∣∣∣}) = 0.

This proves (2.31). For (2.32), we argue as follows. We first note that

∥yp∥L̇p(ΩT ) −→ ∥y∞∥L∞(ΩT )

as p → ∞, along a subsequence. In view of (2.6) and (2.13), this is a consequence of (2.18)
and the fact that K[up] −→ K[u∞] uniformly on ΩT , which implies∥∥∥K[up]

∥∥∥
L̇p(ΩT )

−→
∥∥∥K[u∞]

∥∥∥
L∞(ΩT )

.

As a consequence of the convergence of ∥yp∥L̇p(ΩT ) to ∥y∞∥L∞(ΩT ), for any ε > 0 we may
choose p large so that

∥yp∥L̇p(ΩT ) ≥ ∥y∞∥L∞(ΩT ) − ε

2 .

Let us define now the following subset of ΩT , which without loss of generality we may
assume it has positive Ln+1-measure:

Ap,ε :=
{

|yp| ≤ ∥y∞∥L∞(ΩT ) − ε
}
.

37



In particular, if Ln+1(Ap,ε) > 0, then necessarily ∥y∞∥L∞(ΩT ) > 0. For any Borel set
B ⊆ ΩT such that Ln+1(ΩT ∩ B) > 0, we estimate by using (2.30), (2.19), (2.7) and the
above:

σp(Ap,ε ∩B) ≤ Ln+1(Ap,ε ∩B)
∥yp∥p−1

L̇p(ΩT )

−
∫

Ap,ε∩B

(
|yp|(p)

)p−1
dLn+1

≤ Ln+1(Ap,ε ∩B)
∥yp∥p−1

L̇p(ΩT )

−
∫

Ap,ε∩B

(
∥y∞∥L∞(ΩT ) − ε

)p−1
dLn+1

≤ Ln+1(Ap,ε ∩B)
∥yp∥p−1

L̇p(ΩT )

(
∥y∞∥L∞(ΩT ) − ε

)p−1

≤ Ln+1(Ap,ε ∩B)
(

∥y∞∥L∞(ΩT ) − ε

∥y∞∥L∞(ΩT ) − ε
2

)p−1

.

As a result, for any ε > 0 small, any p large enough and any Borel set B ⊆ ΩT with
Ln+1(ΩT ∩B) > 0, we have obtained the density estimate

σp(Ap,ε ∩B)
Ln+1(Ap,ε ∩B) ≤

(
1 − ε

2∥y∞∥L∞(ΩT ) − ε

)p−1

.

The above estimate in particular implies that σp(Ap,ε) −→ 0 as p → ∞ for any ε > 0 fixed,
therefore establishing (2.32). The proof of Theorem 2.1.3 is now complete.

Remark 2.5.1. It is perhaps worth noting (in relation to the preceding arguments in the
proof of (2.32)) that the modes of convergence

∥yp∥Lp(ΩT ) −→ ∥y∞∥L∞(ΩT ) and yp
∗−−⇀y∞ in L∞(ΩT ;Rn)

as p → ∞, in general by themselves do not suffice to obtain yp −→ y∞ in any strong
sense, hence precluding the derivation of a stronger property than (2.32), along the lines
of (2.31). A simple counter-example, even in one dimension, is the following: let p ∈ 2N
and set

yp :=
(p−2)/2∑

j=0

[
χ( 2j

p
, 2j+1

p

) − χ( 2j+1
p

, 2j+2
p

)] + χ(1,2),

and also y∞ := χ(1,2). Then, we have |yp| = 1 L1-a.e. on (0, 2) for all p, hence we deduce
that ∥yp∥Lp(0,2) −→ ∥y∞∥L∞(0,2), whilst we also have yp

∗−−⇀y∞ in L∞(0, 2) as p → ∞, but
yp −̸→ y∞ neither a.e., nor in L1 or in measure.
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Chapter 3

On the Isosupremic L∞ Vectorial
Minimisation Problem with PDE
Constraints

3.1 Introduction and main results

Let n,N ∈ N and let also Ω ⋐ Rn be a bounded open set with Lipschitz continuous
boundary. Consider two functions

f, g : Ω × RN × RN×n −→ R, (3.1)

which will be assumed to satisfy certain natural structural assumptions. Additionally, let
p̄ > n be fixed and consider a given nonlinear operator

Q : W 1,p̄
0

(
Ω;RN

)
−→ E, (3.2)

where (E, ∥·∥) is an arbitrary Banach space. In this paper we are interested in the following
variational problem: given G ≥ 0 and the supremal functionals

F∞,G∞ : W 1,∞
0 (Ω;RN) −→ R,

defined by 
F∞(u) : = ess sup

Ω
f(·, u,Du),

G∞(u) : = ess sup
Ω

g(·, u,Du),
(3.3)
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find u∞ ∈ W 1,∞
0 (Ω;RN) such that

F∞(u∞) = inf
{

F∞(u) : u ∈ W 1,∞
0 (Ω;RN), G∞(u) ≤ G & Q(u) = 0

}
. (3.4)

We are also interested in deriving appropriate differential equations as necessary conditions
that such constrained minimisers u∞ might satisfy. Hence, the problem under consideration
is that of minimising the supremal functional F∞ within the G-sublevel set of the supremal
functional G∞, constrained also by the zero level set of the mapping Q. Minimisation
problems in L∞ with an L∞ sublevel-set constraints are called isosupremic, a terminology
introduced by Aronsson-Barron in [11], by analogy to the terminology of isoperimetric
constraints utilised for integral functionals.

The assumptions required for our mapping Q expressing the nonlinear level-set con-
straint are very general, allowing for the solvability of a very large class of problems. In
Section 3.4 we provide a fairly comprehensive list of explicit examples of operators Q to
which our results apply. Indeed, Q may manifest itself as a pointwise, unilateral, or in-
clusion constraint (Subsection 3.4.1), as an integral isoperimetric constraint (Subsection
3.4.2), or as a nonlinear PDE constraint, including second order quasilinear divergence sys-
tems (Subsection 3.4.3), Jacobian equations and other PDEs driven by null Lagrangians
(Subsection 3.4.4).

Minimisation of supremal functionals poses several important challenges. Firstly, the
L∞ norm is neither Gateaux differentiable nor strictly convex, and the space L∞ is neither
reflexive nor separable. A related additional complication is that the L∞ norm is not
additive but only sub-additive with respect to the domain. As a result, if one solves
the L∞ minimisation existence problem via the direct method, then the analogue of the
Euler-Lagrange equations for the L∞ problem cannot be derived directly by considering
variations, due to the lack of smoothness of the L∞ norm.

In this paper, we transcend the difficulties illustrated above, by following the relatively
standard strategy of using appropriate approximations by Lp functionals as p → ∞. We
solve the desired L∞ variational problem by solving approximating Lp variational problems
for all p, and obtaining the necessary compactness estimates that allow us to pass to the
limit as p → ∞. The case of finite p, which is of independent interest and a byproduct of
our analysis, for us is just the mechanism to solve the desired L∞ problem. The intuition
behind the use of Lp approximations is based on the fact that for a fixed essentially bounded
function on a set of finite measure, the Lp norm tends to the L∞ norm as p → ∞.

Problems involving constraints are relatively new in the Calculus of Variations in L∞

and previous work has been relatively sparse, even more so in the vectorial case. To the
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best of our knowledge, the only work which directly studies isosupremic problems is [11] by
Aronsson-Barron. Among other questions answered therein, it considers some aspects of
the one-dimensional case for n = 1, but with no additional constraints of any type (which
amounts to Q ≡ 0 in our setting).

More broadly, very few previous works involve vectorial problems with general con-
straints in L∞. Certain vectorial and higher order problems involving eigenvalues in
L∞ have been considered in [65, 69]. Examples of problems with PDE and other con-
straints are considered in [30, 63, 64, 66]. In the paper [15] of Barron-Jensen, a scalar
L∞ constrained problem was considered, but the constraint was integral. With the ex-
ception of the paper [11], it appears that vectorial variational problems in L∞ involv-
ing isosupremic constraints have not been studied before, especially including additional
nonlinear constraints which cover numerous different cases, as in this work. For as-
sorted interesting works within the wider area of Calculus of Variations in L∞ we refer
to [10, 14, 16, 17, 19, 20, 26, 27, 68, 76, 80, 81, 84].

Let us note that, in this work, we refrain from discussing the question of defining
and studying localised versions of L∞ minimisers on subdomains. Such minimisers are
commonly called absolute in the Calculus of Variations in L∞, a concept first introduced
and studied by Aronsson in his seminal papers in the 1960s. As already noted in [11], the
definition of constrained absolute minimisers on subdomains is quite problematic in many
respects, even for specific choices of constraints in the scalar case N = 1, which has a
well developed L∞ theory. In any case, the “non-intrinsic” method of Lp approximations,
employed herein, is widely believed to select always the “best” L∞ minimiser, which in the
scalar unconstrained case can be shown to be indeed an absolute minimiser. In the vectorial
case of N ≥ 2, the situation is trickier and the “correct” localised minimality notion is still
under discussion, even without any constraints being involved (see e.g. [12, 13] for work in
this direction).

We now state our main results. Our notation is generally standard as e.g. in [73], or
otherwise self-explanatory. As we will only be working with finite measures, we will be
using the normalised Lp norms in which we replace the integral over the domain with the
respective average. For our density functions f and g appearing in (3.1) we will assume
the following:{

Both f and g are Carathéodory functions, namely f(·, η, P ), g(·, η, P ) are
measurable for all (η, P ), and f(x, ·, ·), g(x, ·, ·) are continuous for a.e. x.

(3.5)
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

Exists a continuous C : Ω × RN −→ [0,∞) and an α > 2:
0 ≤ f(x, η, P ) ≤ C(x, η)

(
|P |α + 1

)
,

0 ≤ g(x, η, P ) ≤ C(x, η)
(
|P |α + 1

)
,

for a.e. x and all (η, P ).

(3.6)

For a.e. x and all η, f(x, η, ·) and g(x, η, ·) are quasiconvex on RN×n. (3.7)

Either f or g is coercive, namely exist c, C > 0 such that either
f(x, η, P ) ≥ c|P |α − C,

or
g(x, η, P ) ≥ c|P |α − C,

for a.e. x and all (η, P ).

(3.8)

These assumptions are relatively standard in the Calculus of Variations. We note only
that (3.7) is meant in the sense of Morrey quasiconvexity for integral functionals (as e.g.
in [36]), not in the sense of level-convexity or of the L∞ notion of “BJW-quasiconvexity”
of Barron-Jensen-Wang in [17], nor in the sense of “A-Young quasiconvexity” of Ansini-
Prinari in [10]. This stronger notion of quasiconvexity is not necessary if one is interested
in merely solving (3.4) by applying the direct method in W 1,∞ without deriving any PDEs,
and can indeed be weakened substantially, but it is needed for Theorems 3.1.2 and 3.1.3,
so we simplify the exposition by assuming it at the outset. For our operator Q in (3.2) we
will assume the following:

Q−1
(
{0}

)
is weakly closed in W 1,p

0 (Ω;RN). (3.9)

This is a very feeble requirement for Q and there exist numerous explicit examples of
interest that satisfy (3.9), see Section 3.4. For 1 ≤ p < ∞, we define the approximating
Lp functionals Fp,Gp : W 1,αp

0 (Ω;RN) −→ R by setting
Fp(u) : =

(
−
∫

Ω
f(·, u,Du)p dLn

)1/p

,

Gp(u) : =
(

−
∫

Ω
g(·, u,Du)p dLn

)1/p

.

(3.10)

For p = ∞, F∞ and G∞ are given by (3.3). For each p ∈ [1,∞] and G ≥ 0 fixed, we define
the admissible minimisation class Xp(Ω) on which Fp is to be minimised, by setting

Xp(Ω) :=
{
v ∈ W 1,αp

0 (Ω;RN) : Gp(v) ≤ G and Q(v) = 0
}
. (3.11)
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Our first main result concerns the existence of Fp-minimisers in Xp(Ω) and the existence
of F∞-minimisers in X∞(Ω), obtained as subsequential limits as p → ∞.

Theorem 3.1.1 (F∞-minimisers, Fp-minimisers & convergence as p → ∞). Suppose that
the mappings f, g and Q satisfy the assumptions (3.5) through (3.9). If the next compati-
bility condition is satisfied

inf
{

G∞ : Q−1
(
{0}

)
∩W 1,∞

0 (Ω;RN)
}
< G, (3.12)

then, for any p ∈ [p̄,∞], the functional Fp has a constrained minimiser up in the admissible
class Xp(Ω), namely

Fp

(
up) = inf

{
Fp

(
v) : v ∈ Xp(Ω)

}
. (3.13)

Additionally, there exists a subsequence of indices (pj)∞
1 such that, the sequence of respective

Fpj
-minimisers satisfies up −→ u∞ uniformly on Ω, and up −−⇀ u∞ weakly in W 1,q

0 (Ω;RN),
for all q ∈ (1,∞) fixed, as pj → ∞. Finally, we have the convergence of minimum values
Fp(up) −→ F∞(u∞) as pj → ∞.

Note that, in view of (3.9), the compatibility condition (3.12) guarantees that Xp(Ω) ̸=
∅. Given the existence of constrained minimisers provided from Theorem 3.1.1 above,
the next natural question concerns the deduction of necessary conditions satisfied by con-
strained minimisers in the form of PDEs. Firstly, we examine the case of p < ∞. The
nonlinear constraint expressed by the zero level-set of the mapping Q in (3.11) gives rise
to a Lagrange multiplier in the Euler-Lagrange equations. This can be inferred by em-
ploying well-known results on Lagrange multipliers, see for instance [94]. For this to be
possible, though, one needs improved regularity of the mappings f, g and Q involved. We
will suppose additionally that



The partial derivatives fηη, fηP , fP η, fP P of f are continuous on
Ω × RN × RN×n, and for C, α as in (3.6), we have the bounds

|fηη(x, η, P )| ≤ C(x, η)
(
|P |α−2 + 1

)
,

|fηP (x, η, P )| ≤ C(x, η)
(
|P |α−2 + 1

)
,

|fP P (x, η, P )| ≤ C(x, η)
(
|P |α−2 + 1

)
,

|fP η(x, η, P )| ≤ C(x, η)
(
|P |α−2 + 1

)
,

for all (x, η, P ).

(3.14)
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

The partial derivatives gηη, gηP , gP η, gP P of g are continuous on
Ω × RN × RN×n, and for C, α as in (3.6), we have the bounds

|gηη(x, η, P )| ≤ C(x, η)
(
|P |α−2 + 1

)
,

|gηP (x, η, P )| ≤ C(x, η)
(
|P |α−2 + 1

)
,

|gP P (x, η, P )| ≤ C(x, η)
(
|P |α−2 + 1

)
,

|gP η(x, η, P )| ≤ C(x, η)
(
|P |α−2 + 1

)
,

for all (x, η, P ).

(3.15)

It follows that

The partial derivatives fη, fP , gη, gP of f and g are continuous on
Ω × RN × RN×n, and for C, α as in (3.6), we have the bounds

|fη|(x, η, P ) + |fP |(x, η, P ) ≤ C(x, η)
(
|P |α−1 + 1

)
,

|gη|(x, η, P ) + |gP |(x, η, P ) ≤ C(x, η)
(
|P |α−1 + 1

)
,

for all (x, η, P ).

(3.16)

Further, we will assume that:
Q is continuously differentiable, and its Fréchet derivative

(dQ)u : W 1,p̄
0 (Ω;RN) −→ E

has closed range in E, for any u ∈ Q−1({0}) ⊆ W 1,p̄
0 (Ω;RN).

(3.17)

Recall that no regularity was assumed for Q to obtain the existence of minimisers in
Theorem 3.1.1. Finally, for the sake of brevity, for any u ∈ W 1,1

loc (Ω), we will employ the
following notation

f [u] ≡ f(·, u,Du), g[u] ≡ g(·, u,Du),
and similar notation will be used for the compositions of fη, fP , gη, gP of f and g respec-
tively, namely fη[u], gη[u], etc. Further, “·” and “:” will denote the standard inner products
on RN and RN×n respectively.
Theorem 3.1.2 (The equations in Lp). Suppose we are in the setting of Theorem 3.1.1
and assumptions (3.5) through (3.9) are satisfied. Suppose additionally that (3.14) through
(3.17) are satisfied. Then, for any p ∈ (p̄,∞), there exists Lagrange multipliers

λp ≥ 0, µp ≥ 0, ψp ∈ E∗, (3.18)
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where (E∗, ∥ · ∥∗) is the dual space of E, such that not all vanish simultaneously:

|λp| + |µp| + ∥ψp∥∗ ̸= 0. (3.19)

Then, the minimiser up ∈ Xp(Ω) satisfies the equation
λp −
∫

Ω
f [up]p−1

(
fη[up] · ϕ + fP [up] : Dϕ

)
dLn

+ µp −
∫

Ω
g[up]p−1

(
gη[up] · ϕ + gP [up] : Dϕ

)
dLn =

〈
ψp, (dQ)up(ϕ)

〉
,

(3.20)

for all test mappings ϕ ∈ W 1,αp
0

(
Ω;RN

)
, coupled by the additional condition

µp

(
Gp(up) −G

)
= 0. (3.21)

Note that condition (3.21) implies that if Gp(up) < G, namely if the L∞-energy con-
straint is not realised (i.e. the minimiser up lies in the interior of the sublevel set {Gp ≤ G}),
then µp = 0 and hence the associated multiplier vanishes.

Now we consider the case of p = ∞. In this case, there is not a simple analogue of the
divergence structure Euler-Lagrange equations. The equations are derived by an appro-
priate passage to limits as p → ∞ in Theorem 3.1.2. A standard approach in Calculus of
Variations in L∞ has been to derive Aronsson-type PDE systems, which are non-divergence
counterparts to the Euler-Lagrange equations, as e.g. done in [11] for the case of n = 1 and
Q ≡ 0. However, Aronsson-type systems are always non-divergence and far less tractable
than their divergence counterparts. In fact, in the vectorial case they have discontinu-
ous coefficients and are fully nonlinear in the higher order case (see for instance [35] and
[60, 61, 72] for this evolving line of development regarding the direct study of generalised
solutions to Aronsson systems).

Nevertheless, there exists an alternative approach which allows to derive divergence
structure PDE systems as necessary conditions. The starting point of this idea is based
on the use of a different scaling in the Euler-Lagrange equations in Lp and has already
born substantial fruit in [30, 63, 64, 65, 66, 68, 69]. There is however a toll to be paid for
this “forcing” of divergence structure: certain non-uniquely determined measures arise as
auxiliary parameters in the coefficients of the PDE system, which depend nonlinearly on
the minimisers. For more details on the historical origins of this alternative approach to
deriving L∞ equations for variational problems we refer to [65].

Our final main result therefore concerns the satisfaction of necessary conditions for
the constrained minimiser in L∞ constructed in Theorem 3.1.1. For this result we will
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need to impose some natural additional hypotheses. These hypotheses, although they
restrict considerably the classes of f, g,Q that were utilised in order to prove existence
of minimisers, they do nonetheless include the interesting case of F∞ being the L∞ norm
of the gradient. Firstly, let us introduce some convenient notation and rewrite (3.20) in
a way which will be more appropriate for the statement and the subsequent proof. By
introducing for each p ∈ (p̄,∞) the non-negative Radon measures σp, τp ∈ M(Ω) given by

σp :=


1

Ln(Ω)

(
f [up]

Fp(up)

)p−1

Ln⌞Ω, if Fp(up) > 0,

0, if Fp(up) = 0,

τp :=


1

Ln(Ω)

(
g[up]

Gp(up)

)p−1

Ln⌞Ω, if Gp(up) > 0,

0, if Gp(up) = 0,

(3.22)

and the scaled multipliers

λ̂p :=
{
λpFp(up)p−1, if Fp(up) > 0,
λp, if Fp(up) = 0,

µ̂p :=
{
µpGp(up)p−1, if Gp(up) > 0,
µp, if Gp(up) = 0,

(3.23)

we can rewrite (3.20) as
λ̂p

∫
Ω

(
fη[up] · ϕ + fP [up] : Dϕ

)
dσp

+ µ̂p

∫
Ω

(
gη[up] · ϕ + gP [up] : Dϕ

)
dτp =

〈
ψp, (dQ)up(ϕ)

〉
.

(3.24)

Further, let us set
Rp := λ̂p + µ̂p + ∥ψp∥∗ (3.25)

and note that, by virtue of Theorem 3.1.2 and Definition (3.23), we have that Rp > 0. We
may then define the new rescaled multipliers

Λp := λ̂p

Rp

∈ [0, 1], Mp := µ̂p

Rp

∈ [0, 1], Ψp := ψp

Rp

∈ B̄E∗

1 (0), (3.26)

where B̄E∗

1 (0) is the closed unit ball in E∗. Let us finally set

C1
0

(
Ω;RN

)
:= W 1,∞

0 (Ω;RN)
⋂
C1
(
Rn;RN

)
.
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Now we state the additional assumptions which we need to impose:

E is a separable Banach space. (3.27)

The restriction of the differential (u, v) 7→ (dQ)u(v), considered as
dQ : Q−1({0}) ×W 1,p̄

0 (Ω;RN) −→ E,
satisfies the following conditions:
If um −−⇀ u in Q−1({0}) as m → ∞, and ϕ ∈ W 1,p̄

0 (Ω;RN), then{
(dQ)um(um) −→ (dQ)u(u),
(dQ)um(ϕ) −→ (dQ)u(ϕ),

as m → ∞.

(3.28)

The above assumption requires that dQ be weakly-strongly continuous on the diagonal of
Q−1({0}) × Q−1({0}) and on subsets of the form Q−1({0}) × {ϕ}, when W 1,p̄

0 (Ω;RN) ×
W 1,p̄

0 (Ω;RN) is endowed with its weak topology and E with its norm topology. We assume
further that: 

(i) g does not depend on P , namely g(x, η, P ) = g(x, η),
(ii) f is quadratic in P and independent of η, namely

f(x, η, P ) = A(x) : P ⊗ P ,
for some continuous positive symmetric fourth order tensor
A : Ω −→ RN×n ⊗ RN×n, which satisfies

A(x) : P ⊗ P > 0 , A(x) : P ⊗Q = A(x) : Q⊗ P ,
for all x ∈ Ω and all P,Q ∈ RN×n \ {0}.

(3.29)

The above requirements are compatible with the previous assumptions on f . In fact, by
[65, Lemma 4, p. 8] and our earlier assumptions, the positivity and symmetry requirements
for A are superfluous and can be deduced by merely assuming that f is quadratic in P
(up to a replacement of A by its symmetrisation), but we have added them to (3.29) for
simplicity. We may finally state our last principal result.

Theorem 3.1.3 (The equations in L∞). Suppose we are in the setting of Theorem 3.1.2
and that the same assumptions are satisfied. Additionally we assume that (3.27) through
(3.29) hold true. Then, there exist

Λ∞ ∈ [0, 1], M∞ ∈ [0, 1], Ψ∞ ∈ B̄E∗

1 (0), (3.30)
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which are Lagrange multipliers associated with the constrained minimisation problem (3.4).
There also exist Radon measures

σ∞ ∈ M(Ω), τ∞ ∈ M(Ω), (3.31)

and a Borel measurable mapping Du⋆
∞ : Ω −→ RN×n which is a version of Du∞ ∈

L∞(Ω;RN×n), such that the minimiser u∞ ∈ X∞(Ω) satisfies the equation

Λ∞

∫
Ω
fP (·,Du⋆

∞) : Dϕ dσ∞ + M∞

∫
Ω
gη(·, u∞) · ϕ dτ∞ =

〈
Ψ∞, (dQ)u∞(ϕ)

〉
, (3.32)

for all test maps ϕ ∈ C1
0

(
Ω;RN

)
, coupled by the condition

M∞
(
G∞(u∞) −G

)
= 0. (3.33)

Additionally, the map Du⋆
∞ can be represented (modulo Lebesgue null sets) as follows:

For any sequence (vj)∞
1 ⊆ C1

0

(
Ω;RN

)
satisfying


lim

j→∞
∥vj − u∞∥(W 1,1

0 ∩L∞)(Ω) = 0,

lim sup
j→∞

F∞(vj) ≤ F∞(u∞),

exist a subsequence (jk)∞
1 such that

Du⋆
∞(x) =

{ lim
k→∞

Dvjk
(x), if the limit exists,

0, otherwise.

(3.34)

(Such an explicit sequence (vj)∞
1 is constructed in the proof.) Finally, the Lagrange multi-

pliers Λ∞,M∞,Ψ∞ and the measures σ∞, τ∞ can be approximated as follows:
Ψp

∗−−⇀ Ψ∞, in B̄E∗

1 (0),
Λp −→ Λ∞, in [0, 1],
Mp −→ M∞, in [0, 1],

(3.35)

and  σp
∗−−⇀ σ∞, in M(Ω),

τp
∗−−⇀ τ∞, in M(Ω),

(3.36)

along a subsequence pj → ∞.
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The weak interpretation of (3.32) is

−Λ∞div(fP (·,Du⋆
∞)σ∞

)
+ M∞ gη(·, u∞)τ∞ =

〈
Ψ∞, (dQ)u∞

〉
,

in
(
C1

0

(
Ω;RN

))∗
, up to the identifications

〈
Ψ∞, (dQ)u∞

〉
≡
〈
Ψ∞, (dQ)u∞(·)

〉
, gη ≡ gη · (·), fP ≡ (·) · fP .

Note that in Theorem 3.1.3, the equations obtained depend on certain measures not a priori
known explicitly. Therefore, their significance is understood to be largely theoretical, rather
than computational. For the proof of this result, we will utilise some machinery developed
in the recent paper [65] for some related work on generalised ∞-eigenvalue problems. The
main points of this approach are recalled in the course of the proof, for the convenience of
the reader.

We conclude this lengthy introduction with some comments concerning the composition
of this paper. In Sections 3.2 and 3.3 we establish our main results, Theorems 3.1.1, 3.1.2
and 3.1.3. In Section 3.4 we provide a rather detailed list of explicit large classes of
nonlinear operators Q to which our results apply.

3.2 Minimisers of Lp problems and convergence as p →
∞

In this section we demonstrate Theorem 3.1.1. The proof is a consequence of the next two
propositions, utilising the direct method of the Calculus of Variations.

Proposition 3.2.1. In the setting of Theorem 3.1.1 and under the same assumptions, for
any p ∈ [p̄,∞), the functional Fp has a constrained minimiser up ∈ Xp(Ω), as claimed in
(3.13).

Proof of Proposition 3.2.1. Fix p ≥ p̄ > n. We begin by illustrating that Xp(Ω) ̸= ∅.
First note that by the compatibility condition (3.12), the finiteness of the infimum implies
that Q−1

(
{0}

)
∩W 1,∞

0 (Ω;RN) ̸= ∅. Further, there exists u0 ∈ W 1,∞
0 (Ω;RN) with Q(u0) = 0

such that G∞(u0) < G. Hence, by Hölder inequality we have

Gp(u0) =
(

−
∫

Ω
g(·, u0,Du0)p dLn

)1/p

≤
∥∥∥g(·, u0,Du0)

∥∥∥
L∞(Ω)

= G∞(u0) < G.
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Consequently, in view of (3.11), both constraints are satisfied by u0, hence u0 ∈ Xp(Ω) ̸= ∅.
Next, note that fp is a (Morrey) quasiconvex function. To see this, let h : RN×n −→ R
be an arbitrary quasiconvex function, in our case we will take h(P ) = f(x, η, P ) for fixed
(x, η). Then, by assumption (3.7), for any ϕ ∈ W 1,∞

0 (U ;RN) with U ⋐ Rn open and
P ∈ RN×n fixed,

h(P ) ≤ −
∫

U
h(P + Dϕ) dLn.

Hence, by Jensen’s inequality and the convexity of t 7→ tp, we conclude that

h(P )p ≤
(

−
∫

U
h(P + Dϕ) dLn

)p

≤ −
∫

U
h(P + Dϕ)p dLn.

We now proceed to bound fp. By (3.6), we estimate

0 ≤ f(x, η, P )p ≤ C(x, η)p
(
1 + |P |α

)p
≤ 2p−1C(x, η)p

(
1 + |P |αp

)
.

By standard results (see [36]), Fp is weakly lower semicontinuous on W 1,αp
0 (Ω;RN). Let

(u(i))∞
1 ⊆ Xp(Ω) denote a minimising sequence. By virtue of (3.6) we have f ≥ 0, hence

clearly infi∈N Fp(u(i)) ≥ 0. We now show that the infimum is finite. To this aim, by (3.6)
we estimate

inf
i∈N

Fp(u(i)) ≤ Fp(u0)

=
(

−
∫

Ω
f(·, u0,Du0)p dLn

)1/p

≤
(

−
∫

Ω

(
C(·, u0)(1 + |Du0|α)

)p

dLn

)1/p

,

which yields

inf
i∈N

Fp(u(i)) ≤
∥∥∥∥C(·, u0)

(
1 + |Du0|α

)∥∥∥∥
L∞(Ω)

≤ ∥C(·, u0)∥L∞(Ω)∥(1 + |Du0|α)∥L∞(Ω)

≤ ∥C(·, u0)∥L∞(Ω)
(
1 + ∥Du0∥α

L∞(Ω)

)
< ∞.

Hence, the infimum is indeed finite. Now we show that under assumption (3.8), the min-
imising sequence (u(i))∞

1 is bounded in W 1,αp(Ω;RN). Let h symbolise either f or g,
whichever is coercive. Hence, since h is coercive, we have

−
∫

Ω

∣∣∣h(·, u(i),Du(i)) + C
∣∣∣p dLn ≥ c −

∫
Ω
|Du(i)|αp dLn.
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By using the Poincaré and Hölder inequalities, we infer that

C +
(

−
∫

Ω
|h(·, u(i),Du(i))|p dLn

)1
p

≥ c′ ∥u(i)∥α
W 1,αp(Ω)

for some new constant c′ > 0 which is independent of i ∈ N. If h = f , then by the
previously derived estimates we have the uniform bound

∥u(i)∥α
W 1,αp(Ω) ≤ 1

c′

(
C + Fp(u(i))

)
≤ C

c′ + 1
c′ ∥C(·, u0)∥L∞(Ω)

(
1 + ∥Du0∥α

L∞(Ω)

)
,

and if h = g, then by the isosupremic constraint we have the uniform bound

∥u(i)∥α
W 1,αp(Ω) ≤ 1

c′

(
C + Gp(u(i))

)
≤ C + G

c′ .

In either case, we have that (u(i))∞
1 is weakly precompact in W 1,αp

0 (Ω;RN). By passing to
a subsequence if necessary, standard strong and weak compactness arguments imply that
there exists a map up ∈ W 1,αp

0 (Ω;RN) and a subsequence denoted again by (u(i))∞
1 such

that  u(i) −→ up, in Lαp(Ω;RN),
Du(i) −−⇀ Dup, in Lαp(Ω;RN×n),

as i → ∞. Further, since p > n, by the Morrey estimate we have that (u(i))∞
1 is also

bounded in C0,γ(Ω,RN) for γ < 1 − n/(αp). By the compact embedding of Hölder spaces,
we conclude that

u(i) −→ up in C(Ω;RN),
as i → ∞. It remains to show that Xp(Ω) is weakly closed in W 1,αp

0 (Ω;RN). To this end, we
need to show that the constraints determine a weakly closed subset ofW 1,αp

0 (Ω;RN). Firstly
note that by assumptions (3.5)-(3.7), Gp is a weakly lower semi-continuous functional on
W 1,αp

0 (Ω;RN). This can be seen by an analogous argument to that used to show that Fp

is weakly lower-continuous. Since (u(i))∞
1 ⊆ Xp(Ω), we have Gp(u(i)) ≤ G for all i ∈ N.

Therefore, since u(i) −−⇀ up in W 1,αp
0 (Ω;RN) as i → ∞ and Gp is weakly lower-continuous,

we infer that

Gp(up) ≤ lim inf
i→∞

Gp(u(i)) ≤ G.

Hence, Gp(up) ≤ G. Recall now that, in view of assumption (3.9), Q−1({0}) is a weakly
closed subset of W 1,p̄(Ω;RN), where p̄ > n. We now show that Q−1({0}) is also a weakly
closed subset of W 1,αp

0 (Ω;RN), which will complete the claim that Xp(Ω) is weakly closed
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in W 1,αp
0 (Ω;RN). Note first that since (u(i))∞

1 ⊆ Xp(Ω), we have that Q(u(i)) = 0 for all
i ∈ N. Recalling that u(i) −−⇀ up in W 1,αp

0 (Ω;RN) as i → ∞ and that αp > p̄ because by
assumption α > 1, we deduce that u(i) −−⇀ up in W 1,p̄(Ω;RN) as well, as i → ∞. Since
Q−1({0}) is weakly closed in W 1,p̄(Ω;RN), we infer that Q(up) = 0, as desired. Thus, for
each p ∈ [p̄,∞), up ∈ Xp(Ω), and

Fp(up) ≤ lim inf
i→∞

Fp(u(i)) = inf
{
Fp : Xp(Ω)

}
.

The proposition ensues.

Our next result below establishes the existence of constrained minimisers for F∞ and
the approximation by minimisers of the Fp functionals as p → ∞, therefore completing the
proof of Theorem 3.1.1.

Proposition 3.2.2. In the setting of Theorem 3.1.1 and under the same assumptions, the
functional F∞ has a constrained minimiser u∞ ∈ X∞(Ω), as claimed in (3.13). Addition-
ally, the claimed modes of convergence hold true for a subsequence of minimisers (upj

)∞
j=1

as j → ∞.

Proof of Proposition 3.2.2. We continue from the proof of Proposition 3.2.1. The
element u0 ∈ Xp(Ω) provides an energy bound uniform in p, and also u0 ∈ X∞(Ω). Fix
p, q > 1 with p ≥ q ≥ p̄. By the Hölder inequality, minimality and the definition of the
constrained class, we have the estimates Fq(up) ≤ Fp(up) ≤ Fp(u0) ≤ ∥C(·, u0)∥L∞(Ω)

(
1 + ∥Du0∥α

L∞(Ω)

)
,

Gq(up) ≤ Gp(up) ≤ G,

with right hand side bounds which are uniform in p, q. We now argue in a similar fashion
to that used in the proof of Proposition 3.2.1. We first show that under assumption (3.8),
the family of minimisers (up)p≥p̄ is bounded in W 1,q(Ω;RN), for any q ∈ (1,∞) fixed. Let
h symbolise either f or g, whichever is coercive. We then have that

−
∫

Ω

∣∣∣h(·, up,Dup) + C
∣∣∣q dLn ≥ c −

∫
Ω
|Dup|αq dLn.

Since α > 1, by the Hölder inequality we infer

C +
(

−
∫

Ω
|h(·, up,Dup)|q dLn

)1
q

≥ c
1
q ∥Dup∥α

Lq(Ω),
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for the constants c, C > 0 of (3.8) (which are independent of p and q). If h = f , by
applying our earlier estimates we deduce the uniform bound

∥Dup∥α
Lq(Ω) ≤ 1

c

(
C + Fq(up)

)
≤ C

c
+ 1

c
∥C(·, u0)∥L∞(Ω)

(
1 + ∥Du0∥α

L∞(Ω)

)
.

If h = g, then again as in our earlier estimates we have the uniform bound

∥Dup∥α
Lq(Ω) ≤ 1

c

(
C + Gq(up)

)
≤ C + G

c
.

In either case, we see that under (3.8), our estimates above imply that

∥Dup∥Lq(Ω) ≤ K,

for some constant K > 0 independent of p, q. Further, by the Poincaré inequality, we
deduce that

∥up∥W 1,q(Ω) ≤ K
(
1 + C(q)

)
,

where C(q) is the constant of the Poincaré inequality in W 1,q
0 (Ω;RN). Hence, the sequence

of minimisers (up)p≥p̄ is bounded in W 1,q
0 (Ω;RN) for any fixed q ∈ (1,∞), and therefore it

is weakly precompact in this collection of spaces. By a standard diagonal argument, there
exists a sequence (pj)∞

1 and a mapping

u∞ ∈
⋂

p̄<q<∞
W 1,q

0 (Ω;Rn),

such that up −−⇀ u∞ in W 1,q
0 (Ω;Rn) as pj → ∞, for any fixed q ∈ (p̄,∞). By standard

compactness arguments in Sobolev and Hölder spaces, we infer that up −→ u∞, in C
(
Ω;RN

)
,

Dup −−⇀ Du∞, in Lq(Ω;RN×n),

as pj → ∞, for any q ∈ (p̄,∞). We will now show that u∞ ∈ X∞(Ω). In view of (3.11),
we need to show that u∞ ∈ W 1,∞

0 (Ω;RN) and that G∞(u∞) ≤ G and also Q(u∞) = 0. By
the weak lower semi-continuity of the Lq norm for q ≥ p̄ fixed, we have

∥Du∞∥Lq(Ω) ≤ lim inf
pj→∞

∥Dup∥Lq(Ω) ≤ K.

By letting q → ∞, this yields that Du∞ ∈ L∞(Ω;RN). By the Poincaré inequality in
W 1,∞

0 (Ω;RN), we infer that u∞ ∈ W 1,∞
0 (Ω;RN). Next, since Gp(up) ≤ G for all p ∈ (p̄,∞),

via the Hölder inequality and weak lower semi-continuity, we have

G∞(u∞) = lim
q→∞

Gq(u∞) ≤ lim inf
q→∞

(
lim inf
pj→∞

Gq(up)
)

≤ lim inf
pj→∞

Gp(up) ≤ G,
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yielding that indeed G∞(u∞) ≤ G. We now show that Q(u∞) = 0. We have already
shown in Proposition 3.2.1 that Q−1({0}) is a weakly closed subset of W 1,q

0 (Ω;RN) for any
q ∈ (p̄,∞). Since Q(up) = 0 for all p ≥ p̄ and up −−⇀ u∞ in W 1,q

0 (Ω;RN) as pj → ∞, we
deduce that Q(u∞) = 0, as desired.

It remains to show that u∞ is indeed a minimiser of F∞ in X∞(Ω), and additionally
that the energies converge. Fix an arbitrary u ∈ X∞(Ω). By minimality and by noting
that X∞(Ω) ⊆ Xp(Ω) for any p ∈ [p̄,∞], we have the estimate

F∞(u∞) = lim
q→∞

Fq(u∞)

≤ lim inf
q→∞

(
lim inf
pj→∞

Fq(up)
)

≤ lim inf
pj→∞

Fp(up)

≤ lim sup
pj→∞

Fp(up)

≤ lim sup
pj→∞

Fp(u)

= F∞(u),

for any u ∈ X∞(Ω). Hence u∞ is a minimiser of F∞ over X∞(Ω) and (3.4) follows. The
choice u = u∞ in the above implies Fp(up) −→ F∞(u∞), as pj → ∞. This completes the
proof of the proposition and therefore of Theorem 3.1.1.

3.3 The equations for constrained minimisers in Lp

and in L∞

In this section we establish the proofs of Theorem 3.1.2 and Theorem 3.1.3. The proof of
the former is a relatively simple consequence of deep results in the generalised Kuhn-Tucker
theory from [94], whilst the proof of the latter is based on applying an appropriate limiting
process to the former result through compactness estimates.

Proof of Theorem 3.1.2. Fix p ∈ [p̄,∞). We begin with the simplifying observation
that, the minimisation problem (3.13) can be rewritten as

1
p

Fp(up)p =
{

1
p

Fp(u)p : u ∈ W 1,αp
0 (Ω;RN), 1

p
Gp(u)p − Gp

p
≤ 0 & Q(u) = 0

}
.
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This reformulation is a labour-saving device, drastically shortening the proof of this result.
In view of assumption (3.16), first we will show that the following functionals are Fréchet
differentiable

1
p

(Fp)p : W 1,αp
0

(
Ω;RN

)
−→ R,

1
p

(Gp)p − Gp

p
: W 1,αp

0

(
Ω;RN

)
−→ R.

A direct computation gives the next formal expressions for their Gateaux derivatives(
d
[1
p

(Fp)p
])

u

(v) = −
∫

Ω
f [u]p−1

(
fη[u] · v + fP [u] : Dv

)
dLn,(

d
[1
p

(Gp)p − Gp

p

])
u

(v) = −
∫

Ω
g[u]p−1

(
gη[u] · v + gP [u] : Dv

)
dLn,

for all u, v ∈ W 1,αp
0 (Ω;RN). We will now show the above formal expressions indeed de-

fine Fréchet derivatives, by employing relatively standard estimates through the Hölder
inequality. We argue only for 1

p
(Fp)p, as the estimates for 1

p

(
(Gp)p − Gp

)
are identical.

Since α > 1 and p ≥ p̄ > n, by Morrey’s estimate we have∣∣∣∣∣−
∫

Ω
f [u]p−1

(
fη[u] · v + fP [u] : Dv

)
dLn

∣∣∣∣∣
≤ −
∫

Ω
|f [u]|p−1

(
|fη[u]||v| + |fP [u]||Dv|

)
dLn

≤ −
∫

Ω
C(·, u)p

(
1 + |Du|α

)p−1(
1 + |Du|α−1

)
(|v| + |Dv|) dLn

≤ 2p
∥∥∥|v|C(·, u)p

∥∥∥
L∞(Ω)

−
∫

Ω

(
1 + |Du|α−1 + |Du|αp−α + |Du|αp−1

)
dLn

+ 2p
∥∥∥C(·, u)p

∥∥∥
L∞(Ω)

−
∫

Ω

(
1 + |Du|α−1 + |Du|αp−α + |Du|αp−1

)
|Dv| dLn

≤ 2p
∥∥∥|v|C(·, u)p

∥∥∥
L∞(Ω)

(
1 + ∥Du∥α−1

Lαp(Ω) + ∥Du∥αp−α
Lαp(Ω) + ∥Du∥αp−1

Lαp(Ω)

)
+ 2p

∥∥∥C(·, u)p
∥∥∥

L∞(Ω)

(
∥Dv∥Lαp(Ω)

+
∑

t∈{α−1,αp−α,αp−1}
∥Du∥t

L
tαp

αp−1 (Ω)
∥Dv∥Lαp(Ω)

)
.

Therefore the expression for the Gateaux derivative exists in L1, for test functions in
W 1,αp

0

(
Ω;RN

)
. We now demonstrate these functionals are Fréchet differentiable. Suppose
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F ∈ C2(Ω × RN × RN×n), with F[u] ≡ F(·, u,Du), where

E(u) = −
∫

Ω
F[u] dLn,

and
(dE)u(v) = −

∫
Ω
Fη[u] · v + FP [u] : Dv dLn,

for all u, v ∈ W 1,αp
0 (Ω;RN). As F is arbitrary we can choose F = fp (to investigate our

functionals of interest), such that f satisfies (3.14). We have

FP = pfp−1fP ,

FP P = pfp−2
(
ffP P + (p− 1)fP ⊗ fP

)
.

By (3.14), it follows that

|fP (x, η, P )| ≤ C(x, η)
(
|P |α−1 + 1

)
,

|f(x, η, P )| ≤ C(x, η)
(
|P |α + 1

)
,

for some new continuous functions at each step. Hence,

|F(x, η, P )| ≤ C(x, η)
(
|P |αp + 1

)
.

Additionally,

|FP (x, η, P )| ≤ C(x, η)
(
|P |α(p−1) + 1

)(
|P |α−1 + 1

)
≤ C(x, η)

(
|P |αp−1 + 1

)
.

Furthermore,

|FP P (x, η, P )| ≤ C(x, η)
(
|P |α(p−2) + 1

)[(
|P |α + 1

)(
|P |α−2 + 1

)
+
(
|P |2(α−1) + 1

)]
≤ C(x, η)

(
|P |αp−2 + 1

)
.

The derivatives with respect to η are symmetric, thus

|Fη(x, η, P )| ≤ C(x, η)
(
|P |αp−1 + 1

)
,

|Fηη(x, η, P )| ≤ C(x, η)
(
|P |αp−2 + 1

)
.
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We can produce comparable bounds for the mixed derivatives,

FηP = pfp−2
(
(p− 1)fPfη + ffηP

)
and

|FηP (x, η, P )| ≤ C(x, η)
(
|P |αp + 1

)p−2[(
|P |α−1 + 1

)2
+
(
|P |α + 1

)(
|P |α−2 + 1

)]
≤ C(x, η)

(
|P |αp−2 + 1

)
.

Analogously, we have
|FP η(x, η, P )| ≤ C(x, η)

(
|P |αp−2 + 1

)
.

Utilising these bounds, we intend to show that E is Fréchet differentiable, specifically

|E(u+ v) − E(u) − (dE)u(v)| ≤ o
(
∥v∥W 1,αp(Ω)

)
.

By the mean value theorem,

|E(u+ v) − E(u) − (dE)u(v)| =
∣∣∣∣−∫

Ω
F[u+ v] − F[u] −

(
Fη[u] · v + FP [u] : Dv

)∣∣∣∣ dLn

=
∣∣∣∣∣−
∫

Ω

∫ 1

0
Fη[u+ λv] − Fη[u] dλ · v +

∫ 1

0
FP [u+ λv] − FP [u] dλ : Dv dLn

∣∣∣∣∣
≤ −
∫

Ω

∣∣∣∣∣
∫ 1

0
Fη[u+ λv] − Fη[u] dλ · v

∣∣∣∣∣ dLn + −
∫

Ω

∣∣∣∣∣
∫ 1

0
FP [u+ λv] − FP [u] dλ : Dv

∣∣∣∣∣ dLn.

Let us restrict our attention to the first integral,

−
∫

Ω

∣∣∣∣∣
∫ 1

0
Fη[u+ λv] − Fη[u] dλ · v

∣∣∣∣∣ dLn

≤ −
∫

Ω

∣∣∣∣∣
∫ 1

0

∫ 1

0
Fηη[u+ (λ+ µ)v] · λv + FηP [u+ (λ+ µ)v] : λDv dµ dλ

∣∣∣∣∣|v| dLn

≤
(

−
∫

Ω

∣∣∣∣∣
∫ 1

0

∫ 1

0
Fηη[u+ (λ+ µ)v] · λv + FηP [u+ (λ+ µ)v] : λDv dµ dλ

∣∣∣∣∣
αp

αp−1

dLn

)αp−1
αp

� ∥v∥Lαp(Ω)
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≤
(

−
∫

Ω

∫ 1

0

∫ 1

0
|Fηη[u+ (λ+ µ)v] · λv + FηP [u+ (λ+ µ)v] : λDv|

αp
αp−1 dµ dλ dLn

)αp−1
αp

� ∥v∥Lαp(Ω)

≤
(

−
∫

Ω

∫ 1

0

∫ 1

0

(
|Fηη[u+ (λ+ µ)v] · λv| + |FηP [u+ (λ+ µ)v] : λDv|

) αp
αp−1 dµ dλ dLn

)αp−1
αp

� ∥v∥Lαp(Ω)

≤ C0

(
−
∫

Ω

∫ 1

0

∫ 1

0

(
|Fηη[u+ (λ+ µ)v] · λv|

) αp
αp−1

+
(
|FηP [u+ (λ+ µ)v] : λDv|

) αp
αp−1 dµ dλ dLn

)αp−1
αp

∥v∥Lαp(Ω)

= C0

(
−
∫

Ω

∫ 1

0

∫ 1

0

(
|Fηη[u+ (λ+ µ)v] · λv|

) αp
αp−1 dµ dλ dLn

+ −
∫

Ω

∫ 1

0

∫ 1

0

(
|FηP [u+ (λ+ µ)v] : λDv|

) αp
αp−1 dµ dλ dLn

)αp−1
αp

∥v∥Lαp(Ω)

≤ C1

(−
∫

Ω

∫ 1

0

∫ 1

0

(
|Fηη[u+ (λ+ µ)v] · λv|

) αp
αp−1 dµ dλ dLn

)αp−1
αp

+
(

−
∫

Ω

∫ 1

0

∫ 1

0

(
|FηP [u+ (λ+ µ)v] : λDv|

) αp
αp−1 dµ dλ dLn

)αp−1
αp

∥v∥Lαp(Ω).

We can ascertain an analogous bound for the second integral,

−
∫

Ω

∣∣∣∣∣
∫ 1

0
FP [u+ λv] − FP [u] dλ : Dv

∣∣∣∣∣ dLn

≤ C1

(−
∫

Ω

∫ 1

0

∫ 1

0

(
|FP η[u+ (λ+ µ)v] · λv|

) αp
αp−1 dµ dλ dLn

)αp−1
αp

+
(

−
∫

Ω

∫ 1

0

∫ 1

0

(
|FP P [u+ (λ+ µ)v] : λDv|

) αp
αp−1 dµ dλ dLn

)αp−1
αp


� ∥Dv∥Lαp(Ω).
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Combining both of these we bounds, we obtain,

−
∫

Ω

∣∣∣∣∣
∫ 1

0
Fη[u+ λv] − Fη[u] dλ · v

∣∣∣∣∣ dLn + −
∫

Ω

∣∣∣∣∣
∫ 1

0
FP [u+ λv] − FP [u] dλ : Dv

∣∣∣∣∣ dLn

≤ C1

(−
∫

Ω

∫ 1

0

∫ 1

0

(
|Fηη[u+ (λ+ µ)v] · λv|

) αp
αp−1 dµ dλ dLn

)αp−1
αp

+
(

−
∫

Ω

∫ 1

0

∫ 1

0

(
|FηP [u+ (λ+ µ)v] : λDv|

) αp
αp−1 dµ dλ dLn

)αp−1
αp

∥v∥Lαp(Ω)

+ C1

(−
∫

Ω

∫ 1

0

∫ 1

0

(
|FP η[u+ (λ+ µ)v] · λv|

) αp
αp−1 dµ dλ dLn

)αp−1
αp

+
(

−
∫

Ω

∫ 1

0

∫ 1

0

(
|FP P [u+ (λ+ µ)v] : λDv|

) αp
αp−1 dµ dλ dLn

)αp−1
αp

∥Dv∥Lαp(Ω).

We proceed to bound the first term,

C1

(
−
∫

Ω

∫ 1

0

∫ 1

0

(
|Fηη[u+ (λ+ µ)v] · λv|

) αp
αp−1 dµ dλ dLn

)αp−1
αp

∥v∥Lαp(Ω)

≤ C1

(
−
∫

Ω

∫ 1

0

∫ 1

0

(
C(x, η)

((
|Du| + |(λ+ µ)Dv|

)αp−2
+ 1

)) αp
αp−1

|v|
αp

αp−1 dµ dλ dLn

)αp−1
αp

� ∥v∥Lαp(Ω)

≤ ∥c1(·, η)∥L∞(Ω)

(
−
∫

Ω

(
|Du|αp−2 + |Dv|αp−2 + 1

) αp
αp−1 |v|

αp
αp−1 dµ dλ dLn

)αp−1
αp

∥v∥Lαp(Ω)

≤ ∥c1(·, η)∥L∞(Ω)

(
−
∫

Ω

(
|Du|αp−2 + |Dv|αp−2 + 1

) αpt
αp−1 dLn

)αp−1
αpt

(
−
∫

Ω
|v|

t′αp
αp−1 dLn

)αp−1
αpt′

� ∥v∥Lαp(Ω)

≤ ∥c2(·, η)∥L∞(Ω)

(
−
∫

Ω
|Du|

(αp−2)αpt
αp−1 + |Dv|

(αp−2)αpt
αp−1 + 1 dLn

)αp−1
αpt

(
−
∫

Ω
|v|

t′αp
αp−1 dLn

)αp−1
αpt′

� ∥v∥Lαp(Ω)

= ∥c2(·, η)∥L∞(Ω)

(
−
∫

Ω
|Du|

(αp−2)αpt
αp−1 dLn + −

∫
Ω
|Dv|

(αp−2)αpt
αp−1 dLn + −

∫
Ω

dLn

)αp−1
αpt
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�

(
−
∫

Ω
|v|

t′αp
αp−1 dLn

)αp−1
αpt′

∥v∥Lαp(Ω)

≤ ∥c3(·, η)∥L∞(Ω)

[(
−
∫

Ω
|Du|

(αp−2)αpt
αp−1 dLn

)αp−1
αpt

+
(

−
∫

Ω
|Dv|

(αp−2)αpt
αp−1 dLn

)αp−1
αpt

+ 1
]

�

(
−
∫

Ω
|v|

t′αp
αp−1 dLn

)αp−1
αpt′

∥v∥Lαp(Ω).

Now select t, such that both the following inequalities hold
αpt(αp− 2)

(αp− 1) ≤ αp,

αpt

(αp− 1)(t− 1) ≤ αp.

Correspondingly, choosing t = αp−1
αp−2 . Consequently,

C1

(
−
∫

Ω

∫ 1

0

∫ 1

0

(
|Fηη[u+ (λ+ µ)v] · λv|

) αp
αp−1 dµ dλ dLn

)αp−1
αp

∥v∥Lαp(Ω)

≤ ∥c3(·, η)∥L∞(Ω)

(
∥Du∥αp−2

Lαp(Ω) + ∥Dv∥αp−2
Lαp(Ω) + 1

)
∥v∥2

Lαp(Ω).

We can replicate this approach, for each of the four second derivatives, furthermore,

|E(u+ v) − E(u) − (dE)u(v)|

≤ C1

(−
∫

Ω

∫ 1

0

∫ 1

0

(
|Fηη[u+ (λ+ µ)v] · λv|

) αp
αp−1 dµ dλ dLn

)αp−1
αp

+
(

−
∫

Ω

∫ 1

0

∫ 1

0

(
|FηP [u+ (λ+ µ)v] : λDv|

) αp
αp−1 dµ dλ dLn

)αp−1
αp

∥v∥Lαp(Ω)

+ C1

(−
∫

Ω

∫ 1

0

∫ 1

0

(
|FP η[u+ (λ+ µ)v] · λv|

) αp
αp−1 dµ dλ dLn

)αp−1
αp

+
(

−
∫

Ω

∫ 1

0

∫ 1

0

(
|FP P [u+ (λ+ µ)v] : λDv|

) αp
αp−1 dµ dλ dLn

)αp−1
αp

∥Dv∥Lαp(Ω)

≤ ∥c3(·, η)∥L∞(Ω)

(
∥Du∥αp−2

Lαp(Ω) + ∥Dv∥αp−2
Lαp(Ω) + 1

)
∥v∥2

Lαp(Ω)
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+ ∥c3(·, η)∥L∞(Ω)

(
∥Du∥αp−2

Lαp(Ω) + ∥Dv∥αp−2
Lαp(Ω) + 1

)
∥Dv∥Lαp(Ω)∥v∥Lαp(Ω)

+ ∥c3(·, η)∥L∞(Ω)

(
∥Du∥αp−2

Lαp(Ω) + ∥Dv∥αp−2
Lαp(Ω) + 1

)
∥v∥Lαp(Ω)∥Dv∥Lαp(Ω)

+ ∥c3(·, η)∥L∞(Ω)

(
∥Du∥αp−2

Lαp(Ω) + ∥Dv∥αp−2
Lαp(Ω) + 1

)
∥Dv∥2

Lαp(Ω)

= ∥c3(·, η)∥L∞(Ω)

(
∥Du∥αp−2

Lαp(Ω) + ∥Dv∥αp−2
Lαp(Ω) + 1

)
�
(

∥v∥2
Lαp(Ω) + 2∥Dv∥Lαp(Ω)∥v∥Lαp(Ω) + ∥Dv∥2

Lαp(Ω)

)
= ∥c3(·, η)∥L∞(Ω)

(
∥Du∥αp−2

Lαp(Ω) + ∥Dv∥αp−2
Lαp(Ω) + 1

)
∥v∥2

W 1,αp(Ω)

≤ o
(

∥v∥W 1,αp(Ω)

)
.

This estimate establishes that the functional 1
p
(Fp)p (and therefore 1

p

(
(Gp)p − Gp

)
) is

indeed Fréchet differentiable.
We now show that the equations that the constrained minimiser satisfies take the form

as given in (3.20) and (3.21). Given the Fréchet derivatives and our assumption (3.17)
on the range of dQ, we can invoke the generalised Kuhn-Tucker theory. By applying [94,
Theorem 48.B, p.p. 416-417] with (in the book’s notation)

F0 := 1
p

(Fp)p, F1 := 1
p

(Gp)p − Gp

p
, F3 := Q,

X = U = N2 := W 1,αp
0

(
Ω;RN

)
, Y := E, n = 2,

and by noting that N2 herein is the entire (vector) space W 1,αp
0

(
Ω;RN

)
, we readily infer

the claims made in (3.18)-(3.21). The result ensues.

Now we establish our last main result.

Proof of Theorem 3.1.3. The proof is divided into several steps.
Step 1. We first confirm that the measures defined by (3.22) are indeed finite, and show
that their total variations are bounded uniformly in p ∈ (p̄,∞). This will imply the
convergence modes of (3.36) for some limiting µ∞, ν∞ ∈ M(Ω) along a subsequence (pj)∞

1
as j → ∞, as a consequence of the sequential weak* precompactness of bounded sets in
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the space of Radon measures. Indeed, if Fp(up) > 0, then since f ≥ 0 we have
∥σp∥(Ω) = σp(Ω)

= 1
Ln(Ω)

∫
Ω

f(·,Dup)p−1

Fp(up)p−1 dLn

= 1
Fp(up)p−1 −

∫
Ω
f(·,Dup)p−1 dLn

≤ 1
Fp(up)p−1

(
−
∫

Ω
f(·,Dup)p dLn

)p−1
p

= 1,

whilst if Fp(up) = 0, then trivially ∥σp∥(Ω) = 0. In both cases, ∥σp∥(Ω) ≤ 1 for all
p ∈ (p̄,∞). The estimate for ∥τp∥(Ω) is completely analogous, yielding ∥τp∥(Ω) ≤ 1 for all
p ∈ (p̄,∞).

Step 2. By using assumption (3.29) and definition (3.22), we have the following differential
identity: for any fixed v ∈ C1

0

(
Ω;RN

)
and any p ∈ (p̄,∞) we have∫

Ω
f(·,Dv − Dup) dσp =

∫
Ω
f(·,Dv) dσp −

∫
Ω
f(·,Dup) dσp

+
∫

Ω
fP (·,Dup) : (Dup − Dv) dσp.

Indeed, by using that fP (x, P ) = A(x) :
(
(·) ⊗ P + P ⊗ (·)

)
, we may compute∫

Ω
f(·,Dv − Dup) dσp =

∫
Ω

A : (Dv − Dup) ⊗ (Dv − Dup) dσp

=
∫

Ω
A : Dv ⊗ Dv dσp −

∫
Ω

A : Dup ⊗ Dup dσp

+
∫

Ω
A :

(
(Dup − Dv) ⊗ Dup + Dup ⊗ (Dup − Dv)

)
dσp

=
∫

Ω
f(·,Dv) dσp −

∫
Ω
f(·,Dup) dσp +

∫
Ω
fP (·,Dup) : (Dup − Dv) dσp.

We also note that the above established identity holds true over Ω as well, because σp(∂Ω) =
τp(∂Ω) = 0.

Step 3. For any fixed p ∈ (p̄,∞), by using (3.22)-(3.26) and (3.29), we may rewrite (3.20)
(obtained in Theorem 3.1.2) as

Λp

∫
Ω
fP (·,Dup) : Dϕ dσp + Mp

∫
Ω
gη(·, up) · ϕ dτp =

〈
Ψp, (dQ)up(ϕ)

〉
,
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for all test maps ϕ ∈ W 1,αp
0 (Ω;RN), whilst we also have that

Λp ∈ [0, 1], Mp ∈ [0, 1] and Ψp ∈ B̄E∗

1 (0).

Further, by assumption (3.27), the weak* topology of the dual space E∗ is sequentially (pre-
) compact on bounded sets. Thus, the previous memberships imply that, upon passing to
a further subsequence as j → ∞, symbolised again by (pj)∞

1 , there exist

Λ∞ ∈ [0, 1], M∞ ∈ [0, 1] and Ψ∞ ∈ B̄E∗

1 (0),

such that the modes of convergence (3.35) hold true as pj → ∞.

Step 4. By Steps 2 and 3, for ϕ := up − v, where v ∈ C1
0

(
Ω;RN

)
is an arbitrary fixed

map, for any fixed p ∈ (p̄,∞) we have the identity

Λp

∫
Ω
f(·,Dup − Dv) dσp =

〈
Ψp, (dQ)up(up − v)

〉
− Mp

∫
Ω
gη(·, up) · (up − v) dτp + Λp

(∫
Ω
f(·,Dv) dσp −

∫
Ω
f(·,Dup) dσp

)
.

Step 5. For any fixed p ∈ (p̄,∞) and v ∈ C1
0

(
Ω;RN

)
, we have the relations∫

Ω
f(·,Dup − Dv) dσp ≥ α0

∫
Ω

∣∣∣Dup − Dv
∣∣∣2 dσp (3.37)

and ∫
Ω
f(·,Dup) dσp = Fp(up), (3.38)

where we have symbolised

α0 := min
x∈Ω

{
min
|Q|=1

A(x) : Q⊗Q

}
> 0.

Let us first establish (3.38), beginning with the case that Fp(up) > 0. By definition (3.22)
and assumption (3.29), we may compute∫

Ω
f(·,Dup) dσp = 1

Ln(Ω)

∫
Ω
f(·,Dup)f(·,Dup)p−1

Fp(up)p−1 dLn

= 1
Fp(up)p−1 −

∫
Ω
f(·,Dup)p dLn

= Fp(up),
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whilst for Fp(up) = 0 the equality follows trivially. To establish (3.37), it suffices to note
that by assumption (3.29) and by the variational representation of the minimum eigenvalue
of the symmetric linear operator A(x) : RN×n −→ RN×n, we have that α0 > 0 and the
inequality

α0|Q|2 ≤ A(x) : Q⊗Q

for all x ∈ Ω and all Q ∈ RN×n, where | · | is the Euclidean norm on RN×n.

Step 6. By Steps 1, 3 and 5, and by using that Fp(up) −→ F∞(u∞) as pj → ∞ (as
shown in Theorem 3.1.1), we may invoke Hutchinson’s theory of measure-function pairs,
in particular [57, Sec. 4, Def. 4.1.1, 4.1.2, 4.2.1 and Th. 4.4.2], to infer that there exists a
map

V∞ ∈ L2
(
Ω, σ∞;RN×n

)
such that, along perhaps a further subsequence (pj)∞

1 we have

Dupσp
∗−−⇀ V∞σ∞ in M

(
Ω;RN×n

)
,

as pj → ∞, with the property that∫
Ω

Φ(·, V∞) dσ∞ ≤ lim inf
pj→∞

∫
Ω

Φ(·,Dup) dσp

for any Φ ∈ C
(
Ω × RN×n

)
such that Φ(x, ·) is convex and of quadratic growth, for all

x ∈ Ω. Further, in view of assumptions (3.16), (3.17), (3.28), (3.29), and the modes of
convergence established in Theorem 3.1.1 together with the convergence Ψp

∗−−⇀Ψ∞ in E∗

as pj → ∞, we have that〈
Ψp, (dQ)up(ϕ)

)
⟩ −→

〈
Ψ∞, (dQ)u∞(ϕ)

〉
in R,(

fP (·,Dup) : Dϕ
)
σp

∗−−⇀
(
fP (·, V∞) : Dϕ

)
σ∞ in M

(
Ω
)
,

for any fixed ϕ ∈ C1
0

(
Ω;RN

)
⊆ W 1,p̄

0 (Ω;RN). Hence, we may let pj → ∞ in Step 3, to
deduce the equation

Λ∞

∫
Ω
fP (·, V∞) : Dϕ dσ∞ + M∞

∫
Ω
gη(·, u∞) · ϕ dτ∞ =

〈
Ψ∞, (dQ)u∞(ϕ)

〉
,

for any fixed ϕ ∈ C1
0

(
Ω;RN

)
. Further, by letting pj → ∞ in (3.21) we deduce that

M∞
(
G∞(u∞) −G

)
= 0.
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Step 7. The equations established in Step 6 will complete the proof of the theorem, upon
establishing that

V∞ = Du⋆
∞ σ∞-a.e. on Ω,

where Du⋆
∞ : Ω −→ RN×n is some Borel measurable mapping which is a version of Du∞ ∈

L∞(Ω;RN×n), namely such that

Du∞ = Du⋆
∞ Ln-a.e. on Ω,

(recall that ∂Ω is a nullset for the Lebesgue measure Ln). The remaining steps are devoted
to establishing this claim, together with the approximability properties claimed in (3.34)
for some sequence of mappings (vj)∞

1 ⊆ C1
0

(
Ω;RN

)
, which will be constructed explicitly.

Step 8. If Λ∞ = 0, then Step 6 completes the proof of Theorem 3.1.3 as the first term
involving V∞ vanishes. Hence, we may henceforth assume that Λ∞ > 0. Therefore, by
passing perhaps to a further subsequence if necessary, we may assume that

Λpj
≥ Λ∞

2 > 0, for all j ∈ N.

Step 9. By Steps 3, 4, 5 and 8, the absolute continuity τp << Ln⌞Ω and the bounds
0 ≤ Mp ≤ 1 and 0 ≤ τp

(
Ω
)

≤ 1, we have the estimate

α0Λ∞

2

∫
Ω

∣∣∣Dup − Dv
∣∣∣2 dσp ≤

〈
Ψp, (dQ)up(up) − (dQ)up(v)

〉
+ ∥up − v∥L∞(Ω)

{
sup
j∈N

∥∥∥gη(·, upj
)
∥∥∥

L∞(Ω)

}

+ Λp

(∫
Ω
f(·,Dv) dσp − Fp(up)

)
,

along the sequence (pj)∞
1 . By letting j → ∞ in the above estimate, in view of Steps 1, 3

and 6 (for the choice Φ(x,Q) := |Dv(x) −Q|2) and assumption (3.28), we infer that

α0Λ∞

2

∫
Ω

∣∣∣V∞ − Dv
∣∣∣2 dσ∞ ≤

〈
Ψ∞, (dQ)u∞(u∞) − (dQ)u∞(v)

〉
+ ∥u∞ − v∥L∞(Ω)

{
sup
j∈N

∥∥∥gη(·, upj
)
∥∥∥

L∞(Ω)

}

+ Λ∞

(∫
Ω
f(·,Dv) dσ∞ − F∞(u∞)

)
,
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for any fixed mapping v ∈ C1
0

(
Ω;RN

)
.

Step 10. Let (vj)∞
1 ⊆ C1

0

(
Ω;RN

)
be any sequence of mappings satisfying the assumptions

in (3.34). We claim that there exists a subsequence of indices (jk)∞
1 such that

Dvj −→ V∞, in L2
(
Ω, σ∞;RN×n

)
, and σ∞-a.e. on Ω,

Dvj −→ Du∞, in Lq
(
Ω;RN×n

)
, q ∈ [1,∞), and Ln-a.e. on Ω,

as jk → ∞. Therefore, if Du⋆
∞ is defined as in (3.34), then from the above we infer{

Du⋆
∞ = V∞, σ∞-a.e. on Ω,

Du⋆
∞ = Du∞, Ln-a.e. on Ω,

which completes the proof (subject to showing that at least one sequence of mapping (vj)∞
1

with the desired properties exists). Let us now establish the above claims. If (vj)∞
1 satisfies

(3.34), then by Step 5 and the resulting bound

α0∥Dvj∥2
L∞(Ω) ≤ F∞(vj) ≤ F∞(u∞) + o(1)j→∞

in conjunction with the Vitali convergence theorem, it follows that vj −→ u∞, in L∞(Ω;RN),
Dvj −→ Du∞, in Lq(Ω;RN×n), q ∈ [1,∞),

along a subsequence of indices (jk)∞
1 as k → ∞. Consequently, by the estimate of Step 9,

we have
α0Λ∞

2

∫
Ω

∣∣∣V∞ − Dvj

∣∣∣2 dσ∞ ≤
〈

Ψ∞, (dQ)u∞(u∞) − (dQ)u∞(vj)
〉

+ ∥u∞ − vj∥L∞(Ω)

{
sup
j∈N

∥∥∥gη(·, upj
)
∥∥∥

L∞(Ω)

}

+ Λ∞

({
sup

Ω
f(·,Dvj)

}
σ∞
(
Ω
)

− F∞(u∞)
)
.

Since by Step 1 we have 0 ≤ σ∞
(
Ω
)

≤ 1, by noting that supΩ f(·,Dvj) = F∞(vj) (due to
the continuity of Dvj on Ω) and that vj −→ u∞ strongly in W 1,p̄

0 (Ω;RN), from the last
estimate and assumption (3.34) we deduce that

lim sup
jk→∞

∫
Ω

∣∣∣V∞ − Dvj

∣∣∣2 dσ∞ ≤ 0.
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Step 11. To complete the proof of Theorem 3.1.3, it remains to show that at least one
sequence of mapping (vj)∞

1 ⊆ C1
0

(
Ω;RN

)
exists, which satisfies the modes of convergence

required by (3.34). To this end we utilise (for the first time) the assumption that the
bounded domain Ω has Lipschitz boundary ∂Ω, and we invoke the regularisation scheme
introduced and utilised in the recent paper [65]. This method is based on results on the
geometry of Lipschitz domains proved in Hofmann-Mitrea-Taylor [56], and is inspired by
the regularisation schemes employed in Ern-Guermond [40]. If n ∈ L∞(∂Ω,Hn−1;Rn) be
the outer unit normal vector field on ∂Ω, by [56, Sec. 2, 4], there exists a smooth vector
field ξ ∈ C∞

c (Rn;Rn) which is globally transversal to n on ∂Ω with respect to the surface
measure, namely exists c > 0 such that

ξ · n ≥ c, Hn−1-a.e. on ∂Ω.

Additionally, ξ can be chosen to satisfy |ξ| ≡ 1 in an open tubular neighbourhood {dist(·, ∂Ω)
< r} around ∂Ω for some r > 0, whilst vanishing on {dist(·, ∂Ω) > 2r}. (In the special
case that ∂Ω happens to be a compact C∞ manifold, then we can simply choose ξ to be a
smooth extension of n, and the transversality condition is satisfied with c = 1.) Further,
it can be shown that there exists ε0, ℓ > 0 such that, for all ε ∈ (0, ε0) we have

inf
x∈∂Ω

dist
(
x+ εℓξ(x), ∂Ω

)
≥ 2ε.

We now define our adapted global mollifiers, taken from [65]. Let us select any function
ϱ ∈ C∞

c (B1(0)) which satisfies ϱ ≥ 0 and ∥ϱ∥L1(Rn) = 1 (for instance the “standard”
mollifying kernel as in [73]). For any v ∈ L∞(Ω;RN), extended to Rn \Ω by zero, we define
for any ε ∈ (0, ε0) the map Kεv : Rn −→ RN , by setting

(Kεv)(x) :=
∫
Rn
v
(
x+ εℓξ(x) − εy

)
ϱ(y) dy.

Then, by [65, Prop. 12, p. 18], for any u ∈ W 1,∞
0 (Ω;RN) and ε ∈ (0, ε0):

• We have that Kεu ∈ C∞
0

(
Ω;RN

)
, and the identity

D(Kεu) = Kε(Du) + εℓ(Kε(Du))(Dξ)⊤,

everywhere on Ω.

• We have Kεu −→ u in W 1,q
0 (Ω;RN) for all q ∈ [1,∞), and in Cγ(Ω;RN) for all γ ∈ (0, 1),

as ε → 0. Further, Kεu ∗−−⇀ u in W 1,∞
0 (Ω;RN), as ε → 0.
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• For any Θ ∈ C
(
Ω ×RN×n

)
, satisfying for any x ∈ Ω that Θ(x, ·) is convex on RN×n with

Θ(x, ·) ≥ Θ(x, 0) = 0, and also that the partial derivative ΘP exists and is continuous on
Ω × RN×n, we will show that there exists a modulus of continuity ω ∈ C

(
[0,∞); [0,∞)

)
with ω(0) = 0 which is independent of ε and x, such that

Θ
(
x,D(Kεu)(x)

)
≤ ess sup

Ω∩Bε(x+εℓξ(x))
Θ(·,Du) + ω(ε),

for any x ∈ Ω. In particular, the above estimate implies that∥∥∥Θ(·,D(Kεu)
)∥∥∥

L∞(Ω)
≤ ∥Θ(·,Du)∥L∞(Ω) + ω(ε).

(This was already established in [65], but without x-dependence for Θ.) As a result,

lim sup
ε→0

∥∥∥Θ(·,D(Kεu)
)∥∥∥

L∞(Ω)
≤ ∥Θ(·,Du)∥L∞(Ω).

Let us now establish the claimed estimate. For any fixed R > 0 such that

R >
(
∥Dξ∥L∞(Rn) + 1

)(
∥Du∥L∞(Ω) + 1

)
,

we set
ω(t) := tℓR∥ΘP ∥C(Ω×B̄R(0)) + sup

|Q|≤R

|z−x|≤tℓR

∣∣∣∣Θ(x,Q)− Θ
(
z,Q

)∣∣∣∣, t ≥ 0.

Then, we have

Θ
(
x,D(Kεu)(x)

)
= Θ

(
x,Kε(Du)(x) + εℓKε(Du)(x)(Dξ(x))⊤

)
≤ Θ

(
x,Kε(Du)(x)

)
+ ∥ΘP (x, ·)∥C(B̄R(0))

∥∥∥εℓKε(Du)(Dξ)⊤
∥∥∥

L∞(Ω)

≤ Θ
(
x,Kε(Du)(x)

)
+ εℓ∥ΘP ∥C(Ω×B̄R(0))∥Du∥L∞(Ω)∥Dξ∥L∞(Rn)

≤ Θ
(
x,Kε(Du)(x)

)
+ εℓR∥ΘP ∥C(Ω×B̄R(0)),

for any x ∈ Ω. Further, since ϱLn is a probability measure on Rn, by Jensen’s inequality,
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we have

Θ
(
x,Kε(Du)(x)

)
= Θ

(
x,
∫
Rn

Du
(
x+ εℓξ(x) − εy

)
ϱ(y) dy

)
≤
∫
Rn

Θ
(
x,Du

(
x+ εℓξ(x) − εy

))
ϱ(y) dy

≤ ess sup
y∈B1(0)

Θ
(
x,Du

(
x+ εℓξ(x) − εy

))
= ess sup

z∈Bε(x+εℓξ(x))
Θ
(
x,Du(z)

)
≤ ess sup

z∈Bε(x+εℓξ(x))
Θ
(
z,Du(z)

)
+ sup

|Q|≤∥Du∥L∞(Ω)
|z−x|≤εℓ∥Dξ∥L∞(Rn)

∣∣∣∣Θ(x,Q)− Θ
(
z,Q

)∣∣∣∣,

for any x ∈ Ω. By using that Du ≡ 0 on Rn \ Ω and our assumptions on Θ, the previous
two estimates yield that

Θ
(
x,D(Kεu)(x)

)
≤ ess sup

Bε(x+εℓξ(x))
Θ(·,Du) + ω(ε)

= max
{

ess sup
Ω∩Bε(x+εℓξ(x))

Θ(·,Du), ess sup
Bε(x+εℓξ(x))\Ω

Θ(·,Du)
}

+ ω(ε)

= max
{

ess sup
Ω∩Bε(x+εℓξ(x))

Θ(·,Du), ess sup
Bε(x+εℓξ(x))\Ω

Θ(·, 0)
}

+ ω(ε)

= ess sup
Ω∩Bε(x+εℓξ(x))

Θ(·,Du) + ω(ε),

for any x ∈ Ω.
In conclusion, the above establish the existence of an approximating sequence as in

(3.34), by taking
vj := Kεju∞ ∈ C1

0

(
Ω;RN

)
, j ∈ N,

along any infinitesimal sequence (εj)∞
1 satisfying εj → 0, for the choice Θ := f , which is

admissible because of our hypotheses (3.5), (3.6) and (3.29).

Step 12. By putting together all the previous, the proof of Theorem 3.1.3 has now been
completed.
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3.4 Explicit classes of nonlinear operators

In this section we provide various examples of nonlinear operators Q as in (3.2), satisfying
our assumptions. Note that each our main results, Theorems 3.1.1, 3.1.2 and 3.1.3, have
been obtained with progressively stronger assumption on the operator Q which expresses
one of constraints in the admissible class. For the sake of clarity, in the next table we list
in a concise way which assumptions are required to be satisfied by Q, in order to obtain
the corresponding result (assuming that f, g satisfy separately their respective required
assumptions, the table concerns Q solely).∣∣∣∣∣∣∣∣∣∣∣∣

(3.9) Z⇒ Theorem 3.1.1

(3.9) & (3.17) Z⇒ Theorem 3.1.2

(3.9) & (3.17) & (3.27) & (3.28) Z⇒ Theorem 3.1.3

∣∣∣∣∣∣∣∣∣∣∣∣
3.4.1 Pointwise constraints, unilateral constraints and inclusions

The nonlinear operator of (3.2) we are using in the admissible class of (3.4), can include
the following model cases:

Case 1. Π(x, u(x)) = 0 for a.e. x ∈ Ω, where Π : Ω × RN −→ RM is given.

Case 2. Π(x, u(x)) ≤ 0 for a.e. x ∈ Ω, where Π : Ω × RN −→ R is given.

Case 3. u(x) ∈ K for a.e. x ∈ Ω, where K ⊆ RN is a given closed set.

Constraints as in Case 1 are sometimes called holonomic (see for instance [11]). We now
elaborate on the assumptions required to be fulfilled in each of these cases.

Proposition 3.4.1 (Case 1). Let Π ∈ C1(Ω × RN ;RM), M ∈ N. By defining

Q : W 1,p̄
0 (Ω;RN) −→ L1(Ω;RM), Q(u) := Π(·, u), (3.39)

and setting E := L1(Ω;RM), we have the following:

(i) The zero set of Q equals

Q−1({0}) =
{
v ∈ W 1,p̄

0 (Ω;RN) : Π(x, v(x)) = 0, a.e. x ∈ Ω
}
,
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and assumption (3.9) is always satisfied.

(ii) If for any x ∈ Ω we have{
Π(x, ·) = 0

}
⊆
{
Πη(x, ·) = 0

}
,

namely when all points in the zero set are critical points, then Q satisfies (3.17).

(iii) Assumptions (3.27) and (3.28) are always satisfied.

The choice of E is deliberately made “as large as possible”, as then the Lagrange
multipliers of Theorems 3.1.2 and 3.1.3 are valued in the smaller space E∗ = L∞(Ω;RM).

Proof of Proposition 3.4.1. (i) Follows directly from the definitions, by the continuity
of Π and by Morrey’s estimate, because p̄ > n.

(ii) Indeed, since
(dQ)u(ϕ) = Πη(·, u) · ϕ,

if u ∈ Q−1({0}), then Π(·, u) = 0 a.e. on Ω and therefore Πη(·, u) = 0 a.e. on Ω, which
implies that (dQ)u = 0, hence its image is the closed trivial subspace {0} ⊆ L1(Ω;RM).

(iii) Note first that L1(Ω;RM) is separable. Also, if we have um −−⇀ u and ϕm −−⇀ ϕ in
W 1,p̄

0 (Ω;RN) as m → ∞, then by Morrey’s theorem and the compactness of the imbedding
of Hölder spaces we have um −→ u and also ϕm −→ ϕ in C

(
Ω;RN

)
as m → ∞. Hence,

we have as m → ∞ that

(dQ)um(ϕm) = Πη(·, um) · ϕm −→ Πη(·, u) · ϕ = (dQ)u(ϕ),

in C
(
Ω;RM

)
, which a fortiori implies strong convergence in L1(Ω;RM).

We note that the proof of (iii) above is immediate if one assumes the additional hy-
pothesis of (ii), since then (dQ)um = 0 for any sequence (um)∞

1 ⊆ Q−1({0}).

Proposition 3.4.2 (Case 2). Let Π ∈ C1(Ω × RN) and let us define π : R −→ R by

π(t) :=
{

0, t ≤ 0,
t2, t > 0. (3.40)

By defining the operator

Q : W 1,p̄
0 (Ω;RN) −→ L1(Ω), Q(u) := π(Π(·, u)),
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for E := L1(Ω), we have the following:

(i) The zero set of Q equals

Q−1({0}) =
{
v ∈ W 1,p̄

0 (Ω;RN) : Π(x, v(x)) ≤ 0, a.e. x ∈ Ω
}
,

and assumption (3.9) is always satisfied.

(ii) If for any x ∈ Ω it holds that{
Π(x, ·) = 0

}
⊆
{
Πη(x, ·) = 0

}
,

then Q satisfies assumption (3.17).

(iii) Assumptions (3.27) and (3.28) are always satisfied.

Proof of Proposition 3.4.2. (i) Follows as in the proof of Proposition 3.4.1(i), upon
noting that {π ≤ 0} = (−∞, 0].
(ii) Since

(dQ)u(ϕ) = π′
(
Π(·, u)

)
Πη(·, u) · ϕ,

if u ∈ Q−1({0}), then Π(·, u) ≤ 0 a.e. on Ω and therefore π′(Π(·, u)) = 0 a.e. on Ω because
{π′ = 0} = (−∞, 0], which implies that (dQ)u = 0, hence its image is the closed trivial
subspace {0} ⊆ L1(Ω;RM) and (3.17) is satisfied.
(iii) Similar to the proof of Proposition 3.4.1(iii), using the different expression for the
differential dQ as above.

Proposition 3.4.3 (Case 3). Let K ⊆ RN be a closed set with K ≠ ∅. Then, there exists
Π ∈ C∞(RN) satisfying K = {Π = 0} ⊆ {Πη = 0}. Further, if one defines

Q : W 1,p̄
0 (Ω;RN) −→ L1(Ω), Q(u) := Π(u),

and E := L1(Ω), then we have

Q−1({0}) =
{
v ∈ W 1,p̄

0 (Ω;RN) : v(x) ∈ K, a.e. x ∈ Ω
}
,

and Q satisfies (3.9), (3.17), (3.27) and (3.28).

Proof of Proposition 3.4.3. It is well-known that for every such set K, there exists a
function Π ∈ C∞(RN) with the claimed properties. A proof of this fact can be found e.g.
in [82, Sec. 1.1.13, p. 25] (the claimed inclusion is not explicitly stated, but follows from
the method of proof by the smooth Urysohn lemma). The rest follows from Proposition
3.4.1.
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3.4.2 Integral and isoperimetric constraints

The nonlinear operator of (3.2) can also cover the following important case of constraint:∫
Ω
h(·, u,Du) dLn ≤ H,

when h : Ω × RN × RN×n −→ R and H ∈ R are given.

Proposition 3.4.4. Let h : Ω × RN × RN×n −→ R satisfy the assumptions (3.5)-(3.7)
and (3.16) that f, g are assumed to satisfy, with α ≤ p̄. Let also H ∈ R be given and let
π : R −→ R be as in (4.2). Then, by defining the operator

Q : W 1,p̄
0 (Ω;RN) −→ R, Q(u) := π

( ∫
Ω
h(·, u,Du) dLn −H

)
,

and setting E := R, we have the following:

(i) The zero set of Q equals

Q−1({0}) =
{
v ∈ W 1,p̄

0 (Ω;RN) :
∫

Ω
h(·, v,Dv) dLn ≤ H

}
and assumption (3.9) is satisfied.

(ii) Q satisfies (3.17), (3.27) and (3.28).

Proof of Proposition 3.4.4. (i) If Q(um) = 0 and um −−⇀ u in W 1,p̄
0 (Ω;RN) as m → ∞,

then since {π ≤ 0} = (−∞, 0], we have∫
Ω
h(·, um,Dum) dLn −H ≤ 0.

Since h satisfies (3.5)-(3.7) for α ≤ p̄, by standard results (see e.g. [36]), the functional
u 7→ ∥h(·, u,Du)∥L1(Ω) is weakly lower-semicontinuous in W 1,p̄

0 (Ω;RN). Hence∫
Ω
h(·, u,Du) dLn −H ≤ lim inf

m→∞

∫
Ω
h(·, um,Dum) dLn −H ≤ 0.

Therefore, Q(u) = 0, yielding that Q−1({0}) is weakly closed and hence (3.9) is satisfied.

(ii) By a computation, the Gateaux derivative of Q is given by

(dQ)u(ϕ) = π′
(∫

Ω
h(·, u,Du) dLn −H

)∫
Ω

[
hη(·, u,Du) · ϕ + hP (·, u,Du) : Dϕ

]
dLn,
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and assumption (3.16) for h implies that dQ is (jointly) continuous on W 1,p̄
0 (Ω;RN) ×

W 1,p̄
0 (Ω;RN). Further, if u ∈ Q−1({0}), then by part (i) we have∫

Ω
h(·, u,Du) dLn −H ≤ 0,

and therefore the first factor of (dQ)u(ϕ) vanishes because {π′ = 0} = (−∞, 0]. Thus,
(dQ)u = 0 when u ∈ Q−1({0}), and hence its image is the closed trivial subspace {0} ⊆ R,
yielding that (3.17) is satisfied.

(iii) For any sequences um −−⇀ u in Q−1({0}) ⊆ W 1,p̄
0 (Ω;RN) and ϕm −−⇀ ϕ in W 1,p̄

0 (Ω;RN)
as m → ∞, by part (ii) we have

(dQ)um(ϕm) = 0 −→ 0 = (dQ)u(ϕ)

as m → ∞, hence (3.27) and (3.28) are satisfied.

3.4.3 Quasilinear second order differential constraints

The operator Q of (3.2) can also cover the case of various types of nontrivial PDE con-
straints. As an example, we discuss the case of quasilinear divergence second order systems
of PDE of the form

div
(
A(·, u,Du)

)
= B(·, u,Du) in Ω, (3.41)

where the coefficients maps A : Ω×RN ×RN×n −→ RN×n and B : Ω×RN ×RN×n −→ RN

are given. Given the plethora of possibilities on the assumptions for such systems, the
discussion in this subsection is less formal and is only aimed as a general indication of the
admissible choices for Q.

Suppose that A,B are C1 and satisfy appropriate growth bounds, and also that P 7→
A(·, ·, P ) a monotone map, and that the set of weak solutions to the system (3.41) is
strongly precompact in W 1,p̄

0 (Ω;RN). A sufficient conditions for strong precompactness in
W 1,p̄

0 (Ω;RN) for the set of weak solutions is for example a global C1,γ or a W 2,1+γ a priori
uniform bound on the set of solutions, for some γ ∈ (0, 1). Appropriate assumptions on
the coefficients A,B that allow the derivation of such a priori bounds can be found e.g. in
[55] for N = 1 and in [52] for N ≥ 2. Then, by defining the operator

Q : W 1,p̄
0 (Ω;RN) −→ W−1,p̄′(Ω;RN)

as
⟨Q(u), ψ⟩ :=

∫
Ω

[
A(·, u,Du) : Dψ + B(·, u,Du) · ψ

]
dLn,
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and setting also E := W−1,p̄′(Ω;RN), assumptions (3.9), (3.17), (3.27) and (3.28) are
satisfied, with

Q−1({0}) =
{
u ∈ W 1,p̄

0 (Ω;RN) : div
(
A(·, u,Du)

)
= B(·, u,Du) weakly in Ω

}
.

Note first that the expression of Q−1({0}) is immediate by the definition of the differential
operator Q. Next, note that by assumption, for any sequence of weak solutions (um)∞

1 ⊆
W 1,p̄

0 (Ω;RN) to (3.41), there exists u ∈ W 1,p̄
0 (Ω;RN) such that um −→ u strongly along

a subsequence mj → ∞. By applying this to any sequence (um)∞
1 ⊆ Q−1({0}) (namely

sequence of solutions) for which um −−⇀ u as m → ∞, by passing to the limit in the weak
formulation for fixed ψ ∈ W 1,p̄

0 (Ω;RN), which reads∫
Ω

[
A(·, um,Dum) : Dψ + B(·, um,Dum) · ψ

]
dLn = 0,

we get that u ∈ Q−1({0}), as the convergence is in fact strong. Hence, (3.9) is satisfied.
Further, under appropriate bounds, the operator Q is Fréchet differentiable and〈

(dQ)u(ϕ), ψ
〉

=
∫

Ω

[
Aη(·, u,Du) · ϕ + AP (·, u,Du) : Dϕ

]
: Dψ dLn

+
∫

Ω

[
Bη(·, u,Du) · ϕ + BP (·, u,Du) : Dϕ

]
· ψ dLn.

To see that the image of (dQ)u : W 1,p̄
0 (Ω;RN) −→ E is closed for any fixed u ∈ Q−1({0}),

let (Tm)∞
1 ⊆ Rg

(
(dQ)u

)
⊆ E be a sequence in the range with Tm −→ T strongly in E as

m → ∞. Since Tm ∈ Rg
(
(dQ)u

)
, exists ϕm ∈ W 1,p̄

0 (Ω;RN) solving the following linear
second order system

−div
(
Aη(·, u,Du) · ϕm + AP (·, u,Du) : Dϕm

)
+ BP (·, u,Du) : Dϕm + Bη(·, u,Du) · ϕm = Tm.

By the monotonicity of the above system (due to our earlier assumption), under appro-
priate conditions one has a uniform bound in W 1,p̄

0 (Ω;RN), yielding the weak compactness
of the sequence of solutions (ϕm)∞

1 , which establishes the closedness of Rg
(
(dQ)u

)
⊆ E

and (3.17) ensues.
Finally, for any sequence (um)∞

1 ⊆ Q−1({0}) satisfying um −−⇀ u as m → ∞ and any
ϕ ∈ W 1,p̄

0 (Ω;RN), there exists mj → ∞ such that um −→ u as mj → ∞. These facts imply
that (dQ)um(um) −→ (dQ)u(u) and also (dQ)um(ϕ) −→ (dQ)u(ϕ), both strongly in E as
m → ∞. Hence, (3.27) and (3.28) are satisfied.
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3.4.4 Null Lagrangians and determinant constraints

We close this paper with the observation that Theorem 3.1.1 holds true even when Q
expresses a fully nonlinear pointwise Jacobian determinant constraint, or even a more
general pointwise PDE constraint driven by a null Lagrangian. As an explicit example, let
n = N and consider the differential operator

Q : W 1,p̄
0 (Ω;Rn) −→ W−1,(p̄/n)′(Ω),

by setting
Q(u) := det(Du) − h,

for a fixed h ∈ Lp̄/n(Ω), satisfying the necessary compatibility condition∫
Ω
h dLn = 0.

We also take
E := W−1,(p̄/n)′(Ω) =

(
W

1,p̄/n
0 (Ω)

)∗
.

Then, we have

Q−1({0}) =
{
u ∈ W 1,p̄

0 (Ω;Rn) : det(Du) = h a.e. in Ω
}
.

It follows that (3.9) is satisfied by the well-known property of weak continuity for Jacobian
determinants (see e.g. [36, Th. 8.20, p. 395]). However, the situation is more complicated
regarding the satisfaction of the remaining assumptions. If additionally n = 2, then (3.27)
and (3.28) are also satisfied. Indeed, since

(dQ)u(ϕ) = cof(Du) : Dϕ,

and since for u = ϕ we have the identity

(dQ)u(u) = cof(Du) : Du = n det(Du),

for any (um)∞
1 ⊆ Q−1({0}) with um −−⇀ u as m → ∞, we have

(dQ)um(um) = n det(Dum) −−⇀ n det(Du) = (dQ)u(u)

in Lp̄/2(Ω) as m → ∞, whilst for any ϕ ∈ W 1,p̄
0 (Ω;R2) we have

(dQ)um(ϕ) −−⇀ (dQ)u(ϕ)
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in Lp̄/2(Ω) as m → ∞, by the linearity of the cofactor operator when n = 2. Then, the
compactness of the imbedding

Lp̄/2(Ω) ⋐ W−1,(p̄/2)′(Ω)

implies that the above modes of convergence are in fact strong in E = W−1,(p̄/2)′(Ω).
However, it is not clear when assumption (3.17) is satisfied, or when (3.28) is satisfied in
the case that n ≥ 3. This means Theorems 3.1.2 and 3.1.3 as they stand do not apply to
the case of Jacobian constraints. This does not mean that it is impossible to derive the
associated equations, it merely means that in this case of such a highly nonlinear constraint
a different specialised method of proof is required.
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Chapter 4

Generalised Second Order Vectorial
∞-Eigenvalue Problem

4.1 Introduction and main results

Let n,N ∈ N with n ≥ 2, and let Ω ⋐ Rn be a bounded open set with Lipschitz boundary
∂Ω. In this paper we are interested in studying nonlinear second order L∞ eigenvalue
problems. Specifically, we investigate the problem of finding a minimising map u∞ : Ω −→
RN , that solves

∥f(D2u∞)∥L∞(Ω) = inf
{

∥f(D2v)∥L∞(Ω) :

v ∈ W 2,∞
B (Ω;RN), ∥g(v,Dv)∥L∞(Ω) = 1

}
.

(4.1)

Additionally, we pursue the necessary conditions that these constrained minimisers must
satisfy, in the form of PDEs. In the above, f : RN×n2

s −→ R and g : RN ×RN×n −→ R are
given functions that will be required to satisfy some natural assumptions, to be discussed
later in this section. We merely note now that RN×n2

s symbolises the symmetric tensor
space RN ⊗ (Rn ∨ Rn) wherein the hessians of twice differentiable maps u : Ω −→ RN

are valued. The functional Sobolev space W 2,∞
B (Ω;RN) appearing above will taken to be

either of:  W 2,∞
C (Ω;RN) : = W 2,∞

0 (Ω;RN),
W 2,∞

H (Ω;RN) : = W 2,∞ ∩W 1,∞
0 (Ω;RN).

(4.2)
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The space W 2,∞
C (Ω;RN) encompasses the case of so-called clamped boundary conditions,

which can be seen as first order Dirichlet or as coupled Dirichlet-Neumann conditions,
requiring |u| = |Du| = 0 on ∂Ω. On the other hand, W 2,∞

H (Ω;RN) encompasses the so-
called hinged boundary conditions, which are zeroth order Dirichlet conditions, requiring
|u| = 0 on ∂Ω. This is standard terminology for such problems, see e.g. [69].

Problem (4.1) lies within the Calculus of Variations in L∞, a modern area, initiated
by Gunnar Aronsson in the 1960s. Since then this field has undergone a substantial trans-
formation. There are some general complications one must be wary of when tackling
L∞ variational problems. For example, the L∞ norm is generally not Gateaux differen-
tiable, therefore the analogue of the Euler-Lagrange equations cannot be derived directly
by considering variations. Any supremal functional also has issues with locality in terms of
minimisation on subdomains. Further, the space itself lacks some fundamental functional
analytic properties, such as reflexivity and separability. Higher order problems and prob-
lems involving constraints present additional difficulties and have been studied even more
sparsely, see e.g. [11, 15, 30, 31, 63, 64, 66, 65, 68, 72]. In fact, this paper is an extension
of [65] to the second order case, and generalises part of the results corresponding to the
existence of minimisers and the satisfaction of PDEs from [69]. In turn, the paper [65] gen-
eralised results on the scalar case of eigenvalue problems for the ∞-Laplacian ([58, 59]).
For various interesting results, see for instance [10, 11, 26, 27, 76, 80, 81, 84].

The vectorial and higher order nature of the problem we are considering herein precludes
the use of standard methods, such as viscosity solutions (see e.g. [61] for a pedagogical
introduction). However, we overcome these difficulties by approximating by corresponding
Lp problems for finite p case and let p → ∞. The intuition for using this technique is based
on the rudimentary idea that, for a fixed L∞ function on a set of finite measure, its Lp

norm tends to its L∞ norm as p → ∞. This technique is rather standard for L∞ problems,
and in the vectorial higher order case we consider herein is essentially the only method
known. Even the very recent intrinsic duality method of [26] is limited to scalar-valued
first order problems.
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To state our main result, we now introduce the required hypotheses for the functions
f and g:

(a) f ∈ C1(RN×n2

s ).
(b) f is (Morrey) quasiconvex.
(c) There exist 0 < C1 ≤ C2 such that, for all X ∈ RN×n2

s \ {0},

0 < C1f(X) ≤ ∂f(X) : X ≤ C2f(X).

(d) There exist C3, ..., C6 > 0, α > 1 and β ≤ 1 such that, for all X ∈ RN×n2

s ,

− C3 + C4|X|α ≤ f(X) ≤ C5|X|α + C6,

|∂f(X)| ≤ C5f(X)β + C6.

(4.3)



(a) g ∈ C1(RN × RN×n).
(b) g is coercive, i.e for any (η, P ) ∈

(
RN × RN×n

)
\ {(0, 0)} we have

lim
t→∞

g(tη, tP ) = ∞.

(c) There exist 0 < C7 ≤ C8 such that, for all (η, P ) ∈
(
RN × RN×n

)
\{(0, 0)},

0 < C7 g(η, P ) ≤ ∂ηg(η, P ) · η + ∂Pg(η, P ) : P ≤ C8 g(η, P ).

(4.4)

In the above, ∂f(X) denotes the the derivative of f whilst ∂ηg and ∂Pg signifies the
respective partial derivatives. Additionally “:” and “ · ” represent the Euclidean inner
products. The terminology of (Morrey) quasiconvex refers to the standard notion for
integral functionals (see e.g. [36, 95]), namely

F (X) ≤ −
∫

Ω
F (X + D2ϕ) dLn, ∀ ϕ ∈ W 2,∞

0 (Ω;RN), ∀ X ∈ RN×n2

s .

We note that herein we will be using the following function space symbolisations:

C2
B(Ω;RN) := C2(Ω;RN) ∩W 2,∞

B (Ω;RN),
W 2,p

C (Ω;RN) := W 2,p
0 (Ω;RN), p ∈ [1,∞),

W 2,p
H (Ω;RN) := W 2,p ∩W 1,p

0 (Ω;RN), p ∈ [1,∞),

Further, we will be using the rescaled Lp norms for p ∈ [1,∞), given by

∥h∥Lp(Ω) :=
(

1
Ln(Ω)

∫
Ω

|h|p dLn

) 1
p

=
(

−
∫

Ω
|h|p dLn

) 1
p

.
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Finally, we observe that (4.3)(c), implies that f > 0 on RN×n2
s \ {0}, f(0) = 0 and

f is radially increasing, meaning that t 7→ f(tX) is increasing on (0,∞) for any fixed
X ∈ RN×n2

s \ {0}. Similarly, (4.4)(c) implies that g > 0 on (RN × RN×n) \ {(0, 0)},
g(0, 0) = 0 and g is radially increasing on RN × RN×n, namely t 7→ g(tη, tP ) is increasing
on (0,∞) for any fixed (η, P ) ∈ (RN × RN×n) \ {(0, 0)}.

Below is our main result, in which we consider both cases of boundary conditions
simultaneously.

Theorem 4.1.1. Suppose that the assumptions (4.3) and (4.4) hold true. Then:
(A) The problem (4.1) has a solution u∞ ∈ W 2,∞

B (Ω;RN).
(B) There exist Radon measures

M∞ ∈ M
(
Ω;RN×n2

s

)
, ν∞ ∈ M(Ω),

such that∫
Ω

D2ϕ : dM∞ = Λ∞

∫
Ω

(
∂ηg(u∞,Du∞) · ϕ + ∂Pg(u∞,Du∞) : Dϕ

)
dν∞ (4.5)

for all test maps ϕ ∈ C2
B(Ω;RN), where

Λ∞ =
∥∥∥f(D2(u∞)

∥∥∥
L∞(Ω)

> 0. (4.6)

(C) The quadruple (u∞,Λ∞,M∞, ν∞) satisfies the following approximation properties: there
exists a sequence of exponents (pj)∞

1 ⊆ (n/α) where pj → ∞ as j → ∞, and for any p, a
quadruple

(up,Λp,Mp, νp) ∈ W 2,αp
B (Ω;RN) × [0,∞) × M

(
Ω;RN×n2

s

)
× M(Ω),

such that 

up −→ u∞, in C1
(
Ω;RN

)
,

D2up −−⇀ D2u∞, in Lq
(
Ω;RN×n2

s

)
, for all q ∈ (1,∞),

Λp −→ Λ∞, in [0,∞),
Mp

∗−−⇀M∞, in M
(
Ω;RN×n2

s

)
,

νp
∗−−⇀ν∞, in M(Ω),

(4.7)

as p → ∞ along (pj)∞
1 . Further, up solves the constrained minimisation problem

∥f(D2up)∥Lp(Ω) = inf
{

∥f(D2v)∥Lp(Ω) : v ∈ W 2,αp
B (Ω;RN), ∥g(v,Dv)∥Lp(Ω) = 1

}
, (4.8)
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and (up,Λp) satisfies
−
∫

Ω
f(D2up)p−1∂f(D2up) : D2ϕ dLn

= (Λp)p −
∫

Ω
g(up,Dup)p−1

(
∂ηg(up,Dup) · ϕ+ ∂Pg(up,Dup) : Dϕ

)
dLn

(4.9)

for all test maps ϕ ∈ W 2,αp
B (Ω;RN). Finally, the measures Mp, νp are given by
Mp = 1

Ln(Ω)

(
f(D2up)

Λp

)p−1

∂f(D2up) Ln⌞Ω,

νp = 1
Ln(Ω) g(up,Dup)p−1 Ln⌞Ω.

(4.10)

We note that one could pursue optimality in Theorem 4.1.1 (A) by using L∞ versions
of quasiconvexity, as developed by Barron-Jensen-Wang [17] but adapted to this higher
order case, in regards to the existence of L∞ minimisers. However, for parts (B) and (C) of
Theorem 4.1.1 regarding the necessary PDE conditions, we do need Morrey quasiconvexity,
as we rely essentially on the existence of solutions to the corresponding Euler-Lagrange
equations and the theory of Lagrange multipliers in the finite p case. Further, the measures
M∞, ν∞ depend on the minimiser u∞ in a non-linear fashion, hence one more could perhaps
symbolise them more concisely as M∞(u∞), ν∞(u∞). Consequently, the significance of
these equations is currently understood to be mostly of conceptual value, rather than of
computational nature. However, it is possible to obtain further information about the
underlying structure of these parametric measure coefficients. This requires techniques
such as measure function pairs and mollifications up to the boundary as in [31, 57, 65], but
to keep the presentation as simple as possible, we refrain from pursuing this considerably
more technical endeavour, which also requires stronger assumptions.

4.2 Proofs

In this section we establish Theorem 4.1.1. Its proof is not labeled explicitly, but will be
completed by proving a combination of smaller subsidiary results, including a selection of
lemmas and propositions.

Before introducing the approximating problem (the Lp case for finite p), we need to
establish a convergence result, which shows that the admissible classes of the p-problems
are non-empty. It is required because the function g appearing in the constraint is not
assumed to be homogeneous, therefore a standard scaling argument does not suffice.

82



Lemma 4.2.1. For any v ∈ W 2,∞
B (Ω;RN) \ {0}, there exists (tp)p∈(n/α,∞] with tp → t∞ as

p → ∞, such that ∥∥∥g(tpv, tpDv
)∥∥∥

Lp(Ω)
= 1,

for all p ∈ (n/α,∞]. Further, if ∥g(v,Dv)∥L∞(Ω) = 1, then t∞ = 1.

Proof of Lemma 4.2.1. Fix v ∈ W 2,∞
B (Ω;RN) \ {0} and define

ρ∞(t) := max
x∈Ω

g
(
tv(x), tDv(x)

)
, t ≥ 0.

It follows that ρ∞(0) = 0 and ρ∞ is continuous on [0,∞). We will now show that ρ∞
is strictly increasing. We first show it is non-decreasing. For any s > 0 and (η, P ) ∈
RN × RN×n \ {(0, 0)}, our assumption (4.4)(c) implies

0 <
C7g(sη, sP )

s
≤ ∂ηg(sη, sP ) · η + ∂Pg(sη, sP ) : P
= ∂(η,P )g(sη, sP ) : (η, P )

= d
ds
(
g(sη, sP )

)
,

thus s 7→ g(sη, sP ) is increasing on (0,∞). Hence, for any x ∈ Ω and t > s ≥ 0 we have
g(sv(x), sDv(x)) ≥ g(tv(x), tDv(x)), which yields,

ρ∞(s) = max
x∈Ω

g
(
sv(x), sDv(x)

)
≤ max

x∈Ω
g
(
tv(x), tDv(x)

)
= ρ∞(t).

We proceed to demonstrate that t 7→ ρ∞(t) is actually strictly monotonic over (0,∞). Fix
t0 > 0. By Danskin’s theorem [37], the derivative from the right ρ′(t+0 ) exists, and is given
by the formula

ρ′
∞(t+0 ) = max

x∈Ωt0

{
∂(η,P )g(t0v(x), t0Dv(x)) :

(
v(x),Dv(x)

)}
,

where

Ωt0 :=
{
x ∈ Ω : ρ∞(t0) = g

(
t0v(x), t0Dv(x)

)}
.
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Hence, by (4.4)(c) we estimate

ρ′
∞(t+0 ) = 1

t0
max
x∈Ωt0

{
∂(η,P )g(t0v(x), t0Dv(x)) :

(
t0v(x), t0Dv(x)

)}
≥ C7

t0
max
x∈Ωt0

g
(
t0v(x), t0Dv(x)

)
= C7

t0
ρ∞(t0)

> 0.

This implies that ρ∞ is strictly increasing on (0,∞). Next, recall that g is coercive by
assumption (4.4)(b), namely g(sη, sP ) → ∞ as s → ∞, for fixed (η, P ) ̸= (0, 0). Thus,
for any fixed point x ∈ Ω with (v(x),Dv(x)) ̸= (0, 0), which exists because by assumption
v ̸≡ 0, we have

lim
t→∞

ρ∞(t) ≥ lim
t→∞

g(tv(x), tDv(x)) = ∞.

Since ρ∞(0) = 0 and ρ∞(t) → ∞ as t → ∞, by continuity and the intermediate value
theorem, there exists a number t∞ > 0 such that ρ∞(t∞) = 1, that is∥∥∥g(t∞v, t∞Dv

)∥∥∥
L∞(Ω)

= 1.

If ∥g(v,Dv)∥L∞(Ω) = 1, then t∞ = 1, as a result of the strict monotonicity of ρ∞. Now let
us fix p ∈ (n/α,∞) and define the continuous function

ρp(t) := −
∫

Ω
g(tv, tDv)p dLn, t ≥ 0.

Since g(0, 0) = 0, it follows that ρp(0) = 0 and that

ρp(t) = 1
Ln(Ω)

∫
{(v,Dv)̸=(0,0)}

g(tv, tDv)p dLn.

By Morrey’s theorem and our assumptions, we have that v ∈ C1(Ω;RN) \ {0}, therefore
Ln
(
{(v,Dv) ̸= (0, 0)}

)
> 0. Consider the family of functions {g(tv, tDv)p}t>0, defined on

{(v,Dv) ̸= (0, 0)} ⊆ Ω. By the monotonicity of s 7→ g(sη, sP ) on (0,∞) for (η, P ) ̸= (0, 0),
for s < t we have

g(sv, sDv)p ≤ g(tv, tDv)p, on {(v,Dv) ̸= (0, 0)}.
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Since g(tv, tDv)p → ∞ pointwise on {(v,Dv) ̸= (0, 0)} as t → ∞, by the monotone
convergence theorem, we infer that∫

{(v,Dv)̸=(0,0)}
g(tv, tDv)p dLn −→ ∞,

as t → ∞. As a consequence, ρp(t) → ∞ as t → ∞. Since ρp(0) = 0, by the intermediate
value theorem there exists tp > 0 such that ρp(tp) = 1, namely∥∥∥g(tpv, tpDv)

∥∥∥
Lp(Ω)

= 1.

For the sake of contradiction, suppose that tp ̸→ t∞, as p → ∞. In this case, there
exists a subsequence (tpj

)∞
1 ⊆ (n/α,∞) and t0 ∈ [0, t∞) ∪ (t∞,∞] such that tpj

→ t0 as
j → ∞. Further, (tpj

)∞
1 can assumed to be either monotonically increasing or decreasing.

We first prove that t0 is finite. If t0 = ∞, then the sequence (tpj
)∞

1 can be selected
to be monotonically increasing. Therefore, by arguing as before, g(tpj

v, tpj
Dv) ↗ ∞ as

j → ∞, pointwise on {(v,Dv) ̸= (0, 0)}, and the monotone convergence theorem provides
the contradiction

1 = lim
j→∞

−
∫

Ω
g(tpj

v, tpj
Dv)pj dLn = −

∫
Ω

lim
j→∞

g(tpj
v, tpj

Dv)pj dLn = ∞.

Consequently, we have that t0 ∈ [0, t∞) ∪ (t∞,∞). Since (tpj
v, tpj

Dv) → (t0v, t0Dv) uni-
formly on Ω as j → ∞, we calculate

1 =
∥∥∥g(tpj

v, tpj
Dv)

∥∥∥
Lpj (Ω)

=
∥∥∥g(t0v, t0Dv)

∥∥∥
Lpj (Ω)

+ o(1)j→∞

=
∥∥∥g(t0v, t0Dv)

∥∥∥
L∞(Ω)

+ o(1)j→∞

= ρ∞(t0) + o(1)j→∞.

By passing to the limit as j → ∞, we obtain a contradiction if t∞ ̸= t0, because ρ∞ is a
strictly increasing function and ρ∞(t∞) = 1. In conclusion, tp → t∞ as p → ∞.

Utilising the above result we can now show existence for the approximating minimisa-
tion problem for p < ∞.

Lemma 4.2.2. For any p > n/α, the minimisation problem (4.9) has a solution up ∈
W 2,αp

B (Ω;RN).
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Proof of Lemma 4.2.2. Let us fix p ∈ (n/α,∞) and v0 ∈ W 2,∞
B (Ω;RN) where v0 /≡ 0. By

application of Lemma 4.2.1, there exists tp > 0 such that ∥g(tpv0, tpDv0)∥Lp(Ω) = 1 implying
that tpv0 is indeed an element of the admissible class of (4.9). Hence, we deduce that the
admissible class is non empty. Further, by assumption (4.3)(b), f is (Morrey) quasiconvex.
We now confirm that fp is also (Morrey) quasiconvex function, as a consequence of Jensen’s
inequality: for any fixed X ∈ RN×n2

s and any ϕ ∈ W 2,∞
0 (Ω;RN), we have

fp(X) ≤
(

−
∫

Ω
f(X + D2ϕ) dLn

)p

≤ −
∫

Ω
f(X + D2ϕ)p dLn.

By assumption by assumption (4.3)(d), we have for some new C5(p), C6(p) > 0 that

f(X)p ≤ C5(p)|X|αp + C6(p),

for any X ∈ RN×n2
s . Moreover, by [95, Theorem 3.6] we have that the functional v 7→

∥f(D2v)∥Lp(Ω) is weakly lower semi-continuous on W 2,αp(Ω;RN) and therefore the same
is true over the closed subspace W 2,αp

B (Ω;RN). Let (ui)∞
1 be a minimising sequence for

(4.9). As f ≥ 0, it is clear that infi∈N ∥f(D2ui)∥Lp(Ω) ≥ 0. Since the admissible class is
non-empty, the infimum is finite. Additionally, by (4.3)(d), we have the bound

inf
i∈N

∥f(D2ui)∥Lp(Ω) ≤
∥∥∥f(D2(tpv0)

)∥∥∥
Lp(Ω)

≤
∥∥∥C5

∣∣∣tpD2v0

∣∣∣α + C6

∥∥∥
L∞(Ω)

≤ C5(tp)α∥D2v0∥α
L∞(Ω) + C6

< ∞.

Now we show that the functional is coercive in W 2,αp
B (Ω;RN), arguing separately for either

case of boundary conditions. By assumption (4.3)(d) and the Poincaré inequality, for any
u ∈ W 2,αp

C (Ω;RN) (satisfying |u| = |Du| = 0 on ∂Ω), we have
(

−
∫

Ω

∣∣∣f(D2u) + C3

∣∣∣p dLn

)1
p

≥ C4

(
−
∫

Ω
|D2u|αp dLn

)1
p

≥ C ′
4∥u∥α

W 1,αp(Ω),

for a new constant C ′
4 = C4(p) > 0. Hence, for any u ∈ W 2,αp

C (Ω;RN),

∥f(D2u)∥Lp(Ω) ≥ C ′
4

(
∥u∥W 2,αp(Ω)

)α
− C3. (4.11)

The above estimate is also true when u ∈ W 2,αp
H (Ω;RN), but since in this case we have only

|u| = 0 on ∂Ω, it requires an additional justification. By the Poincaré-Wirtinger inequality
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involving averages, for any u ∈ W 2,αp
H (Ω;RN) we have∥∥∥∥Du− −

∫
Ω
Du dLn

∥∥∥∥
Lαp(Ω)

≤ C∥D2u∥Lαp(Ω),

where C = C(α, p,Ω) > 0 is a constant. Since |u| = 0 on ∂Ω, by the Gauss-Green theorem
we have ∫

Ω
Du dLn =

∫
∂Ω
u⊗ n̂ dHn−1 = 0,

where Hn−1 denotes the (n− 1)-dimensional Hausdorff measure. In conclusion,∥∥∥Du∥Lαp(Ω) ≤ C∥D2u∥Lαp(Ω),

for any u ∈ W 2,αp
H (Ω;RN). The above estimate together with the standard Poincaré in-

equality applied to u itself allow to infer that (4.11) holds for any u ∈ W 2,αp
B (Ω;RN) in

both cases of boundary conditions. Returning to our minimising sequence, by standard
compactness results, exists up ∈ W 2,αp

H (Ω;RN) such that ui −−⇀ up in W 2,αp
B (Ω;RN), as

i → ∞ along a subsequence of indices. Additionally, by the Morrey estimate we have
that ui −→ up in C1(Ω;RN) as i → ∞, along perhaps a further subsequence. Since
u 7→ ∥g(u,Du)∥Lp(Ω) is weakly continuous on W 2,αp

B (Ω;RN), the admissible class is weakly
closed in W 2,αp(Ω;RN) and hence we may pass to the limit in the constraint. By weak
lower semicontinuity of the functional, it follows that a minimiser up which satisfies (4.9)
does indeed exist.

Now we describe the necessary conditions (Euler-Lagrange equations) that approximat-
ing minimiser up must satisfy. These equations will involve a Lagrange multiplier, emerging
from the constraint ∥g(·,D(·))∥Lp(Ω) = 1.

Lemma 4.2.3. For any p > n/α, let up be the minimiser of (4.9) procured by Lemma
4.2.2. Then, there exists λp ∈ R such that the pair (up, λp) satisfies the following PDE
system

−
∫

Ω
f(D2up)p−1∂f(D2up) : D2ϕ dLn

= λp −
∫

Ω
g(up,Dup)p−1

(
∂ηg(up,Dup) · ϕ + ∂Pg(up,Dup) : Dϕ

)
dLn,

for all test maps ϕ ∈ W 2,αp
B (Ω;RN).
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In particular, it follows that in both cases up is a weak solution in W 2,αp(Ω;RN) to
D2 :

(
f(D2up)p−1∂f(D2up)

)
= λp

[
g(up,Dup)p−1∂ηg(up,Dup) − div

(
g(up,Dup)p−1∂Pg(up,Dup)

)]
,

(4.12)

where we have used the notation D2 : F = ∑n
i,j=1 D2

ijFij, when F ∈ C2(Ω;Rn×n), which is
equivalent to the double divergence (applied once column-wise and once row-wise). Note
that in the case of hinged boundary data, we have an additional natural boundary condition
arising (since Du is free on ∂Ω), we we will not make an particular use of this extra
information in the sequel, therefore we refrain from discussing it explicitly.

Proof of Lemma 4.2.3. The result follows by standard results on Lagrange multipliers
in Banach spaces (see e.g. [94, p. 278]), by utilising assumption (4.3)(d), which guarantees
that the functional is Gateaux differentiable.

Now we establish some further results regarding the family of eigenvalues.

Lemma 4.2.4. Consider the family of pairs of eigenvectors-eigenvalues {(up, λp)}p>n/α,
given by Lemma 4.2.3. Then, for any p > n/α, there exists Λp > 0 such that

λp =
(
Λp

)p
> 0.

Further, by setting
Lp :=

∥∥∥f(D2up)
∥∥∥

Lp(Ω)
,

we have the bounds

0 <
(
C1

C8

) 1
p

Lp ≤ Λp ≤
(
C2

C7

) 1
p

Lp.

Proof of Lemma 4.2.4. We begin by showing that Lp > 0, namely the infimum over the
admissible class of the p-approximating minimisation problem is strictly positive, owing
to the constraint and our assumptions (4.3)-(4.4). Indeed, there is only one map u ∈
W 2,αp

B (Ω;RN) for which ∥f(D2u)∥Lp(Ω) = 0, namely u0 ≡ 0, but this is not an element
of the admissible class since ∥g(u0,Du0)∥Lp(Ω) = 0. Now consider the Euler-Lagrange
equations in Lemma 4.2.3 and select ϕ := up, to obtain

−
∫

Ω
f(D2up)p−1∂f(D2up) : D2up dLn

= λp −
∫

Ω
g(up,Dup)p−1

(
∂ηg(up,Dup) · up + ∂Pg(up,Dup) : Dup

)
dLn.
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As f, g ≥ 0 we can manipulate the respective assumptions (4.3)(c) and (4.4)(c) to produce
the following bounds:

C1−
∫

Ω
f(D2up)p dLn ≤ −

∫
Ω
f(D2up)p−1∂f(D2up) : D2up dLn

≤ C2−
∫

Ω
f(D2up)p dLn,

C7 −
∫

Ω
g(up,Dup)p dLn ≤ −

∫
Ω
g(up,Dup)p−1

(
∂ηg(up,Dup) · up +

+ ∂Pg(up,Dup) : Dup

)
dLn

≤ C8 −
∫

Ω
g(up,Dup)p dLn.

The above two estimates, combined with the Euler-Lagrange equations, imply that λp > 0.
Hence, we may therefore define Λp := (λp)

1
p > 0. We will now obtain the upper and lower

bounds. We determine the lower bound as follows:

C1(Lp)p = C1 −
∫

Ω
f(D2up)p dLn

≤ −
∫

Ω
fp−1(D2up)∂f(D2up) : D2up dLn

= λp −
∫

Ω
g(up,Dup)p−1

(
∂ηg(up,Dup) · ϕ + ∂Pg(up,Dup) : Dup

)
dLn

≤ λpC8.

Hence, (
C1

C8

) 1
p

Lp ≤ (λp)
1
p = Λp.

The upper bound is determined analogously, by reversing the direction of the inequalities.
Combining both bounds, we obtain the desired estimate.

Proposition 4.2.5. There exists (u∞,Λ∞) ∈ W 2,∞
B (Ω;RN) × (0,∞) such that, along a

sequence (pj)∞
1 of exponents, we have

up −→ u∞, in C1
(
Ω;RN

)
,

D2up −−⇀ D2u∞, in Lq(Ω;RN×n2
s ), for all q ∈ (1,∞),

Λp −→ Λ∞, in [0,∞),

as pj → ∞. Additionally, u∞ solves the minimisation problem (4.1) and Λ∞ is given by
(4.6).
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Proof of Proposition 4.2.5. Fix p > n/α, q ≤ p and a map v0 ∈ W 2,∞
B (Ω;RN) \ {0}.

Then, by Lemma 4.2.1 there exists (tp)p∈(n/α,∞] ⊆ (0,∞) such that tp → t∞ as p → ∞
and satisfying ∥g(tpv0, tpDv0)∥Lp(Ω) = 1 for all p ∈ (n/α,∞]. By Hölder’s inequality and
minimality, we have the following estimate∥∥∥f(D2up)

∥∥∥
Lq(Ω)

≤
∥∥∥f(D2up)

∥∥∥
Lp(Ω)

≤
∥∥∥f(tpD2v0)

∥∥∥
Lp(Ω)

≤
∥∥∥f(tpD2v0)

∥∥∥
L∞(Ω)

≤ K +
∥∥∥f(t∞D2v0)

∥∥∥
L∞(Ω)

< ∞,

for some K > 0. By (4.3)(d), we have the bound f q(X) ≥ C4(q)|X|αq − C3(q) for some
constants C3(q), C4(q) > 0 and all X ∈ RN×n2

s . By the previous bound, we conclude that

sup
q≥p

∥D2up∥Lαq(Ω) ≤ C(q) < ∞,

for some q-dependent constant. By arguing as in the proof of Lemma 4.2.2 through the
use of Poincaré inequalities, we can conclude in both cases of boundary conditions with
the bound

sup
q≥p

∥up∥W 2,αq(Ω) ≤ C(q) < ∞,

for a new q-dependent constant C ′(q) > 0. Standard compactness in Sobolev spaces and a
diagonal sequence argument imply the existence of a mapping

u∞ ∈
⋂

n/α<p<∞
W 2,αp

B (Ω;RN)

and a subsequence (pj)∞
1 such that the desired modes of convergence hold true as pj → ∞

along this subsequence of indices. Fix a map v ∈ W 2,∞
B (Ω;RN) satisfying the required con-

straint, namely ∥g(v,Dv)∥L∞(Ω) = 1. In view of Lemma 4.2.1, there exists (tp)p∈(n/α,∞) ⊆
(0,∞) satisfying that tp → 1 as p → ∞, and additionally ∥g(tpv, tpDv)∥Lp(Ω) = 1 for all
p > n/α. By Hölder’s inequality, the definition of Lp and minimality, we have∥∥∥f(D2up)

∥∥∥
Lq(Ω)

≤
∥∥∥f(D2up)

∥∥∥
Lp(Ω)

= Lp ≤
∥∥∥f(tpD2v)

∥∥∥
Lp(Ω)

,
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for any such v. By the weak lower semi-continuity of the functional on W 2,αq
B (Ω;RN), we

may let pj → ∞ to obtain∥∥∥f(D2u∞)
∥∥∥

Lq(Ω)
≤ lim inf

pj→∞
Lp

≤ lim sup
pj→∞

Lp

≤ lim sup
pj→∞

∥f(tpj
D2v)∥Lp(Ω)

= ∥f(D2v)∥L∞(Ω).

Now we may let q → ∞ in the above bound, hence producing∥∥∥f(D2u∞)
∥∥∥

L∞(Ω)
≤ lim inf

pj→∞
Lp ≤ lim sup

pj→∞
Lp ≤ ∥f(D2v)∥L∞(Ω).

for all mappings v ∈ W 2,∞
B (Ω;RN) satisfying the constraint ∥g(v,Dv)∥L∞(Ω) = 1. If we

additionally show that in fact u∞ satisfies the constraint in (4.1), then the above estimate
shows both that it is the desired minimisers (by choosing v := u∞), and also that the se-
quence (Lpj

)∞
1 converges to the infimum. Now we show that this is indeed the case. In view

of assumption (4.3)(d), the previous estimate implies also that D2u∞ ∈ L∞
(
Ω;RN×n2

s

)
,

which together with Poincaré inequalities (as in the proof of Lemma 4.2.2) shows that in
fact u∞ ∈ W 2,∞

B (Ω;RN). By the continuity of the function g and the fact that up −→ u∞

in C1
(
Ω;RN

)
, we have

1 = ∥g(up,Dup)∥Lp(Ω)

= ∥g(u∞,Du∞)∥Lp(Ω) + ∥g(up,Dup)∥Lp(Ω) − ∥g(u∞,Du∞)∥Lp(Ω)

= ∥g(u∞,Du∞)∥Lp(Ω) + O
(

∥g(up,Dup) − g(u∞,Du∞)∥L∞(Ω)

)
−→ ∥g(u∞,Du∞)∥L∞(Ω),

as pj → ∞. Consequently, u∞ satisfies the constraint, and therefore lies in the admissible
class of (4.1). Since v was arbitrary in the energy bound, we conclude that u∞ in fact
solves (4.1). let us now define

Λ∞ :=
∥∥∥f(D2u∞)

∥∥∥
L∞(Ω)

.

We now show that Λ∞ > 0. Indeed, by our assumptions (4.3)-(4.4), there is only one map
in W 2,∞(Ω;RN) satisfying ∥f(D2u0)∥L∞(Ω) = 0 and |u0| ≡ 0 on ∂Ω, namely the trivial map
u0 ≡ 0, but u0 is not contained in the admissible class of (4.1) because ∥g(u0,Du0)∥L∞(Ω) =
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0. We now show that Λp −→ Λ∞ as pj → ∞. By our earlier energy estimate, we have
Lp −→ Λ∞ as pj → ∞. By Lemma 4.2.4, we have

0 < lim
pj→∞

(
C1

C8

) 1
p

Lp ≤ lim
pj→∞

Λp ≤ lim
pj→∞

(
C2

C7

) 1
p

Lp,

and therefore Λp −→ Λ∞ as pj → ∞. The result ensues.

Lemma 4.2.6. For any p > (n/α) + 2, there exist measures ν∞ ∈ M(Ω) and M∞ ∈
M(Ω;RN×n2

s ) such that, along perhaps a further sequence (pj)∞
1 of exponents, we have νp

∗−−⇀ν∞, in M(Ω),
Mp

∗−−⇀M∞, in M(Ω;RN×n2
s ),

as j → ∞, where the approximating measures νp,Mp are given by (4.10).

Proof of Lemma 4.2.6. We begin by noting that since g ≥ 0 and ∥g(up,Dup)∥Lp(Ω) = 1,
in view of (4.10) we have the bound

∥νp∥(Ω) = νp(Ω) = −
∫

Ω
g(up,Dup)p−1 dLn ≤

(
−
∫

Ω
g(up,Dup)p dLn

) p−1
p

= 1.

By the sequential weak∗ compactness of the space of Radon measures we can conclude
that νp

∗−−⇀ν∞, in M(Ω) up to the passage to a further subsequence. Now we establish
appropriate total variation bounds for the measure Mp. Since f ≥ 0, by the bounds of
Lemma 4.2.4 and assumption (4.3), we estimate (for sufficiently large p)

∥Mp∥(Ω) = −
∫

Ω

(
f(D2up)

Λp

)p−1

|∂f(D2up)| dLn

≤ 1
Λp−1

p

−
∫

Ω
f(D2up)p−1

(
C5f(D2up)β + C6

)
dLn

= C5

Λp−1
p

−
∫

Ω
f(D2up)p−1+β dLn + C6

Λp−1
p

−
∫

Ω
f(D2up)p−1 dLn.
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Hence,

∥Mp∥(Ω) ≤ C5

Λp−1
p

(
−
∫

Ω
f(D2up)p dLn

) p−1+β
p

+ C6

Λp−1
p

(
−
∫

Ω
f(D2up)p dLn

) p−1
p

= C5
(Lp)p−1+β

Λp−1
p

+ C6
(Lp)p−1

Λp−1
p

=
(
Lp

Λp

)p−1(
C5L

β
p + C6

)

≤
(
C8

C1

)1− 1
p(
C5(Λ∞ + 1)β + C6

)
.

The above bound allows to conclude that Mp
∗−−⇀M∞ in M(Ω;RN×n2

s ), along perhaps a
further subsequence of indices (pj)∞

1 as j → ∞.

To conclude the proof of Theorem 4.1.1 we must ensure the PDE system (4.5) is indeed
satisfied by the quadruple (u∞,Λ∞,M∞, ν∞).

Lemma 4.2.7. If M∞ ∈ M(Ω;RN×n2
s ) and ν∞ ∈ M(Ω) are the measures obtained in

Lemma 4.2.6, then the pair (u∞,Λ∞) satisfies (4.5) for all ϕ ∈ C2
B(Ω;RN).

Proof of Lemma 4.2.7. Fix a test function ϕ ∈ C2
B(Ω;RN) and p > n/α+ 2 by (4.10) we

may rewrite the PDE system in (4.9) as follows∫
Ω

D2ϕ : dMp = Λp

∫
Ω

(
∂ηg(up,Dup) · ϕ+ ∂Pg(up,Dup) : Dϕ

)
dνp,

Recall that, by Proposition 4.2.5, we have Λp −→ Λ∞ and also (up,Dup) −→ (u∞,Du∞)
uniformly on Ω, as pj → ∞. By assumption (4.4)(a), we have that ∂ηg(up,Dup) −→
∂ηg(u∞,Du∞) and also ∂Pg(up,Dup) −→ ∂Pg(u∞,Du∞), both uniformly on Ω, as pj → ∞.
The result ensues by invoking Lemma 4.2.6, in conjunction with weak∗-strong continuity
of the duality pairing M(Ω) × C(Ω) −→ R.
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Chapter 5

Conclusion and Future Work

In this chapter we discuss the main conclusions drawn from Chapters 2, 3, 4 and how these
relate to the aim of our thesis, mentioned in Chapter 1. Several directions for further work
are outlined, also how we can surpass some of the limitations within our current work.

5.1 Conclusions

In conclusion, this thesis is a collection of papers, presented as chapters, that are comprised
of original research. This work consists of current progress in the field of vectorial Calculus
of Variations in L∞. These contemporary results are varied in nature and include the
contemplation of new problems and the generalisation of previously existing theory. For
example, Chapter 2 is a novel consideration, whilst Chapters 3 and 4 are extensions of
previous publications.

The main results throughout this thesis are concerned with establishing conditions, that
constrained supremal functionals must satisfy. Specifically, the results are Theorems 2.1.3,
3.1.3 and 4.1.1. These results are built on the methodology of Lp approximations, where
we have explored sophisticated contrasting limiting processes. Given the anatomy of the
vectorial environment, we could not employ the intrinsic characterisation that exists for
scalar problems. The technique of Lp approximations was the only means we had available
to us, to tackle the problem of finding such conditions in the L∞ setting.

In each chapter we have pursued the same goal, whilst varying the nature of the in-
vestigation. We have noted how minor adaptations to a constraint can have far reaching
implications, in the derivation and manifestation of PDE conditions.
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Once we achieved our main intentions in Chapter 2, we started to investigate more
comprehensive problems, beyond the specificity of the Navier-Stokes equations. This led
to the outputs of Chapters 3 and 4, where we addressed more abstract questions concerning
constrained minimisation problems. Overall, we have achieved our objective and made a
significant contribution to the area. We have furthered the development of the theoretical
framework required for establishing PDE conditions in the field of constrained supremal
functionals.

One could continue this investigation and even contemplate some of the alternative
proposals in the next section.

5.2 Future work

This is in an extremely fascinating field of mathematics and there are still many open
problems one could examine.

We could contemplate the premise of constrained vectorial absolute minimisers. It is
not apparent if you have a constraint how you define an absolute minimiser. We do not
review it here, as the problems are already considerably complicated. Arronson and Barron
have already noted that this is a rather challenging question in [11]. In the specific case of
Chapter 2 this will be a demanding task, we have multiple components with different levels
of regularity. It is a rather thought provoking task how to define variations with respect to
the Navier-Stokes equations, whilst acknowledging the structure of the three components
in the problem. Typically the method of Lp approximations gives us limits that are eligible
to be the best we might hope for, but this does need to be rigorously justified.

One could attempt to achieve optimality in our existence results. This could be done
by considering the L∞ problem directly, without using Lp approximations. This would
require the notion of “BJW-quasiconvexity” of Barron-Jensen-Wang in [17], as opposed to
Morrey quasiconvexity used in this thesis. For us the Lp problem was a stepping stone to
the L∞ one. We can not differentiate the L∞ norm. Hence, we can not directly implement
the generalised Kuhn-Tucker theory (method of generalised Lagrange multipliers) in the
L∞ setting, without an estimation technique.

In this thesis, we have investigated constrained vectorial supremal functionals over
Euclidean domains. One could potentially broaden this approach, to minimise functionals
over more complicated domains, such as manifolds.

This area of research has only developed in last few years, with all results being of
analytical interest. Currently, no numerical considerations have been made. Consequently,
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one could investigate the construction of numerical methods. Note that our results for
finite p should not be disregarded and could potentially support the discretisation process
of the problems presented in this thesis.

A possible extension to Chapter 2 would be to consider the same motivational notion
of variational data assimilation, but constrain the process by a different equation. The
structure of the equation will certainly modify the techniques required in the limiting pro-
cess. Depending on the choice of equation, this research could produce outcomes that are
of theoretical and applications based interests. For instance, variational data assimilation
can also be used to model traffic flow. We could constrain the minimisation process by
relevant conservation laws.

A further augmentation of Chapter 2 would be to look at the same problem but relax
some of our assumptions. For instance, strong solutions can be quite restrictive, hence
we could limit our attention to only weak solutions of the Navier-Stokes equations. This
is a completely different investigation. We would need to reestablish coercivity for the
functional, to deduce relevant bounds, to substantiate any form of compactness. This
would involve deriving a new bound for the solutions of Navier-Stokes equations, under
less regularity than (2.15).

As mentioned in Chapter 3, we could further explore the PDE conditions required
for null Lagrangian and determinant constraints in the isosupremic problem. Given the
complexity of such a nonlinear constraint, we would require an alternative method to the
standard approach employed throughout this thesis.

A more general consideration would be to contemplate higher order problems. For
instance, we could extend Chapter 4, to examine the third order generalised vectorial
∞-eigenvalue problem. Given the nature of this problem, we could most likely allow
the constraint g to depend upon the Hessian, specifically g(u,Du,D2u). Some potential
assumptions for the functions f and g are as follows:
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

(a) f ∈ C1(RN×n3

s ).
(b) f is (Morrey) quasiconvex.
(c) There exist 0 < C1 ≤ C2 such that, for all Y ∈ RN×n3

s \ {0},

0 < C1f(Y ) ≤ ∂f(Y ) : Y ≤ C2f(Y ).

(d) There exist C3, ..., C6 > 0, α > 1, β ≤ 1 such that, for all Y ∈ RN×n3

s ,

− C3 + C4|Y |α ≤ f(Y ) ≤ C5|Y |α + C6,

|∂f(Y )| ≤ C5f(Y )β + C6.

(5.1)



(a) g ∈ C1(RN × RN×n × RN×n2

s ).
(b) g is coercive, i.e for any (η, P,X) ∈

(
RN × RN×n × RN×n2

s

)
\ {(0, 0, 0)},

lim
t→∞

g(tη, tP, tX) = ∞.

(c) There exist 0 < C7 ≤ C8 such that, for all
(η, P,X) ∈

(
RN × RN×n × RN×n2

s

)
\{(0, 0, 0)},

0 < C7 g ≤ ∂ηg · η + ∂Pg : P + ∂Xg : X ≤ C8 g.

(5.2)

An addition to Chapter 4 would be to produce uniform bounds for the eigenvalue, as
in [67]. In fact, we have already initiated this avenue of inquisition. Note that the lower
bound can be ascertained using similar ideas to the first order problem through application
of Poincaré and Poincaré-Wirtinger inequalities. Due to the nature of the second order
problem, the derivation of the upper bound is substantially more difficult than the first
order case. This involves sophisticated geometric concepts such as the second fundamental
form, when selecting appropriate mollified test functions.

We have only started to scratch the surface of this vast and elegant area of mathematics.
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Appendix A

Additional Bound for the Operator
Mp

Here we provide a proof for the Lp′ bound mentioned in Chapter 2 (page 15). Recall that
for any M ∈ N and p ∈ (1,∞), we define the operator

Mp : Lp(ΩT ;RM) −→ Lp′(ΩT ;RM),

where p′ := p/(p− 1), by setting

Mp(V ) :=
|V |p−2

(p) V(
∥V ∥L̇p(ΩT )

)p−1 .

Here | · |(p) is the regularisation of the Euclidean norm of RM .

Lemma A.0.1. . We have ∥∥∥Mp(V )
∥∥∥

Lp′ (ΩT )
≤ 1,

and therefore Mp is valued in the unit ball of Lp′(ΩT ;RM).
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Proof of Lemma A.0.1.

∥∥∥Mp(V )
∥∥∥

Lp′ (ΩT )
=
(∫

−
ΩT

∣∣∣∣∣ |V |p−2
(p) V(

∥V ∥L̇p(ΩT )

)p−1

∣∣∣∣∣
p

p−1

dLn+1
) p−1

p

=
(∫

−
ΩT

( |V |p−2
(p) |V |(

∥V ∥L̇p(ΩT )

)p−1

) p
p−1

dLn+1
) p−1

p

≤
(∫

−
ΩT

( |V |p−2
(p) |V |(p)(

∥V ∥L̇p(ΩT )

)p−1

) p
p−1

dLn+1
) p−1

p

=
(∫

−
ΩT

( |V |p−1
(p)(

∥V ∥L̇p(ΩT )

)p−1

) p
p−1

dLn+1
) p−1

p

=
(∫

−
ΩT

( |V |p(p)(
∥V ∥L̇p(ΩT )

)p

)
dLn+1

) p−1
p

= 1
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Appendix B

The Modified Hölder Inequality

Here we establish the proof for the modified Hölder inequality used in Chapter 2 (page 18,
23).
Lemma B.0.1. For any 1 ≤ q ≤ p < ∞ and h ∈ Lp(X), we have the inequality

∥h∥L̇q(X) ≤ ∥h∥L̇p(X) +
√
q−2 − p−2.

Proof of Lemma B.0.1 Set

|f |(p) :=
(

|f |2 + p−2
) 1

2
, where ∥f∥L̇p(X) =

(∫
−

X

(
|f |(p)

)p
dµ
) 1

p

.

Then,

∥f∥L̇q(X) =
(∫

−
X

(
|f |(q)

)q
dµ
) 1

q

=
(∫

−
X

(
|f |2 + q−2 + p−2 − p−2

) q
2 dµ

) 1
q

=
(∫

−
X

(
|f |2 + p−2 +

(
q−2 − p−2

)) q
2

dµ
) 2

q
· 1

2

≤

√√√√(∫−
X

(
|f |2 + p−2

) q
2 dµ

) 2
q

+ q−2 − p−2

≤

√√√√(∫−
X

(
|f |2 + p−2

) p
2 dµ

) 2
p

+
√
q−2 − p−2

= ∥f∥L̇p(X) +
√
q−2 − p−2.
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