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Abstract

Geomorphic patterns are abundant in nature, however the mechanisms that drive the

formation and the evolution of these structures are not well understood. In this thesis, we

focus on one such pattern. On the surface of stalactites, we find centimetre scale ripples,

called crenulations. Stalactites grow as a result of a thin film flowing down the outside,

which deposits calcium on the surface. This deposition changes the shape of the wall,

which will in turn affect the flow. As the stalactite grows at a much slower rate than the

fluid flows, we can model these separately. In this thesis, we will first look at modelling

the thin film flow in the appropriate geometries. For this problem, we will consider the

radius and the wavelength to be of similar sizes. These will be much larger than the fluid

thickness. For this model, we consider the crenulation amplitude to be a similar size to the

fluid thickness. We will then look to see how the crenulation wavelength and amplitude

affects the flow. Using these flows, we then look at modelling the evolution of the stalactite

wall. We examine under what conditions we would expect the crenulations to form and

how they evolve once they do.
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Chapter 1

Introduction

This thesis is motivated by the morphological instabilities, called crenulations, that form

on calcite surfaces. These instabilities can be seen on flowstones, draperies, and stalagmites

(Meakin and Jamtveit, 2010), but here we will focus on the crenulations that occur on the

surface of stalactites. Stalactites grow as a result of a thin liquid film that is saturated

with calcium, and this calcium is deposited on the wall (Short et al., 2005b). The shape of

the stalactite will affect the flow of the fluid. This in turn will affect how the calcium is

deposited, which again changes the shape. We will therefore be looking into modelling the

flow based on a stalactite with crenulations, and then we will look at seeing how this flow

will affect the growth.

1.1 The Origins of Stalactites

In order to model the problem, we must first understand how stalactites form. We will

be looking at limestone stalactites that form in caves, however stalactites can also form

from other minerals being deposited (Hicks, 1950). Stalactites can also form from the

solidification of lava (Allred and Allred, 1998) and water, however, these have different

boundary conditions. Icicles, for example, have a growth rate depending on the temperature

gradient (Ueno, 2007), rather than a concentration gradient, which is the case for limestone

1



CHAPTER 1. INTRODUCTION

(Bertagni and Camporeale, 2017).

The overall process is described in more detail in Fairchild et al. (2012), and the main

points are summarised below. In the karst environment, the process begins with rainwater.

Figure 1.1: Conceptual model of karst system. Here we have the rainwater travel through
the soil zone, where it reacts with carbon dioxide. This then travels through the carbonate
bedrock, where dissolution occurs. The water then reaches the caves through fractures
to enter the cave environment, which has a channel to the surface, so the carbon dioxide
pressure is lower. In the cave, precipitation occurs, allowing for speleothems to grow Tooth
(2000).

As the water percolates through soil, it absorbs carbon dioxide that has been released by

microorganisms, plants, and animals through respiration (Raich and Schlesinger, 1992).

This carbon dioxide mixed in the water forms carbonic acid. Under the soil layer we have

a bedrock of limestone. Limestone is very porous and contains joints and fractures that

the water can flow through. As the water is now acidic, it dissolves the calcium from

the limestone, which in turn causes the fractures to grow. The calcium rich water then

enters a cave environment, a large cavity in the bedrock. The cave may have an opening

2



1.1. THE ORIGINS OF STALACTITES

and where there is good ventilation, then the cave will have a CO2 pressure similar to

that of the atmosphere. As the CO2 concentration is much higher in the water than the

atmosphere, it is outgassed until it attains equilibrium with that of the cave atmosphere.

This in turn increases the pH of the water, resulting in it becoming supersaturated with

calcium carbonate. Stalactites form as this calcium carbonate is deposited (Dreybrodt,

2012; Meakin and Jamtveit, 2010). Initially, the water forms pendant drops on the cave’s

ceiling. These droplets may form directly under the fissure that fed the water onto the

ceiling, however where there is a gradient on the ceiling the pendant drop may travel

towards a local minimum (Maltsev, 1999). The initial drop deposits a ring of calcite

around the outside in a manner similar to that found by Kumar et al. (2021). This ring

builds up and acts as a channel for water to flow down the middle of (Moore, 1962). These

channels are known as tubular or soda straw stalactites.

Soda straws fed from a fracture clearly have the water flowing down the inside. Maltsev

(1999) suggests that soda straws can still appear when they are not under a feeding fracture,

as a large pressure difference can cause water to be sucked through the cleavage in the

calcite crystals into the inner channel.

Curl (1972) looked into the growth of soda straw stalactites and found that they must

have a minimum radius of around 2.5 mm, which is a result of the surface tension of

the drop. Moore (1962) and Paul et al. (2013) noted that soda straws stalactites grow

seasonally due to increased pressure of CO2 in the soil during summer months, causing

a fluctuation of the pH across a year. Additionally, the flow rate can change with Arbel

et al. (2010) noting the groundwater is linked with rainfall in the area. This results in

seasonal differences in the groundwater as well as shorter term increases after storms,

which also would affect the growth rate. This results in the soda straw stalactites having

visible growth layers. Conical stalactites form when water starts flowing down the outside

of soda straw stalactites. This may be due to leakage from the walls if the flow rate is

large enough (Ford and Williams, 2013). Conical stalactites can have both internal and

external feeding, however the inner channel may get blocked, resulting in growth only
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Figure 1.2: The growth of stalactites. (a) shows a drop hanging on the ceiling after water
has entered the cave from a fracture. This drop deposits calcium in a ring around its edge.
In (b) we see that eventually the drop drips, leaving behind this deposit. (c) shows after
some time this ring around the edge has grown downwards, forming a channel in which
the water is contained. (d) shows that water now also flows down the outside walls. Now
the stalactite is thickening and becoming a conical shape (Moore, 1962).

coming from the fluid flowing down the outer walls. Conical stalactites tend to have higher

flow rates than soda straw stalactites (Fairchild and Baker, 2012). Therefore, an increase

in the volume of water should occur for the soda straws to transition. Kim and Sanderson

(2010) provides a possible transition event with changes in rock fractures. Here they note

that the size of the fractures or intersection between two fractures can increase the flow,

which in turn results in bigger stalactites.

The effect of the external flow was looked at by Short et al. (2005b). Here they were

able to model the overall conical shape of stalactites. As the calcite crystals grow with their

long axis perpendicular to the calcite surface (Moore, 1962), we can determine whether the

growth was due to internal or external feeding. Here, internal feeding results in crystals

orientated parallel to the flow, as the stalactite lengthens from the bottom. External flow

causes the radius of the stalactite to increase, and so the calcite crystals are perpendicular

to the flow direction (Moore, 1962; Forti and Springer, 2020).
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Figure 1.3: Stalactites found in caves. a) shows soda straw stalactites on the roof of the
National Showcaves Centre for Wales. b) shows stalactites in Treak Cliff Cavern, Castleton,
UK. c) a cone stalactite with crenulations also in Treak Cliff Cavern.

1.1.1 Crenulations

Many limestone features have patterns on their surface (Meakin and Jamtveit, 2010), with

stalactites being no exception. On the surface of stalactites, there are centimetre scale

ripples known as crenulations. These can be seen on figure 1.3 (c). Previous works mostly

focus on looking at the effect of a small perturbation to the wall fluid interface (Vesipa

et al., 2015; Camporeale and Ridolfi, 2012; Camporeale, 2017). These works often ignore

the effect of the radius of the stalactite, however the radius is a similar length to the

crenulation wavelength. The linear stability analysis is usually performed based on a large

radius stalactite. The crenulations could form on stalactites with smaller radii, as we

have these dynamics as soon as the water starts flowing down the outside of a soda straw

stalactite.

Crenulations also form on icicles (Ueno, 2007; Ueno et al., 2009; Bertagni and Campo-

reale, 2017). The hydrodynamics can be modelled in the same way for both icicles and
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stalactites, as they exhibit similar shapes, and have a thin film flowing down them. The

wall growth equations are slightly different, but at leading order for both cases, the wall

grows proportionally to the fluid thickness. The wall growth rate being 105 times faster in

the ice case than the karst case (Bertagni and Camporeale, 2017).

Ueno (2007) looks at thin film flow down an inclined plane. The solid-liquid interface is

initially considered flat. A perturbation is made to the solid liquid interface, which results

in a perturbation to the fluid liquid interface. The ratio between the amplitudes of the

wall and fluid disturbances is looked at for a vertical fluid and one going down a gentle

slope of angle π
18
. The amplitude of the fluid disturbance is found to be less than the wall

disturbance. Here it is also found that the wavelength of the crenulations depends on two

length scales, one being the capillary length and the other being the fluid thickness. The

wavelength also depends on the dimensionless Péclet number, which is the ratio of heat

transfer to thermal diffusion. Ueno et al. (2009) expanded on these ideas, changing the

thermal boundary conditions.

Camporeale and Ridolfi (2012) model the growth of stalactites by making use of the

PWP equation for calcite deposition (Plummer et al., 1978)

F = κ1(H
+) + κ2(H2CO3

∗) + κ3 − κ4(Ca
2+)(HCO3

−). (1.1)

This shows that the rate of calcite deposition (F ) depend on the activities of hydrogen,

calcium, and bicarbonate ions, as well as the activity of carbonic acid. The equation is

based on the reactions which occur to produce calcite, with κi being the rate constants for

these reactions. Using this, they performed linear stability analysis to calculate critical

wavelengths depending on the fluid thickness. Here they also found that the crenulations

should migrate upstream. Vesipa et al. (2015) also looks at a thin film down an inclined

plane. Again they made use of the PWP equations and considered a perturbation to

the bottom surface. They looked more fully at how the Reynolds number, calcium

concentration, pressure of carbon dioxide, temperature, and angle affected the growth.

Here they found that the wavelength of the crenulations was only substantially affected by
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the fluid properties. However, all these properties could have a substantial effect on the

growth rate and migration speed.

Camporeale (2017) worked to improve the hydrodynamics of the previous models by

using a gradient expansion technique to find an evolution equation for the fluid surface. A

formula for the wavelength of the crenulations was found based on the Reynolds number

and calcium concentration. He also derived a formula for the migration speed. These

models all suggest that the crenulation wavelength should increase with the Reynolds

number. Physically, this can be viewed as thicker fluids result in longer wavelengths.

However, if the flow rate is constant, a stalactite with a larger radius will result in a

thinner film, meaning that it should have a smaller wavelength.

Other geological features can also form from thin films flowing down inclined planes.

Draperies which are an instability in the direction of flow of the fluid can occur on

underhanging walls (Ledda et al., 2021).

1.2 Thin Film Flows

Thin films are those where the thickness of the fluid is much smaller than the characteristic

length scale of the flow. This allows the introduction of a small parameter ϵ, which is the

ratio between the fluid thickness and the larger length scale.

In the case of stalactites, the longer length scale can be either the wavelength of the

crenulation or the radius of the stalactite. The momentum and mass equations can be

approximated by only looking at the terms which appear at leading order or first order in

ϵ. Various review papers have looked into the dynamics and instabilities caused by thin

films, such as Craster and Matar (2009); Oron et al. (1997). Here we can see that the fluid

can be driven by several different forces such as gravitation, centrifugal, intermolecular or

electromagnetic. The film can also be driven by thermal gradients and will be affected by

surface tension and topography.

In the case of stalactites, we have gravity driven flow over topography. Gravity driven
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flows can be separated into those with or without significant inertia. With negligible

inertia, it is interesting to look at the contact line. It has been shown theoretically and

experimentally that the contact line develops fingers or rivulets across the flow (Bertozzi

and Brenner, 1998; Johnson et al., 1999). The instability on the surface of stalactites

is perpendicular to the flow, so is unlikely to arise because of this. Falling films with

significant inertia lead to waves in the direction of the flow (Chang et al., 1993).

Taking a gravity driven thin film down an inclined plane and expanding up to O(ϵ)

one can derive the Benney equation (Benney, 1966)

ht +

(
2

3
h3 + ϵ

(
16Re

15
h6hx −

2

3
cot θh3hx +

1

3Bo
h3hxxx

))
x

= 0. (1.2)

This gives an evolution equation for the fluid thickness h, which has the effects of the

Reynolds number Re, which is the ratio between inertial and viscous forces; the Bond

number Bo, which is the ratio between gravitaional forces and the surface tension forces;

and the angle of the slope from the horizontal θ. The subscripts denote derivatives, with t

being time and x is the spatial coordinate in the direction of the flow.

Under suitable rescaling, the Benney equation (1.2) can be reduced to a weakly

nonlinear evolution equation known as the Kuramoto-Sivashinsky equation Kuramoto

(1978); Sivashinsky (1977)

ht + hhx + hxx + hxxxx = 0. (1.3)

1.2.1 Flows down cylinders

In the case of stalactites, instead of flow down an inclined plane, we will consider flow

down an axisymmetric and vertical cylinder. Work here generally considers the fluid to be

thin compared to the radius. Considering the surface tension to be the leading cause for

wave formation, Frenkel (1992) derived an evolution equation for the free surface. This
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was rescaled by Kalliadasis and Chang (1994) to

ht +
(
h3 + βh3hx + h3hxxx

)
x
= 0 (1.4)

where the parameter β depends on the Bond number and the radius. This equation was

studied numerically to find that depending on the size of the radius, the fluid interface

could exhibit solitary wave like structures or blow-up in finite time.

Considering a long wave perturbation of the fluid interface of a similar length to the

radius of a cylinder, Frenkel (1993) derives an equation similar to the Benney equation

(1.2)

ht + 2h2hx + ϵ

(
8Re

15
h6hx +

1

3Bo

(
hx
R2

+ hxxx

)
+

1

6R
h4
)

x

= 0 (1.5)

which in addition to the parameters seen in the Benney equation (1.2), has the parameter

R, the ratio between the radius of the cylinder and the fluid thickness. Here instead of the

slope term we have a similar h3hz term as a result of the curvature of a cylinder. There is

also an additional h4 term. However, in the limit where the radius increases to infinity

these terms vanish, and we are left with the Benney equation (1.2) for a vertical plane.

Craster and Matar (2006) consider thin film flow down a cylinder, where the radius is

not necessarily thicker than the fluid thickness. Here, they use scalings similar to those

used by Papageorgiou (1995) to model viscous liquid threads. Craster and Matar (2006)

consider the fluid to be thin compared to a capillary length scale. Here they compared

experimental results with those simulated numerically and found a good agreement between

the two.

1.2.2 Flows over topography

Another feature that could influence the flow on a stalactite is the shape of the crenulations.

Surface topography leads to additional surface tension terms. Flow down an inclined plane
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with sinusoidal walls has been studied by Wierschem and Aksel (2003); Wierschem et al.

(2005). Here they used linear and Floquet analysis to determine the stability of steady

state solutions. Here they discovered that the wall corrugations have a stabilising effect.

Kalliadasis et al. (2000) looks at the effect that trenches and mounds have on the

steady state fluid thickness. The shape of the trench was modelled as

η = δ

(
1 +

1

π

(
tan−1

(
x− ℓ

ξ

)
− tan−1

(
x

ξ

)))
(1.6)

with δ, ℓ, ξ representing the trench depth, width, and steepness. Here they found that a

capillary ridge forms just upstream of where the wall steps down.

Tseluiko et al. (2013) looked at the stability of film flowing down an inclined plane

with topography. Here they looked at both sinusoidal walls and trenches. On sinusoidal

walls, the steady state fluid is thinnest around the wall maximum. Here they found that

the wavelength and the amplitude of the wall can be either stabilising or destabilising.

Combining cylindrical geometry with a wall perturbation was done experimentally

by Kuehner et al. (2019, 2021). Here they used a 3D-printed pipe with semicircular

corrugations. Water was poured down the inside of the pipe and a statically deformed free

surface was observed. Here they found that the free surface amplitude increased as the

wall amplitude did. They also observed that the phase shift of the free surface changed

the most for shorter wavelengths.

1.2.3 Other applications

While the motivation for the fluid dynamics was based on stalactites, flow down a cylinder

with topography could have many industrial applications. Coating a surface is one such

application, and modelling it can be important to minimise defects that could arise as a

result of an instability. Several coating methods are listed in a review paper by Weinstein

and Ruschak (2004).

An example of this is the manufacturing of 3D printed parts (Zhu et al., 2015). Here,
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the coating film could smooth surface defects or cause them to grow. The geometry of our

problem could also be useful for desalination (Sadeghpour et al., 2019; Zeng et al., 2019).

Here, water vapour can be condensed onto liquid beads. Such beads form on cylindrical

strings, where the size of the beads would be influenced by the radius and the topography.

1.3 Deposition Problems

Stalactites grow due to the deposition of calcium on the surface. As dissolution and

precipitation are related through a reversible reaction, much work on calcite precipitation

is based on Plummer et al. (1978). Here they derive a rate equation for dissolution of

calcium known as the PWP equation. This requires the concentration of the chemicals

at the calcite surface. Buhmann and Dreybrodt (1985) expanded on this by looking at

how chemicals are transported throughout the fluid layer. In this work they determined

that for calcite dissolution and precipitation, the rate could be limited by the conversion

of carbon dioxide to carbonic acid or diffusion across the fluid, depending on the fluid

thickness.

The precipitation was looked into further in Dreybrodt (1980, 1981), with the cases with

a thin fluid layer having precipitation rates increasing with the fluid thickness. However,

with larger film thicknesses, where diffusion becomes the rate limiting process, thicker

film thickness can cause smaller precipitation rates. Dreybrodt (1999) uses these to

model stalagmite growth, where he looks at how different flow conditions, temperature,

concentration of calcium ions and fluid thicknesses affect the growth rates.

For stalactites, Short et al. (2005b) shows that the time it takes for calcium ions and

carbon dioxide to diffuse from the stalactite boundary to the air boundary is around 0.1s.

This is much faster than that of the rate limiting carbon dioxide reaction, which takes

around 10s. Therefore, we expect to be in the case where the deposition is proportional to

fluid thickness. Vesipa et al. (2015) however, suggests that crenulations in the wall grow

more when the fluid is thinnest. The chemical model is looked at more extensively in
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chapter 5.

1.4 Outline of the Thesis

In chapter 2 we show the derivation of the models that will be used. Chapters 3 and 4 look

at the hydrodynamics of the problem. Specifically, chapter 3 has the fluid primarily driven

by surface tension, where chapter 4 uses a Benney like equation. Chapter 5 looks at the

deposition of calcium on the wall and the resulting moving boundary problem. Chapter 6

concludes.
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Chapter 2

Problem Setup

2.1 Stalactite Parameters

We wish to model our stalactite as a cylinder with a thin film flowing down it. For this

model, we will have four main parameters that can change. These are the flow rate of water

Q; the radius of the stalactite R̃; the amplitude of the crenulation δ̃; and the wavelength

of the crenulation L̃. The fluid thickness h̃ is also an important parameter for the growth

of stalactites. It is however derived from the flow rate and the radius. In order to create

our model, it would be useful to know approximate values for these parameters.

We will look at the stalactites in the two different stages in their life: soda straw

stalactites, where the flow is predominantly internal; and conical stalactites, where the

flow is predominately external. As stalactites evolve from soda straw stalactites to conical

ones, we can model stalactites having reasonable values between the two.

For a soda straw stalactite the diameter, which Curl (1972) found to depend on the

surface tension, was calculated to be around 5 mm for water. Samples studied by Paul

et al. (2013) confirm diameters of this size. Soda straw stalactites have banding based on

yearly growth (Paul et al., 2013; Fairchild et al., 2001; Huang and Fairchild, 2001; Huang

et al., 2001; Desmarchelier et al., 2006). This is due to the seasonal fluctuation of rainfall

and carbon dioxide. These bands are 0.5 mm long, with a relief of 2 µm. Soda straws can
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get up to 6 m in length, however, as they are fragile, many of them break when they are

only 100s of millimetres long (Fairchild and Baker, 2012).

In summary, we are looking at these values.

Variable Symbol Value

Diameter 2R̃ 5× 10−3 m

Banding amplitude |η̃| 2× 10−6 m

Banding wavelength L̃ 5× 10−4 m

Length ℓ 0.1-6 m

Table 2.1: Approximate values of variables for a soda straw stalactite.

Soda straw stalactites are fairly regular in their dimensions, where conical stalactites

are less so. This is because conical stalactites have the fluid now flowing down the outside.

This means that calcium will be deposited on the outside surface, increasing the radius.

Some smaller stalactites were measured in Treak Cliff Cavern, Castleton, UK.

Figure 2.1: Crenulations on a stalactite transitioning between soda straw and conical, at
Treak Cliff Cavern, Castleton.

Figure 2.1 shows a stalactite of radius 7 mm. This would be an example of a transitioning

stalactite. Here the crenulation wavelength was 4 mm and the amplitude was too small
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to measure. A stalactite of radius 17 mm was also measured. Here the crenulations had

a wavelength of 8 mm and an amplitude of 0.4 mm. According to Short et al. (2005b);

Vesipa et al. (2015) conical stalactites have the values.

Variable Symbol Value

Radius R̃ (0.5− 1)× 10−1 m

Crenulation wavelengths L̃ (1− 10)× 10−2 m

Length ℓ 0.1-6 m

Table 2.2: Approximate values of variables for a conical stalactite.

While the wavelength of the bands on soda straw stalactites may seem small compared

to the values of conical stalactites, the ratio between the wavelength and the radius is

similar. When performing linear stability analysis, Vesipa et al. (2015); Camporeale (2017)

consider a small perturbation to an inclined plane. These small amplitude bands could

be viewed as the initial disturbance in the analysis. Another thing to note is if the same

amount of fluid is flowing down the outside of a soda straw stalactite, the fluid thickness

would be larger than for the conical case, due to the smaller radius.

Next we will consider the flow rate. Soda straws typically grow when they have lower

flow rates than conical stalactites. This is because carbon dioxide is only degassed once

the fluid comes into contact with the air as it forms a drop. If the flow rate is too high,

the drop will drip before it has had time for calcite to be deposited on the walls (Forti

and Springer, 2020). According to Short et al. (2005b) typical flow rates are 10− 1000

cm3/hour depending on how much rainfall the area around the cave gets. These values

are given per hour, so it is likely that these measurements were taken over a couple of

hours. As stalactites take many years to grow, it would be better to have mean flow rates

measured over a similar period of time. Genty and Deflandre (1998) recorded the drip

flow under a soda straw stalactite of the Père Noël cave in Belgium. Here they found the

minimum flow rate was 227 ml/day, with the maximum flow rate being 10 135 ml/day.

Over the 5 years of data the mean flow was 1763.3 l/year. Even et al. (1986) measured
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Figure 2.2: Volumetric flow rate of a stalactite in the Père Noël cave, Belgium (Genty
and Deflandre, 1998). Here we can see the seasonality of the flow rate, with the summer
months experiencing much lower flow rates. There is also a sharp rise in the flow rate
during the autumn months, with a more gradual decrease over the spring months.

the flow rates of various stalactites in the Soreq Cave in Israel. Here they measured :

• a straw stalactite with mean discharge 100 ml/day throughout the year.

• a conical stalactite that showed little correlation with the rain, that discharged 85-95

ml/day in summer and 95-100 ml/day in winter.

• a straw stalactite that varies seasonally with 2500-2800 ml/day during winter,

decreasing to 170 ml/day in June and 5-8 ml/day in late summer.

• a conical stalactite with a straw on its end. This has a discharge of around 14

ml/day.

These high flow rates on soda straw stalactites in winter are likely to be too fast for growth,

with the seasonal banding showing the most growth in summer (Paul et al., 2013).

If the flow rate exceeded the maximum flow rate for water within the soda straw, we

would know that fluid must also travel down the outside. The maximum flow rate within

the soda straw stalactite would be equivalent to flow down a pipe acting under gravity.

This is a Poiseuille flow (Batchelor and Batchelor, 2000) where it is driven by gravity. This
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results in the vertical velocity

w(r) =
g

4ν
(a2 − r2) (2.1)

which depends on the axial displacement r. Here ν is the kinematic velocity, g is acceleration

due to gravity and a is the radius of the soda straw stalactite. Integrating the velocity

over the surface area of the cross-section of the fluid gives the flow rate

Q =
πa4g

8ν
. (2.2)

The radius of a soda straw stalactite is 2.5 mm, and the kinematic viscosity of water

is 1 mm2/s, therefore we find in this case the flow rate would be Q ∼ 1 × 10−4 m3/s.

The highest flow rate for the soda straw observed in previously mentioned caves was

Q ∼ 1× 10−7 m3/s, which is significantly lower, meaning even in winter months, water will

flow in a film down the inside of the soda straw stalactite until it joins the drop at the tip.

For conical stalactites Short et al. (2005b) shows that the time it takes for the fluid to

traverse the length of a stalactite is of the order of minutes, therefore this is much quicker

than seasonal fluctuations to the flow rate, so we can assume that the fluid has coated

the stalactite. When the fluid flows down the outside of the stalactite, it has a thickness

much thinner than that of the radius of the stalactite. Therefore, Short et al. (2005b)

approximates the flow as a gravity driven flow down a flat plate. The flow rate is still

calculated by integrating the velocity over the surface area, resulting in

Q =
2πR̃h̃3

3ν
(2.3)

where R̃ is the stalactite radius and h̃ is the fluid thickness. Therefore, we can calculate

the fluid thicknesses for our example stalactites by solving for h̃

h̃ =

(
3Qν

2πgR̃

) 1
3

(2.4)
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Example fluid thickness for the stalactites are given below, with the flow rates converted

to m3/s to make it easier to compare. Here we have picked 3 example radii based on a

soda straw stalactite and conical radii from Short et al. (2005b)

Stalactite
Radius (mm) 2.5 10 100

Flow rate m3/s Fluid Thickness (µm)

Short et al. (2005b) lower bound 2.8× 10−9 38 24 11

Short et al. (2005b) upper bound 2.8× 10−7 180 110 51

Père Noël cave daily minimum 2.6× 10−9 37 23 11

Père Noël cave daily maximum 1.2× 10−7 130 83 39

Père Noël cave yearly average 5.6× 10−8 100 65 30

Soreq cave 100 ml/day 1.2× 10−9 28 18 8

Soreq cave summer minimum 5.8× 10−11 10 7 3

Table 2.3: Table of approximate fluid thickness for flow rates given in this section

From table 2.3 we see that the fluid thicknesses are usually around 1× 10−6 − 1× 10−4

m, however most of the flow rates were observed on soda straw stalactites and so may not

relate to flow rates on the outside of stalactites. Flow rates greater than 1× 10−8 m3/s

typically occurred in winter months. This period was when less deposition occurred. This

could be different on the outside of a stalactite, as the water is immediately in contact

with the cave air and so has the carbon dioxide pressure gradient (Paul et al., 2013).

The conical stalactite with a straw on its end observed in Soreq Cave (Even et al., 1986)

suggests that this flow rate is perhaps too low to sustain conical growth modelled in Short

et al. (2005b), with instead the fluid being drawn into a straw as suggested by Maltsev

(1999). Therefore, for our model we have decided to use a flow rate of Q = 1× 10−9 m3/s,

that matches the flow rate on the conical stalactite in the Soreq Cave (Even et al., 1986).

From figure 2.3 we can see that increasing the radius decreases the fluid thickness.

However, all the fluid thicknesses are of the order 10−5 m, which agrees with Short et al.

(2005b).
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Figure 2.3: How the fluid thickness is affected by the radius of the stalactite according to
equation (2.4)

2.2 Hydrodynamic Model

In order to understand the growth of stalactites, we must understand the flow of water

down the outside. While conical stalactites do taper towards the point, the angle is

very close to vertical (Camporeale, 2017). As soda straw stalactites are cylindrical too,

transitioning between the cases will be close to a cylinder. Therefore, we will treat our

stalactite as being cylindrical with radius R̃.

The initial bands observed on soda straws were 2 µm which is smaller, but of a similar

order of magnitude to that of the fluid thickness. On conical stalactites, these crenulations

do grow to amplitudes of the order of millimetres. Therefore, if they do develop from the

banding on soda straws, there will be a transitional case where the crenulations will have

an amplitude of similar magnitude to the fluid thickness. Even if these crenulations are

not the result of this banding, since they end up being larger than the fluid thickness, at

some point they must exist with an amplitude similar to that of the fluid thickness.

Due to the symmetry of stalactites, we will model this as an axisymmetric flow. While

the radius and crenulations do grow over time, this is on a timescale much slower than the

time it takes the fluid to traverse a stalactite (Short et al., 2005b). For this reason we will
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assume that the radius R, and the crenulation η are fixed in time.

A sketch of the geometry of the problem is shown in figure 2.4.

R̃ h̃0

η̃

h̃

g

z̃, w̃

r̃, ũ

L̃

Stalactite Fluid Air

Figure 2.4: Sketch of cross-section of the problem.

For an incompressible fluid with velocity ũ = (ũ, 0, w̃) and pressure p̃ in cylindrical

coordinates x̃ = (r̃, θ̃, z̃), the continuity equation is

∂ũ

∂r̃
+
ũ

r̃
+
∂w̃

∂z̃
= 0 (2.5)

and the Navier-Stokes equations give

∂ũ

∂t̃
+ ũ

∂ũ

∂r̃
+ w̃

∂ũ

∂z̃
= −1

ρ

∂p̃

∂r̃
+ ν

(
∂2ũ

∂r̃2
+

1

r̃

∂ũ

∂r̃
− 1

r2
ũ+

∂2ũ

∂z̃2

)
(2.6)

∂w̃

∂t̃
+ u

∂w̃

∂r̃
+ w̃

∂w̃

∂z̃
= −1

ρ

∂p̃

∂z̃
+ ν

(
∂2w̃

∂r̃2
+

1

r̃

∂w̃

∂r̃
+
∂2w̃

∂z̃2

)
+ g (2.7)

where ρ is the density, ν is the kinematic viscosity, and g is the acceleration due to gravity.

On the boundary between the stalactite and the fluid we have no flux and no slip,

ũ = 0, w̃ = 0 at r̃ = R̃ + η̃. (2.8)
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On the surface of the fluid, where it has an interface with the air, we have the kinematic

boundary condition.

ũ =
∂S̃

∂t̃
+ w̃

∂S̃

∂z̃
at r̃ = S̃ (2.9)

where S̃ = R̃ + η̃ + h̃. We also have the tangential and normal stress balances on the free

surface (r̃ = S̃), which are

2S̃z̃(ũr̃ − w̃z̃) + (1− S̃2
z̃ )(ũz̃ + w̃r̃) = 0 (2.10)

and

p̃− 2µ

1 + S̃2
z̃

(
ũr̃ − S̃z̃(ũz̃ + w̃r̃) + S̃2

z̃ w̃z̃

)
= γ

(
1

S̃(1 + S̃2
z̃ )

1
2 )

− S̃z̃z̃

(1 + S̃2
z̃ )

3
2

)
(2.11)

respectively. Here subscripts denote partial derivatives, µ = ρν is the dynamic viscosity

and γ is the surface tension. This formulation is also used in Craster and Matar (2006).

2.2.1 Scalings

Before we do our scalings, it is useful to note the size of some of the physical parameters

of water. These parameters will remain constant for the water flowing down stalactites.

Parameter Symbol Value

Density ρ 997 kg/m3

Kinematic Viscosity ν 1× 10−6m3

Acceleration due to Gravity g 9.81 m/s2

Surface Tension γ 7.2× 10−2N/m

Table 2.4: Physical parameters

For this problem, we have five different length scales. In the radial direction we have

the radius of our stalactite (R̃), the crenulation amplitude (η̃0), and the typical fluid
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thickness (h̃0). In the vertical direction, we have the crenulation wavelength (L̃) and the

capillary length L. The capillary length balances surface tension and gravity through

equations (2.7) and (2.11). This results in L = γ

ρgh̃0
.

For this problem, we will nondimensionalise by using the fluid thickness for r̃ and the

crenulation wavelength for z̃. At this point, we will also translate the domain, to make

the nondimensional coordinate r be between 0 and h = h̃
h̃0
. Therefore, we are writing our

coordinates as

r̃ = h̃0

(
R̂ + δ̂η̄(z) + r

)
(2.12)

z̃ = h̃0λz (2.13)

where we have the dimensionless ratios: R̂ = R̃
h̃0

between the radius and fluid thickness,

δ̂ = |η̃|
h̃0

between the crenulation amplitude and fluid thickness, and λ = L̃
h̃0

between the

crenulation wavelength and fluid thickness. η̄ is the normalised nondimensional crenulation

shape.

For this, we will assume the crenulation amplitude is similar to the fluid thickness,

resulting in δ̃ being O(1). In section 2.1 we found that the wavelength of the crenulation

was a similar order of magnitude to the radius, varying by at most a factor of 10. While

the radius varied between 10−3 − 10−1 m, figure 2.3 showed that the thickness was always

around 10−5. This means that R̂ ∼ O(102 − 104), with the smaller value relating to soda

straw stalactites and the larger relating to conical ones. Similarly, this is true for λ. We

therefore rewrite our coordinates as

r̃ = h̃0

(
R

ϵ
+ η(z) + r

)
(2.14)

z̃ = h̃0
z

ϵ
(2.15)

where ϵ = 1
λ
≪ 1, R = R̂

λ
∼ O(1) and η = δ̂η̄ ∼ O(1). Using the small parameter ϵ, we

can make an approximation to equations (2.5)-(2.11). The dimensional variables (with
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tildes) are related to the nondimensional variables (without tildes) as such

w̃ = Ww =
gh̃20
ν
w, ũ = ϵWu, p̃ =

γ

h̃0
p, t̃ =

L̃

W
t =

h̃0
ϵW

t. (2.16)

Noting this change of variables means that the derivatives become

∂

∂r̃
=

1

h̃0

∂

∂r
(2.17)

∂

∂z̃
=

ϵ

h̃0

(
∂

∂z
− ηz

∂

∂r

)
. (2.18)

We can Taylor expand the reciprocal of the radial component

1

r̃
=

ϵ

h̃0

(
1

R + ϵ(η + r)

)
=

ϵ

Rh0

(
1− ϵ

η + r

R
+O(ϵ2)

)
. (2.19)

Using equations (2.14)-(2.19), we can get the nondimensional versions of equations (2.5)-

(2.11).

ur + wz − ηzwr + ϵ
u

R
= O(ϵ2) (2.20)

ϵurr −
pr
B

= O(ϵ2) (2.21)

wrr + 1 + ϵ

(
wr

R
− 1

B
(pz)− Re(wt + uwr + w(wz − ηzwr))

)
= O(ϵ2) (2.22)

u = 0, w = 0 at r = 0 (2.23)

u = ht + w(ηz + hz) at r = h (2.24)

wr(h) = O(ϵ2) (2.25)

p(h) =
ϵ

R
− ϵ2

(
η + h

R2
+ ηzz + hzz

)
(2.26)

where B =
h̃2
0ρg

γ
is the Bond number and Re = Wh̃0

ν
= gh̃0

3

ν2
.

To find approximate values for the Bond and Reynolds numbers, we consider the
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potential stalactites. For soda straws the radius of the stalactite R = 2.5 mm and so

if the flow rate is 100 ml/day then fluid thickness is 29 µm according to equation (2.4).

From this fluid thickness we find Re = 0.23 and B = 1.1× 10−4. Soda straw stalactites

have a wavelength of around 0.5 mm, which means ϵ = 6× 10−2, so here we have roughly

Re = O(1) and B = O(ϵ3).

On the other hand, if we take a conical stalactite of radius 10 cm, with the same

flow rate of 100 ml/day, then the fluid thickness is 8.4 µm. This gives Re = 5.7× 10−3

and B = 9.6 × 10−6. A stalactite with 10 cm radius has been modelled to have a 2 cm

crenulation wavelength (Camporeale, 2017), making ϵ = 4 × 10−4. Here B ∼ O(ϵ) and

Re ∼ O(ϵ). For conical stalactites however, the amplitude of the crenulations is also

significantly larger than the fluid thickness. Therefore, we would expect the curvature of

the wall to appear at higher order.

The case where the fluid is a similar thickness to the wall amplitude should occur

somewhere between the soda straw stalactite, where the banding is smaller, and the conical

one. We will call this the transition stalactite. As this stalactite is somewhere between

these 2 cases, we will assume that the Bond number is B ∼ O(ϵ2), so we set Bo = B
ϵ2
.

If we write the Reynolds number in terms of the flow rate

Re =
3Q

2πR̃ν
(2.27)

we see that for Re = 1 we require Q

R̃
= 2 × 10−6. This is possible for the Q = 2 × 10−8

m3/s and R̃ = 1× 10−2 m, so we will include Re at O(1) for the transition case.

For both cases, equation (2.21) has the pressure term much larger than the biggest

velocity term. This means that the pressure is constant with respect to r. From equation

(2.26), we see that pz is O(ϵ2). For the soda straw case, this pressure term comes into

equation (2.22) at leading order. We will further look at the hydrodynamics for this case

in chapter 3. For the transition stalactite, the pressure term is smaller and only comes

into equation (2.22) at O(ϵ). The hydrodynamics based on this scaling for transitioning
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2.3. CRENULATION SHAPES

stalactites is studied in chapter 4.

While here we have scaled the z direction with respect to the crenulation wavelength,

it is also useful to have scaled this instead by the stalactite radius. This would make it

clearer to understand the effect changing the wall wavelength will have for a given radius.

In this case, we will set R = 1 and can set a sinusoidal wall to be of the form

η = δ cos

(
2πz

L

)
(2.28)

where δ is the amplitude of the wall relative to the fluid thickness and L = L̃
R̃

is the

wavelength of the wall. This makes it easier to see the effect of changing the wavelength,

which previously would have to be done by changing several of the other parameters

(R,Bo, ϵ).

2.3 Crenulation Shapes

In order to model the crenulations, we will look at three possible shapes. These are

sinusoidal, step and sawtooth. For our crenulations, we will assume periodicity. This

makes a sinusoidal wall a good place to start, as we can write any periodic function as a

Fourier series.

η =
a0
2

+
N∑

n=1

[
an cos

(
2πnx

L

)
+ bn sin

(
2πnx

L

)]
. (2.29)

Steps and sawtooths could be used to model the banding found on soda straw stalactites

(Huang and Fairchild, 2001; Huang et al., 2001). Alternatively, they could be used to

model plant growth or erosion. These could all be the initial wall perturbation that leads

to the growth of the crenulations (Vesipa et al., 2015; Camporeale, 2017).

In order to model these shapes, we will use tanh as a smoothing function, as is done in
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Tseluiko et al. (2008). Our step function will be modelled as

η = δ

[
tanh

(
2z − L+ ℓL

2ξL

)
− tanh

(
2z − L− ℓL

2ξL

)
− 2ℓ

]
. (2.30)

Here δ and L define the amplitude and wavelength of the crenulation as before. Additionally,

we have the parameters: ℓ, which is the ratio between the width of the top of the step

and the wavelength; and ξ, which controls the steepness of the step. As ξ → 0 the corners

of the step become right angles. The shift of 2δℓ is done so that the wall has 0 mean

(
∫ L

0
η dz = 0).

(a) (b)

Figure 2.5: Different shapes of steps used as the wall. (a) shows how decreasing the
steepness parameter makes the step approach a right angle. (b) shows steps of different
widths.

Figure 2.5 shows how ℓ and ξ affect the wall shape. For ℓ > 0.5 we can view this as

being a flat wall with a mound on it, and ℓ < 0.5 can be viewed as having a trench.

Similarly, we can model our sawtooth using this step

η = σ1δ

[
2z − L(1− σ2ℓ)

2ℓL

] [
tanh

(
2z − L+ ℓL

2ξL

)
− tanh

(
2z − L− ℓL

2ξL

)]
− σ2δℓ.

(2.31)

Again, ξ and ℓ are the steepness parameters and the proportion of the wall that is a

sawtooth. σ1, σ2 ∈ (−1, 1), are parameters to determine the direction of the slope, and

whether the step is before or after the slope. Here we have L(1− ℓ) of the wall being flat.
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As ℓ→ 1 we will have the normally defined sawtooth. However, for the cases ℓ = 1, we

would lose the smoothing effect of the tanh. Therefore, we will generally keep ℓ < 0.9.

(a) (b)

Figure 2.6: Different shapes of sawtooth used as the wall. (a) shows how decreasing the
steepness parameter makes the point of the saw much sharper. (b) shows the different
configurations of saw we have.

Figure 2.6 shows the different shapes of sawtooths we have. Subfigure (a) similarly

to the step plot shows how the smaller ξ is, then the steeper the point of the saw is. In

(b) the fluid is flowing from left to right. These walls in the order of the legend are then

viewed as: the fluid flowing down a slope before a drop; the fluid dropping down a step

before flowing down a slope; the fluid underhanging a slope before a step-up; and the fluid

stepping up before underhanging a slope.

2.4 Growth of Stalactites

As highlighted by Short et al. (2005b) the growth of a stalactite is much slower than the

time it takes for the fluid to transverse it. The time it takes for the fluid to traverse one

crenulation tt =
λ
W

∼ 10 s. Meanwhile, assuming a growth rate v of 1 cm/century, the

time it takes for a stalactite to grow by a fluid thickness is tg =
h̃
v
∼ 106 s. As this is much

slower than the traversal times, Short et al. (2005b) separates the timescales and considers

a stagnant fluid layer.
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Because of the different timescales, Vesipa et al. (2015); Camporeale (2017) make

use of a quasi-steady approximation. Here they find the steady state fluid thickness to

determine the stalactite growth. However, if the fluid does not settle into a steady state,

the dynamics of the fluid may yet affect the growth. Therefore, a time averaged fluid

thickness will be considered.

The growth of the stalactite is dependent on the amount of calcite deposited on the

surface. This can be viewed as the flux of calcium concentration at the surface. This

deposition not only causes the crenulations to grow, but also the radius of the stalactite.

Overall we have

R̃t + η̃t = −ρcD
∂c̃

∂r̃

∣∣∣∣
R̃+η̃

(2.32)

where ρc is the molar volume of calcite, D is the diffusion coefficient for calcium and c̃ is the

concentration of calcium ions in the fluid. The time it takes for the ions to diffuse across

the wavelength is td =
h̃2

D
∼ 0.1 s, which is faster than the fluid transverses. Therefore,

the concentrations should effectively be constant across the fluid.

The growth is however limited by the production of carbon dioxide (Plummer et al.,

1978; Buhmann and Dreybrodt, 1985). Therefore, to model the growth, we must also

consider the carbon dioxide concentration. The concentrations of calcium and carbon

dioxide in the fluid layer can be modelled by the convection-diffusion-reaction equations

∂c̃i
∂t

+ ũ · ∇̃c̃i = Di∇̃
2
c̃i + r̃i (2.33)

where c̃i denotes the concentration, with the subscripts i = 1, 2 referring to calcium

and carbon dioxide respectively. ũ is the velocity of the fluid, Di denotes the diffusion

coefficients and r̃i is the reaction rate. For this problem, the conversion of carbon dioxide

to bicarbonate is the rate limiting process (Kaufmann and Dreybrodt, 2007). The other

chemical reactions of the system occur much faster, and so they can be assumed to be in

equilibrium (Buhmann and Dreybrodt, 1985). Therefore, the reaction rate for calcium is
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r̃1 = 0, and the reaction rate for carbon dioxide

r̃2 = k−[HCO3
−]− k+c̃2, (2.34)

where k± are the reaction rates.

While the concentrations may vary seasonally, we will consider growth based on mean

concentrations so that the temporal derivatives of the concentration are neglected. This is

similarly done by Short et al. (2005b); Vesipa et al. (2015). While the concentration of

the calcium concentration should deplete further down the stalactite due to the calcium

being deposited, the concentration gradient is small and the effect over one wavelength

is negligible (Vesipa et al., 2015). Therefore, we will consider the z dependence in the

concentrations to be caused by the wall shape. In order to model the growth of the

stalactite, we will at each time step compute the fluid thickness and velocities for the given

radius and wall shape. From this we can calculate the chemical concentrations and hence

the calcite flux. This allows us to grow the radius and wall shape. With the new radius

and wall shape, we again calculate the new fluid properties, so we can calculate the new

calcite flux and so on. This is explored further in chapter 5.

2.5 Computational Methods

For these problems, our spatial coordinate z ∈ [0, L]. In order to solve the equations

numerically, we discretise z so that

zi =
(i− 1)L

n
(2.35)

where n is the number of points and i ∈ {1, 2, . . . , n + 1}. As our domain is periodic,

z1 = zn+1. The fluid thickness at a point is denoted hi = h(zi). For the spatial derivatives,

we initially finite differences, however as our domain is periodic, we then used a pseudo-

spectral method to improve the precision. We used second order finite centred finite
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differences,

h′i =
n

2L
(hi+1 − hi−1) (2.36)

h′′i =
n2

L2
(hi+1 − 2hi + hi−1) (2.37)

h′′′i =
n3

2L3
(hi+2 − 2hi+1 + 2hi−1 − hi−2) (2.38)

h′′′′i =
n4

L4
(hi+2 − 4hi+1 + 6hi − 4hi−1 + hi−2). (2.39)

For the spatial derivatives, we used a pseudo-spectral method, following the steps of

Alexander (2021). Here, we make use of MATLAB function fft to perform a fast Fourier

transform, resulting in ĥk = fft(hk). In Fourier space the mth derivative becomes

ĥ
(m)
k = (ik)mĥk. (2.40)

This is then converted back into real space by using MATLAB function ifft.

For these problems, we need to calculate up to the fourth derivative, as seen by

equations (1.2)-(1.5). For the wall and the initial condition we will mostly be using cosines,

so if we have a wall η = cos z, this results in ηzzzz = cos z. We can test the accuracy of

the numerical methods based off this, with the error defined as

E =
1

n

(
n∑

i=1

(ηzzzz − ηz)
2
i

) 1
2

, (2.41)

where again n is the number of points and i denotes the value at zi.

Figure 2.7 shows the error for the different schemes. For both finite difference and

pseudo-spectral, we see that increasing the number of grid points reduces the error.

Increasing the number of grid points however also slows down the integration. In the finite

difference case, the error increases again after 210 points. From this figure, we see that the

finite difference has a minimum error of 10−7 at n = 210. Meanwhile the pseudo-spectral

error is always less than that of the machine error. For this reason we decided to use
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Figure 2.7: Numerical error of (cos z)zzzz for the different differentiation methods, with 2n

points.

pseudo-spectral for the differentiation, with n = 256 grid points chosen as a compromise

between speed and error.

To solve our equations, we made use of several MATLAB functions. For the steady

state equations or other equations which can be written as

F(h) = 0, (2.42)

with h the fluid thickness, we use fsolve. fsolve takes this vector of equations and

an initial guess to find the solution h. Here we can write the spatial derivatives of h as

functions of h using the pseudo-spectral method outlined above. This outputs a vector for

the fluid thickness h that satisfies the equations.

Time integration is done using MATLAB function ode15s. This takes the input F ,

where

ht = F (t, h) (2.43)

and an intial guess for the fluid thickness h. This solver was chosen as the equations we

are solving are stiff. Here the fluid thickness at each time step is outputted.
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For the Floquet analysis, we can cast the equation into the form

Ah = ωh (2.44)

where A is a matrix, ω are eigenvalues, and h the eigenvectors of the fluid thickness. We

can then use MATLAB function eig, which takes the input A and outputs the eigenvalues

ω and corresponding eignevectors h.

Code written for this thesis can be found in the GitHub repository: https://github.

com/srh18/PhD-work. The class shape solveh.m was created to find and analyse solutions

for different parameters.
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Chapter 3

Hydrodynamics 1: Inertialess Flow

3.1 Introduction

Thin films flowing down cylinders with topography has applications to the geophysical world

in the cases of icicles (Ueno, 2007; Ueno et al., 2009) and stalactites (Short et al., 2005b;

Vesipa et al., 2015; Camporeale, 2017). However, these tend to model the hydrodynamics

as a fluid flowing down a flat inclined plane, which could be missing some of the effects

that the true geometry has on their growth.

In this chapter, we will be building on gravity driven thin film flows down cylinders,

which were previously studied by Kalliadasis and Chang (1994); Craster and Matar (2006);

Frenkel (1992). In these works, the surface tension also works to drive the flow. To these

models, we will introduce surface topography, with an amplitude of similar size to the

fluid thickness.

Flow over topography has previously been studied down an inclined plane (Tseluiko

et al., 2013), where we see the effect of the topography in the surface tension terms.

Experimentally, work has been done on the effects of flow over topography down an

inclined pipe (Kuehner et al., 2021).
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3.2 Governing Equations

For this problem, we will be considering a thin film flow under gravity down a cylinder that

has a long wave disturbance to its surface. The cylinder and its disturbance are fixed in time.

The amplitude of this disturbance is of the same order as the fluid thickness. Continuing

on from section 2.2, where we have nondimensionalised the Navier Stokes equation (2.5)-

(2.11) by using the scalings (2.14)-(2.16). This resulted in the nondimensional equations

(2.20)-(2.26). As discussed in section 2.2, in this chapter we will work with a scaled Bond

number Bo = B
ϵ3

= ρh0
2g

γϵ3
. We will also scale the pressure term using

P =
ρh0g

ϵ
, (3.1)

so that the pressure terms appear more clearly at leading order in the momentum equations

(2.21)-(2.22).

To leading order the equations (2.20)-(2.26) have now become

ur + wz − ηzwr = 0 (3.2)

pr = 0 (3.3)

wrr − pz + 1 = 0 (3.4)

with boundary conditions

u(0) = w(0) = 0 (3.5)

u(h) = ht + w(h)(hz + ηz) (3.6)

wr(h) = 0 (3.7)

p(h) = − 1

Bo

(
− 1

ϵR
+
η + h

R2
+ ηzz + hzz

)
. (3.8)

From equation (3.3) we find that the pressure is a constant in r and therefore is equal

to that given by the tangential stress balance (3.8). For the velocities we require the
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pressure gradient, so differentiating with respect to z results in

pz = − 1

Bo

(
ηz + hz
R2

+ ηzzz + hzzz

)
(3.9)

From this we see that the pressure gradient comes from the balance between surface

tension caused by the curvature of the cylinder and of that caused by the curvature of the

wall.

We can then calculate w from equation (3.4), with the boundary conditions (3.5), (3.7),

resulting in

w = (pz − 1)

(
r2

2
− rh

)
(3.10)

Substituting this into equation (3.2), using the no flux boundary condition (3.5), we get

u = ηzw − pzz

(
r3

6
− r2h

2

)
+ (pz − 1)

r2hz
2
. (3.11)

Applying the velocities (3.10)-(3.11) into the kinematic condition (3.6) we get an

evolution equation for the fluid thickness.

ht +
∂

∂z

(
h3

3
(1− pz)

)
= 0. (3.12)

This shows that the fluid thickness is driven by gravity balanced by the surface tension

found in the pressure gradient. Writing out the pressure gradient fully by substituting in

equation (3.9), we get the equation

ht +
∂

∂z

(
h3

3

(
1 +

1

Bo

(
hz + ηz
R2

+ hzzz + ηzzz

)))
= 0. (3.13)

For the smooth cylinder case, η = 0, this is the same as the equation reported in

Kalliadasis and Chang (1994). For flow over topography on an inclined plane with no
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inertia, Tseluiko et al. (2013) derives the equation

ht +
∂

∂x

(
2

3
h3 − 2 cot θ

3
h3(h+ η)x +

1

3Bo
h3(h+ η)xxx

)
, (3.14)

where x is the coordinate in the direction of flow, and θ is the angle of the plane from the

horizontal. We see that the term we have due to the azimuthal curvature is equivalent to

that of their term due to the z-component of gravity. Due to the positive sign we have in

our equation, this would be in the case where their angle θ > π
2
, describing fluid flowing

down an overhanging wall.

3.3 Steady States

We can find steady states of the system by setting ht = 0. This allows us to integrate

equation (3.13) with respect to z to get

q =
h3

3

(
1 +

1

Bo

(
hz + ηz
R2

+ hzzz + ηzzz

))
(3.15)

where q is the constant flow rate. For the smooth cylinder case, h = 1 is a trivial solution

of (3.15), which has the flow rate q = 1
3
.

3.3.1 Small amplitude wall

We consider the amplitude of the wall to be small, so |η| = δ ≪ 1. For this problem, we

will assume δ > ϵ so that the O(δ) terms are larger than the O(ϵ) terms. Due to the small

wall perturbation, we expect this to cause a perturbation to the fluid thickness of a similar

size. Setting h = 1 + δĥ and η = δη̂, substituting into equation (3.15) and looking at the

O(δ) terms, results in the equation

ĥzzz +
ĥz
R2

+ 3Bo ĥ = − η̂z
R2

− η̂zzz. (3.16)
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In the case where we have a sinusoidal wall of the form η̂ = cos kz, where k = 2π
L
, we

can find a solution to (3.16) of the form

ĥ = A cos(kz − θ) (3.17)

where

tan θ =
3BoL3R2

2π(4π2R2 − L2)
(3.18)

A = − cos θ. (3.19)

For a positive amplitude we require cos θ < 0, hence the phase shift must be π
2
< θ < 3π

2
.

There is a discontinuity in the phase shift at L = 2πR. However, at this wavelength, the

wall terms cancel out. The wavenumber in this case k = 1
R
and so

ηz
R2

+ ηzzz = −k sin k
R2

+ k3 sin k = 0. (3.20)

In this case we simply have the same equation as if there was no wall. Looking at the

wavelengths just before and after, by setting L = 2πR ± ϵ where ϵ → 0, we find that

L = 2πR − ϵ gives θ → 3π
2

and L = 2πR + ϵ gives θ → π
2
. Both of these result in an

amplitude tending to 0, as expected from the smooth cylinder case.

It is also interesting to note that as L → 0 we would get tan θ → 0, meaning that

θ = π. In this case, the fluid thickness disturbance is out of phase with the wall. It also

has A = 1 so that if you looked at the surface of the fluid it would appear cylindrical.

Looking at increasing L > 2πR, the phase shift and the amplitude will initially increase

slightly, however the limit L → ∞ again means that θ → π
2
. This also tells us that the

fluid disturbance is never larger than that of the wall disturbance as A ≤ 1.

Figure 3.1 shows this more clearly as we see the resulting amplitudes and phase shift

for R = 0.5, 1, 2. The Bond number here is set to 1 as it only appears as a scaling factor

for tan θ. From subfigure (a) we see that for L < 2πR, the amplitude decays from 1 to 0.
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(a) (b)

Figure 3.1: (a) The amplitude of the fluid disturbance against the wavelength for R =
0.5, 1, 2. (b) The phase shift of the fluid disturbance from the wall disturbance for
R = 0.5, 1, 2.

For L > 2πR on the other hand the amplitude remains a lot smaller, reaching only around

a tenth of the wall amplitude for R = 1. It can also be seen in these cases that the wall

amplitude decreases with increasing radius. Subfigure (b) shows the phase shift from the

wall disturbance. We can see that for small wavelengths the fluid disturbance is out of

phase with the wall as expected. The phase shift increases to θ = 3π
2

as L → 2πR and

then drops to θ = π
2
. For L > 2π the phase shift increases up until some point and slowly

decreases again.

3.3.2 Numerical steady state solutions

For larger amplitude walls, we solve the equation numerically using MATLAB’s function

fsolve, as outlined in section 2.5. The domain is discretised into 256 grid points, with

periodic boundary conditions. The derivatives are calculated using a pseudo spectral

method. Steady state solutions can be found by imposing an initial flow rate, however to

make it easier to compare to the dynamical solutions we have decided to fix the mass of

the fluid. The mass can be calculated from the volume integral of the density. Back in the
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dimensional variables this is

m̃ =

∫ 2π

0

∫ L̃

0

∫ R̃+η̃+h̃

R̃+η̃

ρr dr dz dθ. (3.21)

At leading order this is now

m̃ = 4πρ
Rh̃30
ϵ2

∫ L

0

h(z) dz . (3.22)

So here we have the dimensional constant for mass M = 4πρ
h̃3
0

ϵ2
, where m̃ = Mm. This

gives

m = R

∫ L

0

h dz . (3.23)

For a smooth cylinder which has the solution h = 1, this gives us that the m = RL.

As we seek solutions that have mean thickness of 1 independent of the wavelength of

the wall, we have imposed the condition

1

L

∫ L

0

h dz = 1. (3.24)

The flow rate q can be calculated as a result of this. While this is done to make it easier

to compare numerical results, in an experimental set-up it may be easier to alter the flow

rate.

As well as the flow rate q the results can be characterised by the norm

∥h0∥2 =

√
1

L

∫ L

0

h0
2 dz. (3.25)

For the smooth cylinder case, this gives ∥h0∥2 = 1 and the small amplitude wall (3.17)

gives

∥h0∥2 =
√
1 +

δ2A2

2
. (3.26)
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(a)

(b)

(c)

(d)

Figure 3.2: (a) Plot showing how the flow rate is affected by walls of different wavelengths
and amplitudes. (b) and (c) show the fluid thickness for wavelengths of L = π and L = 4π
respectively. (d) shows the fluid profile in relation to the wall for walls of amplitude δ = 1.

From figure 3.2(a) we see how the flow rate is affected by different shaped walls. For

these solutions, we have set the radius R = 1 and the Bond number Bo = 1. We see that

increasing the amplitude decreases the flow rate. For the smooth cylinder case δ = 0, we

have q = 1
3
and this is also true for the case where L = 2π as this is where the wall terms

cancel. Increasing the wavelength causes the flow rate to decrease more slowly. In the

regions labelled “no steady state” the code did not converge. As we tend towards these

regions, we see that the flow rate tends to 0. Solutions on the boundary have the fluid

dewetting from the wall. This is because we have fixed the volume of the fluid to be L and

so for walls where δ > 1 we have the amplitude of the wall larger than the mean thickness

of the fluid, resulting in the wall terms having a larger effect on the pressure gradient.

Figures (b) and (c) show the fluid thicknesses where the different pressure terms

dominate. In (b) we have a wavelength of L = π meaning the axial curvature term

dominates the flow. In this scenario, we see that the maximum thickness is slightly

downstream of the trough in the wall, and the amplitude of the oscillation of the fluid is
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similar to that of the amplitude of the wall. This is in contrast to what we see in figure

(c). Here the wavelength is L = 4π, where the azimuthal term dominates. Here we see

the maximum fluid thickness occurring roughly halfway between the peak and the trough,

with the amplitude of oscillation of fluid thickness only around 0.2 that of the amplitude

of the wall. These results agree with the phase shift and amplitude suggested by the small

amplitude wall (3.17). For the δ = 3 we see the non-linearity appear, with a second smaller

maximum around z = 0.9L.

Figure (d) shows the fluid profiles compared to the walls which they flow over for

different wavelengths. Here the wall always has amplitude δ = 1. We see that for the

wavelengths L > 2π that the fluid appears like it is just following the wall shape. This is

because the amplitude of the fluid thickness is small. The L = 2π case is included here,

which has thickness h = 1 everywhere. This allows us to see that in the longer wavelength

cases, the fluid is slightly thicker after the peak in the wall and slightly thinner just before

the peak. This is in contrast to the L < 2π cases, where the fluid can be viewed as trying

to fill the wall trough, with the fluid thickest before the wall peak and thinnest just after.

3.3.3 Alternative wall shapes

We can also numerically calculate the fluid thickness for wall shapes that are not sinusoidal

by using equation (3.15). We will first look at the steady state fluid thickness based on

a wall that is a step, as in equation (2.30), described in section 2.3. Here we have taken

ξ = 0.01. This makes the ηzzz term in (3.15) very large at the step up and down, where it

is around 1
L3ξ3

. If this term is too large the code fails to converge, so to compensate for

the large derivatives, we must also impose that the wall has a small amplitude or a long

wavelength.

Figure 3.3 shows how a step wall affects the fluid flow. (a) shows the fluid profile and

from this we can see that the fluid thins just before a bump, and thickens just before a

drop. These results can also be seen in other thin film flows over steps (Kalliadasis et al.,

2000; Tseluiko et al., 2008, 2013). This can also be seen in the fluid thickness’s difference
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(a)

(b)

(c)

(d)

Figure 3.3: Steady state fluid thickness over a wall step. (a) and (c) show how different
wavelengths affect the fluid thickness, with the step up and down being equal lengths. (a)
shows the fluid profile, whereas (c) shows the difference of the fluid thickness from the
mean. (b) has a narrow step up and (d) a narrow step down and are both with wavelength
L = 2π.

from the mean, with it being negative before the step-up and positive just after. Increasing

the wavelength makes these disturbances seem narrower, however if you factor L back in

they are of a similar width. From (c) we additionally see the fluid thickening just before

the step-up and thinning before the step-down. This has the effect of smoothing the fluid

surface. From (b) we have narrowed the step-up, and we find that the fluid still thickens

around 1 unit before the drop. For (d) we have narrowed the step-down, and we can see

that the fluid is thinning about 1 unit before the step-up. From (b) and (d) where we have

longer flat sections of the wall, we see that the fluid thickness remains close to the mean.

Instead of treating the wall as a step, we can model our wall as a sawtooth function

defined by equation (2.31). In these cases, instead of both a step-up and a step-down,

we simply have one or the other. Figure 3.4 shows how a sawtooth wall can affect the

fluid flow. (a) shows the fluid profile, with (b) showing the corresponding fluid thickness.

Here we see that the fluid thickness is mostly unaffected by the slope, apart from a small

kink where the slope starts. This acts to smooth the transition as seen in the fluid profile.
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(a)

(c)

(e)

(b)

(d)

(f)

Figure 3.4: Steady state fluid thickness over a wall shaped like a sawtooth. (a) and (b)
show how different wavelengths affect the fluid thickness. (a) shows the fluid profile,
whereas (b) shows the difference of the fluid thickness from the mean. (c)-(f) show mean
fluid thicknesses for different directions of step, all with wavelength L = 2π. In all cases
ℓ = 0.8.

Comparing the fluid thickness in (b) with that of the step-down shown in figure 3.3(b), we

see that this produces the same results. Figures (c)-(f) shows the fluid thickness for the

four possible sawtooth configurations. We again see that these can be used to model just

a step-down in (c) and (e), and just a step-up for (d) and (f).
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3.4 Stability Analysis

We can perform linear stability analysis by considering a small perturbation away from

the smooth cylinder case

h = 1 +Heikz−iωt (3.27)

where |H| ≪ 1. Applying this to equation (3.13), with η = 0 results in

iω = ik +
1

3Bo

(
k4 − k2

R2

)
. (3.28)

Separating into real and imaginary parts, so that ω = ωr + iωi, this gives

ωr = k (3.29)

ωi =
1

3Bo

(
k2

R2
− k4

)
. (3.30)

Therefore we are stable if k < 1
R
and unstable for k > 1

R
. This means that L = 2πR lies

on the neutral stability curve.

Note that if the wall is

η = cos

(
2πz

L

)
(3.31)

then

ηz
R2

+ ηzzz = 0 (3.32)

at L = 2πR. Therefore equation (3.13) is identical in the case where η = cos
(
z
R

)
to that

with η = 0. This means that in this case we also have a change of stability at L = 2πR.

As the equations coincide at the point where the stability changes, we may expect the

stability to change at this wavelength for any wall disturbance.
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Including the wall term means that our steady state solution is no longer a constant.

Assuming our solution to be periodic, we can apply Floquet Theorem. Here we consider a

small perturbation from the steady state of the form

h = h0(z) +H(z)e−ωt (3.33)

where |H(z)| ≪ |h0|. Applying this to equation (3.13) results in

ωH =
∂

∂z

(
1

Bo
h0

3

(
Hz

R2
+Hzzz

)
+ h0

2H

(
1 +

1

Bo

(
h0z + ηz
R2

+ h0zzz + ηzzz

)))
(3.34)

We now solve this numerically by turning this into an eigenvalue problem. This is done by

using finite difference to write the derivatives in terms of H, as discussed in section 2.5.

The eigenvalue problem is then solved using MATLAB’s function eig, which gives us the

Figure 3.5: The number of unstable modes of the steady state for walls of the form
η = δ cos

(
2πz
L

)
where R = Bo = 1.

eigenvalues and corresponding eigenvectors. We can determine the number of unstable

modes by looking at the eigenvectors where the eigenvalues have negative real part. The
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real part of the eigenvectors is the growth rate. The imaginary part of these eigenvalues

will tell us a wave speed for these eigenvectors.

Figure 3.5 shows the number of unstable modes of the steady states according to this

Floquet analysis. As expected, there are only unstable modes for the case where L > 2πR.

We see in the smooth cylinder case the additional modes appear for the multiples of 2π.

Increasing the wall amplitude causes these higher modes to appear at longer wavelengths.

The regions, in which no steady states were found, are shown here as in figure 3.2. We

also see here that for a large enough amplitude, we do have a stable region for wavelengths

L > 2π corresponding to the lower flow rate. At larger amplitudes, the cases where there

are fewer unstable modes occur roughly where the flow rate is smaller, as shown in figure

3.2.

(a)

(b)

(c)

(d)

Figure 3.6: Growth rates of the first 4 unstable modes of the steady states from the
Floquet analysis for different amplitude walls.

Figure 3.6 shows the growth rates (ωr) of the first four unstable modes from the Floquet

analysis. Increasing the amplitude of the wall has little effect on the growth rates, apart
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from for the first unstable mode. As with figure 3.5, we see that increasing the wall

amplitude makes the higher modes appear at longer wavelengths. From this figure, we

also can see which mode is the most unstable at different wavelengths. Increasing the

amplitude of the wall also causes the transition to occur at longer wavelengths.

3.5 Time Dependent Solutions

To solve equation (3.13) we have made use of the MATLAB function ode15s. In order

to use this, we have split the domain z into 256 spatial steps, with spatial derivatives

calculated using a pseudo-spectral technique, described in section 2.5. For these cases we

integrated for 500 time units with the initial condition being

hinit = 1 + 0.1 sin

(
2πz

L

)
. (3.35)

so that

1

L

∫ L

0

hinit dz = 1 (3.36)

Here L is the same as the wavelength of the wall oscillation. We fixed the parameters

Bo = 1 and R = 1 in order to primarily study the effect that the amplitude and wavelength

of the wall had on the fluid thickness. As expected, the cases where L < 2π settled to

the steady state solution. Therefore, we will primarily be looking at the cases where

L > 2π. Solutions were simulated for wavelengths of L = 2π to L = 10π at π
4
intervals,

with amplitudes of δ = 0.1, 0.5, 1, 1.5, 2. We also modelled the smooth cylinder equation

η = 0 to see how the solutions compared. Larger amplitude (δ = 3, 4, 5) solutions were

also simulated between L = 2π to L = 10π at π intervals. This gave us a large range of

results to compare.

From this initial condition (3.35), the fluid initially undergoes wave steepening. In

shorter wavelength cases, generally where the k = 1 mode is the most unstable from the
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Floquet analysis as seen in figure 3.6, the solution settles into a time periodic wave with

a single dominant peak. Increasing the wavelength further, we found that the solutions

could also form two or three peaked waves. These cases were sometimes quasi-periodic or

non-periodic. To see if these eventually settled into a time periodic orbit, these solutions

were further integrated up to 2000 time units.

An alternative type of solution also arises when the wall amplitude is sufficiently large.

The large amplitude causes a much bigger pressure gradient from the increased surface

tension. This slows the fluid down to such an extent that we lose the time periodic wave,

and we see the fluid build up just past the peak of the wall, until finally gravity causes a

drop to flow down to the next period and the process repeats. In the extreme case of this,

the fluid dewets and is held in place by the pressure gradient.

We can classify the solutions by looking at the shape of the norm ∥h∥2 against time

and by looking at the phase plane of ∥h∥2 and its time derivative. These results can be

classified by looking at ∥h∥2. As with the steady states this is given by

∥h∥2 =

√
1

L

∫ L

0

h2 dz. (3.37)

We can also consider the flow rate q as expressed in (3.15), however since we are in the

time dependent regime the flow rate is no longer a constant in space. Therefore, we will

consider the mean flow rate

Q =
1

L

∫ L

0

q(z) dz . (3.38)

The mean flow rate is a helpful indicator of when the transition into the dripping case

occurs, as we can see it slowly approach 0.

Figure 3.7 shows some examples of the different types of solutions that were found.

Here we have used ∥h∥2 to highlight the differences between the solution types. Figure (a)

shows a time periodic solution, which can be seen by the phase plot being a closed loop.

In this case, we find that the time it takes to go between peaks in ∥h∥2 is equal to the
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(a)(i)

(b)(i)

(c)(i)

(d)(i)

(e)(i)

(ii)

(ii)

(ii)

(ii)

(ii)

Figure 3.7: Plots used to classify the types of the solutions. (i) are plots of ∥h∥2 against
time, and (ii) are phase plots of ∥h∥2 against its time derivative. (a) shows a time periodic
solution. (b) has a time periodic solution where the period is different to the time it takes
for a fluid peak to traverse 1 spatial period. (c) shows a quasi-periodic solution. (d) shows
a non-periodic solution. (e) shows the case where the fluid produces a dripping motion.
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time it takes a wave to travel one period. These occur for parameters that roughly match

those for one unstable mode in figure 3.5.

Figure (b) is also time periodic as seen by the closed loop. Here the fluid peak travels

a spatial period in the time between the consecutive maxima in ∥h∥2 where ∥h∥2 repeats

every fourth period. This is probably a special case of the quasi-periodic wave, where this

secondary frequency is an integer multiple of the wave frequency. Other periodic cases

can arise where the fluid travels in a wave with 2 main peaks. In these cases, the time

period of ∥h∥2 will be half of the traversal time, as it repeats once the first peak reaches

the position of the second. This periodicity is further seen by looking at the map of the

maximum ||h||2 in figure 3.8(a), where the maximum follows a path which makes a closed

square.

(a) (b) (c)

Figure 3.8: Map of the maximum ||h||2 of figure 3.7(b)-(d).

Figure 3.7(c) shows a quasi-periodic wave. Here we still have the oscillation from the

fluid traversing a period. However there is also a secondary oscillation that is affecting the

maxima of ∥h∥2. Here the oscillations have periods of around 17.5 and 210 time units,

which means the shorter oscillation occurs about 12 times during the period of the longer

oscillation. The quasi-periodicity is highlighted by the map of the maximum ||h||2 shown

in figure 3.8(b). Here we see the path almost forms a loop.

Figure 3.7(d) shows a non-periodic solution, as there seems to be no coherent structure

in either plot. This is further seen by the map of the maximum ||h||2 in figure 3.8(c),

where the previous maximum has no obvious effect on the next one.

Figure 3.7(e) shows the dripping case. Here the fluid takes much longer to traverse a

crenulation, with a period around 80 time units, compared to around 12 time units for (a).
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We have called it the droplet case as here the fluid seemingly remains suspended, as can

be seen by the broad maxima of ∥h∥2, and then quickly travels a period, as seen by the

steep minima of ∥h∥2. This is also periodic as seen by the phase plot.

For the time periodic cases, we can calculate a wave speed by dividing the wavelength

by the time it takes to traverse a period. By considering more periods, we calculate a

more accurate mean speed. Similarly, we can calculate a mean speed for quasi-periodic

and non-periodic waves by following a fluid peak over a long period of time.

Figure 3.9: Speed of main peak in travelling wave for different wavelength and amplitude
walls.

From figure 3.9 we can see that increasing the wavelength generally increases the wave

speed. However, there are discontinuities where the wave speed suddenly drops. These

discontinuities correspond to the solutions that form more than one main peak. Up until

the first discontinuity there is one clear peak, after the first discontinuity there are two
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peaks and after the second discontinuity there are three peaks. For longer wavelengths,

the speeds may not follow the pattern. This is because this initial condition, seen in

equation (3.35), can cause different contributions from the unstable modes. Increasing the

amplitude of the wall decreases the mean speed of the travelling wave. The amplitude

also affects the contributions of the unstable modes, with only the δ = 1 case showing the

three peak solutions.

As a consequence of the results in this figure, we considered solving equation (3.13)

with different initial conditions, to see if we can force different contributions from the

unstable modes. We will now look more closely at these types of solutions.

3.5.1 Time periodic waves

For the wavelengths where we expect one or two unstable modes, and where the amplitude

of the wall hasn’t significantly reduced the flow rate, we find that the solution eventually

settles into a time periodic wave. With the initial conditions from equation (3.35), the

solution starts with a wave steepening to appear more like its eventual shape. The time

the wave takes to settle into its time periodic orbit can take up to 200 time units.

In figure 3.10 we look at the fluid thickness as the wave travels across one period for

walls of amplitude δ = 1. Subfigure (a) shows a section of ∥h∥2 between t = 300 and 320 for

the cases in (b)-(d). Subfigures (b)-(d) show the fluid thickness. Here, the grey lines show

the fluid thickness every 0.1 time units between the maxima of ∥h∥2. The fluid thickness

at the times that have maximum and minimum ∥h∥2, and maximum and minimum mean

flow rates Q are also highlighted in blue, red, yellow, and purple respectively.

From (a) we can see that the amplitude of oscillation has increased from the L = 2.25π

case to the L = 4π case. However, the L = 5.25π case has a smaller amplitude than both

of them. We can see this from the fluid thicknesses, as the L = 4π case has a much larger

peak at the maximum of ∥h∥2 than at the minimum of ∥h∥2. This is different from the

L = 2.25π case where both fluid thicknesses have a fairly similar shape. In the case with

L = 5.25π we now have a solution that has 2 peaks and we can see that ∥h∥2 may oscillate
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(a)

(b)

(c)

(d)

Figure 3.10: (a) Plot showing the ∥h∥2 for 20 time units from t = 300 (b), (c) and (d)
show the fluid thickness for wavelengths of L = 2.25π, L = 4π and L = 6π respectively
where the amplitude of the wall is δ = 1 for all cases. The grey curves are taken every 0.1
time unit between the consecutive maximums highlighted in (a). The fluid thickness at
the maximum and minimum flow rates and ∥h∥2 are highlighted.

less than the other cases, as when one of the peaks obtains the maximum thickness, the

other peak is at the minimum thickness. From this figure, we also see that the maximum

mean flow rate occurs close to the minimum ∥h∥2 and vice versa.

The grey lines show the path that the maximum and minimum fluid thicknesses trace

out. In these cases, we see that the maximum thickness is obtained around z
L
= 0.25,

noting here that the peak in the wall is located at z
L
= 0. These all follow a similar

shape to the steady state solutions. The L = 2.25π case flow is fairly sinusoidal, whereas

increasing the wavelength makes the fluid thickness appear more non-linear.

We can also see how long it takes for the fluid peak to traverse the period. For the

L = 2.25π case, this takes 7.6 time units, resulting in an average speed of c = 0.93. The

L = 4π case takes 11.3 time units before it has reached the same state, resulting in a speed

of c = 1.1. The L = 5.25π case may seem at first to be going a lot faster, taking only 8.8

time units to get to the next peak in ∥h∥2. This is however only the time it takes for one

peak to get to the position of the other peak, and so this peak will complete a period at
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the next maximum of the ∥h∥2. This gives a mean speed of c = 0.94.

(a)

(b)

(c)

(d)

Figure 3.11: Colour plots showing the fluid thickness moving in a frame that travels at the
mean wave speed. (a) shows all 500 time units for the L = 4π case. (b), (c) and (d) show
the fluid thickness for wavelengths of L = 2.25π, L = 4π and L = 6π respectively where
the amplitude of the wall is δ = 1 for all cases. These have been taken from t = 300 and
show at least one period. The location of the peaks and troughs of the fluid thickness is
highlighted, as well as the time at which the fluid thickness peak travels above the peaks
and troughs of the wall.

Figure 3.11 shows the waves from figure 3.10 but now viewed from a frame of reference

which moves at the mean speed c. The fluid thickness is represented by colour, with the

peak being yellow and the trough being blue. These figures show how the wave speed

differs from the mean speed, as a wave travelling at a constant speed will remain in the

same position when viewed in this frame.

Subfigure (a) shows the dynamics from the initial condition up to t = 500, where
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(b)-(d) take a section from t = 300 to show how the speed changes across a period. From

(a) we can see that the peak initially travels at a slower speed, and accelerates into this

mean speed as shown by the vertical yellow line. Subfigures (b) and (c) show similar

dynamics, with the fluid peak travelling faster than the mean speed after the trough and

slower after the peak. Between the wall peak and the wall trough, the fluid is effectively

flowing down an overhanging wall, where between the trough and the peak the fluid is

now flowing down a slope. In (d) we still have this effect occurring which makes the 2

different peaks, speed up and slow down, seemingly out of phase.

3.5.2 Branching solutions

For longer wavelengths where the Floquet analysis shows multiple unstable modes, we find

that different initial conditions can be attracted into different solutions. Solutions have

been found with one, two or three dominant peaks, corresponding to the first 3 unstable

modes. Examples of such solutions are shown in figure 3.12, where again we are in a frame

(a) (b) (c)

Figure 3.12: The fluid thickness for the travelling in a frame of reference that tracks the
waves. (a) is the δ = 1, L = 4π showing a single peak (b) is the δ = 1, L = 6π showing a
double peak (c) is the δ = 1, L = 9π showing a triple peak.

of reference which travels at the mean speed of the peak.

To find solutions that favoured different unstable modes, we chose our initial conditions

in one of two ways. In cases where the desired solution shape occurred at a wavelength

π
4
longer or shorter than we wanted, this solution was scaled to the required wavelength
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and used as the initial condition. Alternatively, for the longer wavelength cases, where we

wanted a case with multiple peaks, we used multiple periods of a lower wavelength case.

For example, if we were looking for a two peak solution of the L = 8π case, we could use

the solution of the L = 4π repeated as our initial condition.

This method showed that many solution branches were possible, as the solution could

settle into different attractors, which both have the same number of peaks in the fluid

thickness. To highlight this, we have taken the case with the wall amplitude δ = 1 and

wavelength L = 9π.

Figure 3.13 shows 5 different solutions that arise for the cases where the wall has

wavelength L = 9π and amplitude δ = 1. Subfigures (a)-(c) resulted in time periodic

solutions, whereas (d) and (e) were non-periodic. This can be seen by the fluid thickness,

which are shown over a longer time frame for the non-periodic cases.

Case (a) exhibits one main peak, and from the Fourier spectrum we see that the first

Fourier mode is the largest. However, there are still significant contributions from modes

2− 5. Subfigures (b) and (c) both show 2 significant peaks. The difference here is that for

(b) the peaks are of similar shapes and spaced almost equidistantly apart. In (c) the peaks

are much closer together. A third smaller peak forms slowly in the gap, but as it travels

slower than the other two peaks, the leading peak quickly catches it and incorporates it.

This would suggest why (b) has a strong contribution from the second Fourier mode, while

(c) has a strong contribution from the third mode. We also see that the Fourier modes in

(b) vary only slightly compared to the other cases.

Cases (d) and (e) both have their strongest contribution from the third mode and

much weaker contributions from the first and second modes, which could suggest the first

two modes help keep the solution to be time periodic. (d) seems to oscillate less than (e)

and this may be due to (e) having a much more varied fourth Fourier mode.
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(a) (i)

(b) (i)

(c) (i)

(d) (i)

(e) (i)

(ii)

(ii)

(ii)

(ii)

(ii)

Figure 3.13: Example solutions that occur for wall wavelength L = 9π with wall amplitude
being δ = 1. (a)-(c) are time periodic solutions, with (d)-(e) being non-periodic solutions.
Subfigures (i) show the fluid thickness over time in a frame that moves with the mean
speed of the wave. Subfigures (ii) show the time averaged size of the first 10 Fourier modes
of the fluid thickness, as well as the range.
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3.5.3 Dripping cases

Looking at larger amplitude walls, generally where the steady states are stable according

to the Floquet analysis, or where no steady states were found as shown in figure 3.5, we

can still find the dynamics using the same initial condition (3.35). Here the fluid builds

up before suddenly being released, in a sort of dripping motion. In the extreme case of

this, the fluid is held in place.

Figure 3.14: Mean flow rates for a periodic travelling wave (δ = 1), a dripping case (δ = 3),
and where the fluid is held in place (δ = 3.5).

Figure 3.14 highlights this by showing the mean flow rate (3.38). Here the δ = 1 case

is a time periodic solution, where the flow rate oscillates gently. The δ = 3 case is the

dripping case, where we see for around 60 time units the mean flow rate is quite small,

and then spikes. The δ = 3.5 case is where the fluid is held in place, as can be seen by the

mean flow rate tending to 0.

The dripping case roughly occurs where the Floquet analysis suggested the steady

state was stable, within the region with one unstable mode, as shown by figure 3.5. From

figure 3.15, we see that the bulk of the fluid is held just after the peak in the wall for

long periods of time. Figure (a) shows the peak of the fluid slowly move to the right. As

this happens we also see that the small layer of fluid, between the wall trough and peak,

gets thinner as time advances. Figure (b) shows the 5 time units where the fluid quickly

traverses the period. Also shown is the fluid profile 5 time units before and after. From

58



3.5. TIME DEPENDENT SOLUTIONS

(a)

(b)

Figure 3.15: Fluid profiles for a dripping case where the wall is η = 3 cos
(
z
2

)
. (a) shows

the 50 time unit period where the fluid moves slowly from the wall peak. (b) shows a 5
time unit period where most of the fluid traverses the wall period.

this we see the peak collapses. In front of the collapsing peak, the fluid pinches the wall.

The wave follows this pinch point until it reaches the wall maximum, where a thin layer of

fluid separates it from the wall again. The fluid is then held just after the maximum again

and the process then repeats.

Figure 3.16: Fluid profiles that result from simulating the flow with low mean flow rates.

For cases with larger amplitude, generally where no steady state was found, as shown
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by figure 3.5, the fluid remains held in space. These are the cases where the flow rate

tends to 0 in figure 3.14. Figure 3.16 shows the cases where the wall amplitude δ = 4. We

find that for wavelengths L < 2π the fluid thins over the peaks and ends up mostly in the

trough, however for wavelengths L > 2π the fluid builds up just after the wall peak and

thins in the wall trough. This has been shown using the L = π and L = 4π cases. Also in

this figure we have plotted the corresponding pressure gradients that have been scaled

down, so that they appear on the same axis. In both cases we see that the fluid is held

up behind a sharp positive pressure gradient, and is also contained before the negative

pressure gradient.

3.6 Relationship Between the Steady State and the

Time Dependent Solutions

For stalactites, the chemical deposition occurs at a much longer timescale than the fluid

dynamics (Short et al., 2005b). Because of this Vesipa et al. (2015); Camporeale (2017),

make use of the quasi-steady approximation, taking the steady state fluid thickness.

However for these cases where the steady state is unstable it is more appropriate to take a

mean fluid thickness.

The mean fluid thickness is given by

h̄(z) =
1

T

∫ t+T

t

h(z, τ) dτ (3.39)

where t is chosen to be when the fluid thickness has settled into its orbit. For the periodic

cases, T is chosen to be the time period of that wave. Otherwise T is chosen to be as large

as possible for a better average.

Figure 3.17 shows the difference between the time average and the steady state. Figure

(a) shows the result for cases (a), (b) and (e) from figure 3.13. These only differ by less

than 2% from the steady state, despite having very different structures. Here we also see
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(a) (b)

Figure 3.17: The difference between the time averaged fluid thickness and the steady state.
(a) shows cases from figure 3.13. (b) shows the example of the dripping case from 3.15.

that even though (e) is non-periodic, it has a very similar time average to the time periodic

case (b). All the cases seem to suggest that the time averaged thickness is generally thicker

around the wall maximum and thinner around the wall minimum than the steady state.

While for these cases the steady state thickness gives a pretty good approximation to

the time averaged thickness, this is not the case for the cases where the droplet forms, as

can be seen in subfigure (b). In these cases, there are long periods of time with the fluid

held in place by the pressure gradient, this causes the average to approximate that shape.

3.7 Conclusions

In this chapter we have looked at a gravity driven, thin film flow down a cylinder, which

has a wall perturbation of similar order to the fluid thickness. We have considered the

pressure gradient to be of a similar size to gravitational acceleration, so that the wall

shape comes into the equation at leading order. We derived an equation for the dynamics

of the fluid thickness.

Studying the steady states, we found L = 2πR was a critical wavelength for both

the stability and shape. The steady states were stable for L < 2πR regardless of the
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wall amplitude. In these cases, the fluid peak was occurring just downstream of the

wall minimum. These cases also generally had larger amplitude disturbances to the fluid

thickness, being of a size similar to that of the wall amplitude. The L > 2πR cases

generally had the fluid thickest between the wall maximum and the wall minimum. For

these cases, the amplitude of the disturbance to the fluid thickness was much smaller.

Performing Floquet analysis, we found that increasing the amplitude of the wall caused

the additional unstable modes to only appear at longer wavelengths.

We then numerically integrated the equation to find the dynamics of the film thickness.

The Floquet analysis generally gave a good indication for how the film thickness would

evolve in time. The stable cases settled to the steady state, and we found that the unstable

cases either settled into time periodic orbits, quasi-periodic orbits or non-periodic solutions.

We found time periodic orbits where the Floquet analysis showed that there was only one

unstable mode. For the cases with more unstable modes, we found that multiple solutions

could exist, where these could be any of these cases depending on how the unstable modes

interacted. Interestingly, taking the time average of these solutions approximated the

steady state solution. A special case was found for larger amplitude walls, where the

pressure gradient could hold the fluid in place. The fluid would then either perform a

dripping motion or was held in place.
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Chapter 4

Hydrodynamics 2: Effects of Inertia

4.1 Introduction

Thin film flows down cylinders is an important area to study for both natural phenomena

and those that arise in the industrial setting. The topography and the cylindrical geometry

can alter the effect that the surface tension has on the dynamics of the fluid. Previous

works when considering a flow down a cylinder tend to consider that the radius is a similar

length scale to that of the fluid thickness, such as by Craster and Matar (2006). An

alternative approach views the radius as being much larger than that of the fluid thickness

(Frenkel, 1992; Kalliadasis and Chang, 1994). Both of these approaches lack terms that

can occur if the size of the radius is the same length scale as the capillary length.

In order to capture the effects, we will follow the work of Frenkel (1993) for our smooth

cylinder scenario. Here inertial effects and shear due to the cylindrical geometry appear at

the same order as the surface tension. In this work, we will see how adding topography

onto a cylinder will affect the flow of a thin film. The wavelength of the topography will

be a similar value to that of the radius.

Topographical effects on thin films has been studied in works by Kalliadasis et al.

(2000); Tseluiko et al. (2013, 2008). Other works that have looked at topographically

patterned cylinders include that of Parrish et al. (2021), however, this focuses on rotating
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cylinders and gravity is not perpendicular to the radius.

Flow down corrugated cylinders could be important for the formation of geological

features such as stalactites. Previous works to model stalactites consider flow down an

inclined plate (Short et al., 2005b; Vesipa et al., 2015; Camporeale, 2017), however this

may ignore some effects that the geometry has on the growth of stalactites.

4.2 Governing Equations

As in chapter 3, we will be considering a thin film flow under gravity down a cylinder that

has a long wave disturbance to its surface. The cylinder and its disturbance are fixed in time.

The amplitude of this disturbance is of the same order as the fluid thickness. Continuing

on from section 2.2, where we have nondimensionalised the Navier Stokes equation (2.5)-

(2.11) by using the scalings (2.14)-(2.16). This resulted in the nondimensional equations

(2.20)-(2.26). As discussed in section 2.2, in this chapter we will work with a scaled Bond

number Bo = B
ϵ2

= ρh0
2g

γϵ2
. This Bond number is ϵ times smaller than that studied in chapter

3. Here we will scale the pressure term using

P = ρh0g (4.1)

to make it clearer to see where it appears in the momentum equations (2.21)-(2.22). Under

these scalings the equations (2.20)-(2.26) are

ur + wz − ηzwr + ϵ
u

R
= O(ϵ2) (4.2)

ϵurr − pr = O(ϵ2) (4.3)

wrr + 1 + ϵ
(wr

R
− pz − Re(wt + uwr + w(wz − ηzwr))

)
= O(ϵ2) (4.4)

u = 0, w = 0 at r = 0 (4.5)

u = ht + w(ηz + hz) at r = h (4.6)
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wr(h) = O(ϵ2) (4.7)

p(h) =
1

Bo

(
1

ϵR
− η + h

R2
− (ηzz + hzz)

)
(4.8)

4.2.1 Smooth cylinder case

We begin by looking at flow down a cylinder of constant radius. This will be known as

the smooth cylinder case, as here there are no crenulations, so η = 0. To solve equations

R h

w

u

g

z

r

Figure 4.1: Geometry of the smooth cylinder problem

(4.2)-(4.8), we expand our variables in powers of ϵ by writing them of the form y = y0+ ϵy1.

We can then find the leading order velocities by looking at the leading order equations.

Equations (4.4), (4.5), and (4.7) become

∂2w0

∂r2
+ 1 = 0, w0(0) = 0,

∂w0

∂r

∣∣∣∣
h

= 0, (4.9)

which results in

w0 = hr − r2

2
. (4.10)

Substituting this into equation (4.2) we get the leading order equation for the radial

velocity

∂u0
∂r

+ hzr = 0. (4.11)
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Applying the boundary condition (4.5) results in

u0 = −hz
r2

2
. (4.12)

Finally applying the leading order velocities (4.10), (4.12) to the kinematic condition (4.6)

we get the leading order evolution equation for the fluid thickness

ht + hzh
2 = 0. (4.13)

Equation (4.13) leads to wave steepening and so higher order terms are required to

regularise the dynamics (Craster and Matar, 2009). Therefore to see the effects that the

Reynolds and Bond numbers have on the fluid thickness, we look at equations (4.2)-(4.8)

at O(ϵ). Equation (4.4) at O(ϵ) gives

∂2w1

∂r2
= Re

(
∂w0

∂t
+ u0

∂w0

∂r
+ w0

∂w0

∂z

)
− 1

R

∂w0

∂r
+
∂p0
∂z

= Rehhz

(
r2

2
− hr

)
+

1

R
(r − h) +

∂p0
∂z

. (4.14)

where to resolve the time derivative we can solve this with the boundary conditions (4.5),

and (4.7) at O(ϵ)

w1(0) = 0 (4.15)

w1r(h) = 0 (4.16)

resulting in

w1 = Rehhz

(
r4

24
− hr3

6
+
h3r

3

)
− ∂p0

∂z

(
hr − r2

2

)
+

1

R

(
r3

6
− hr2

2
+
h2r

2

)
. (4.17)
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Again we find the radial velocity by integrating the continuity equation (4.2)

u1 = −
∫ h

0

∂w1

∂z
+
u0
R

dr, (4.18)

with the condition u1(0) = 0 from equation (4.5), which results in

u1 =− Re(hhz)z

(
r5

120
− h

r4

24
+ h3

r2

6

)
− Rehhz

2

(
h2
r2

2
− r4

24

)
+
∂2p0
∂z2

(
h
r2

2
− r3

6

)
+
∂p0
∂z

hz
r2

2
− 1

R

(
−hz

r3

6
+ hhz

r2

2

)
+
hz
6R

r3. (4.19)

Substituting the leading order and first order velocities (4.10), (4.12), (4.17), (4.19) in the

kinematic condition (4.6), results in the evolution equation for the fluid thickness

ht + hzh
2 + ϵ

∂

∂z

(
h4

12R
+

2

15
Reh6hz −

h3

3

∂p0
∂z

)
= 0. (4.20)

The leading order pressure gradient can be found from equation (4.3) at leading order,

which tells us that pressure is a constant with respect to r. This constant can be found

from the tangential stress condition (4.8), resulting in the pressure gradient

∂p0
∂z

= − 1

Bo

(
hz
R2

+ hzzz

)
. (4.21)

Substituting the pressure gradient into equation (4.20), gives us

ht + hzh
2 + ϵ

∂

∂z

(
h4

12R
+

2

15
Reh6hz +

h3

3Bo

(
hz
R2

+ hzzz

))
= 0. (4.22)

This equation is also found by Frenkel (1993). Here we see that we have terms relating to

the radius, inertia and surface tension. We can look at increasing the radius of our cylinder

so that it appears as a plane. This is calculated by taking the limit R → ∞. Doing this,

we get the Benney equation down a vertical plane (Benney, 1966; Joo et al., 1991).
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4.2.2 Wall with topography

R h0

η

h

g

z, w

r, u

L

Stalactite Fluid Air

Figure 4.2: Geometry of the problem with a wall disturbance

We now say that the cylinder is not of constant radius, but instead is disturbed by some

function η, where η has an amplitude that is roughly the same length as the fluid thickness.

We also have that the wavelength of η is a similar length to the radius. Looking at

the leading order terms of equations (4.2)-(4.8), we see η appear only in (4.2) and (4.8).

Therefore w0 is the same as the smooth cylinder case. From equation (4.8) the pressure

gradient is now.

∂p0
∂z

= −Bo(
hz + ηz
R2

+ hzzz + ηzzz). (4.23)

The new radial velocity (with a hat) can be expressed in terms of the smooth cylinder

radial velocity (4.12) (without a hat) as

û0 = u0 + ηzw0. (4.24)

Looking at O(ϵ) terms of equations (4.2)-(4.8), we find again w1 is written as in equation

(4.17), with the pressure gradient now being equation (4.23). Again we find the radial
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velocity at this order has been modified from the smooth cylinder case (4.19) to give

û1 = u1 + ηzŵ1 −
∫
ηz
w0

R
dr. (4.25)

Substituting equations (4.10), (4.17), (4.23), (4.24), (4.25) into the kinematic condition

(4.6), we find that the ηz
∂w1

∂r
terms cancel. However, the

∫
ηz

w0

R
dr remains, leaving us

with

ht + hzh
2 + ϵ

∂

∂z

(
h4

12R
+

2

15
Reh6hz +

h3

3Bo

(
hz + ηz
R2

+ hzzz + ηzzz

))
+ ϵ

ηzh
3

3R
= 0.

(4.26)

4.2.3 Conservative form

Equation (4.26) is not in conservative form. It is useful to transform the equation into

conservative form in order to make it easier to solve numerically. We can transform it into

conservative form by finding the mass density

m =

∫
r̃ dr̃ =

∫ h

0

R

ϵ
+ η + r dr

=
hR

ϵ
+ hη +

h2

2
. (4.27)

If we let H = ϵ
R
m, so that from equation (4.27) we get

H = h+
ϵ

R

(
hη +

h2

2

)
. (4.28)

We can find the dynamics of this new variable by taking the time derivative of H and

substituting in ht from equation (4.26). Again we will truncate the equation to only look

at terms that are order 1 and ϵ. This results in the equation

Ht +
∂

∂z

(
H3

3
+ ϵ

(
2

15
ReH6Hz +

H3

3Bo

(
Hz + ηz

R2
+Hzzz + ηzzz

)
− H3(H + 4η)

6R

))
= 0.

(4.29)
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If we now consider the flow rate at O(ϵ−1) and O(1), which is calculated from

q̂ =

∫ h

0

(
R

ϵ
+ η + r

)
(w0 + ϵw1) dr (4.30)

substituting in the velocities (4.10), (4.17) and integrating gives us

ϵq̂

R
=
H3

3
+ ϵ

(
2

15
ReH6Hz +

H3

3Bo

(
Hz + ηz
R2

+Hzzz + ηzzz

)
− 2

3R
H3η − 1

6R
H4

)
.

(4.31)

So equation (4.29) can be rewritten as

mt + q̂z = 0. (4.32)

If we scale out the ϵ
R
by setting q = ϵq̂

R
, we have

Ht + qz = 0. (4.33)

Comparing equation (4.29) with the smooth cylinder equivalent, equation (4.22), we see

that the wall introduces additional surface tension terms and a term due to the first order

correction of gravity. Setting η = 0, we recover equation (4.22). We can compare our

equation with that found by Tseluiko et al. (2013), which models topography down an

inclined slope. If we consider a vertical plane, by taking R → ∞ in our equation and θ = π
2

in the equation from Tseluiko et al. (2013), we find that these equations are equivalent.

Also, to note is that the term in our equation from the surface tension due to the azimuthal

curvature of the cylinder, appears to have a similar effect as that of gravity on a fluid

flowing on the underside of a sloping ceiling in Tseluiko et al. (2013)’s equation. The final

wall term of (4.29) is an additional shear term caused by the fluid flowing down a cylinder.

The difference between this equation (4.29) and the one derived in chapter 3, equation

(3.13), is that here the surface tension terms are now O(ϵ), which means in this chapter

we also see the effects of inertia, and a correction to gravity. To retain equation (3.13)
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from equation (4.29), we can set Bo = ϵB̂o. As ϵ is small, the other O(ϵ) terms do not

significantly affect the fluid thickness and so only the leading order terms are retained.

While equation (4.29) is easier to solve numerically than equation (4.26), we wish to

show our results using the more physical property of the fluid thickness. To get back the

fluid thickness, we must solve the quadratic of equation (4.28). Here we take the positive

root, as the fluid thickness can not be negative. We find

h = −
(
η +

R

ϵ

)
+

√(
η +

R

ϵ

)2

+
2RH

ϵ
. (4.34)

As the first term in the root is O(ϵ−2) it is ϵ−1 larger than the second term. Therefore, we

can Taylor expand the root, to find that

h = H − ϵ

R

(
Hη +

H2

2

)
. (4.35)

4.3 Steady States

We can find steady states of the system by setting Ht = 0 in equation (4.33). This tells us

that the flow rate doesn’t depend on z as now qz = 0. Therefore, we have

q =
H3

3
+ ϵ

(
2

15
ReH6Hz +

H3

3Bo

(
Hz + ηz
R2

+Hzzz + ηzzz

)
− H3(H + 4η)

6R

)
. (4.36)

We can see that for a constant radius (i.e η = 0), a constant fluid thickness is a solution

to equation (4.22). Setting the steady state fluid thickness h0 = 1, we find from equation

(4.28) that H = H0 = 1 + ϵ
2R

. In this case, we find that the flow rate from equation (4.36)

is q = 1
3

(
1 + ϵ

R

)
+O(ϵ2).
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4.3.1 Small ϵ

As ϵ is small, we can perform an asymptotic expansion on the fluid thickness. Therefore

we let h = h0 + ϵh1 then from equation (4.28), we find

H = h0 + ϵ

(
h1 +

h0
2R

(2η + h0)

)
+O(ϵ2) (4.37)

Substituting this into equation (4.36), with q = 1
3

(
1 + ϵ

R

)
, we find that from the leading

order terms h0 = 1 and from the O(ϵ) terms that

h1 = − 1

3R2 Bo

(
BoRη + ηz +R2ηzzz

)
. (4.38)

For a sinusoidal wall of the form,

η = δ cos kz (4.39)

we would expect the fluid disturbance to be of the form

h1 = A cos(kz − θ), (4.40)

where k = 2π
L
. Substituting equations (4.40) and (4.39) into equation (4.38), the phase

shift is found to be

tan θ =
8π3R2 − 2πL2

RBoL3
(4.41)

and the amplitude is

A = − δ

3R
sec θ. (4.42)

Here the amplitude depends on the phase shift. As A > 0 by definition, this means that

sec θ < 0 and so θ ∈ (π
2
, 3π

2
). Looking at the phase shift, we see that for L > 2πR the fluid
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maximum is downstream of the wall maximum θ < π, and for L < 2π θ > π. In the limits

L→ 0, we have θ = 3π
2
, which means that in this limit A→ ∞. In the limit L→ ∞, we

find θ → π and so A→ δ
3R
.

(a) (b)

Figure 4.3: How the wavelength affect the amplitude (a) and the phase shift (b) for small ϵ

Figure 4.3 further shows how the wavelength of the wall affects the amplitude and

phase shift of the fluid disturbance. From (a) we see that like in chapter 3 the amplitude

of the fluid disturbance is more significant for the L < 2πR case. However, unlike in

chapter 3 the phase shift reduces from θ = 3π
2
as we increase the wavelength. Increasing

the wavelength for L > 2πR the phase shift initially continues to decrease, up until some

point where it increases back up to θ = π. These figures also shows that in the longer

wavelength cases that for smaller R the fluid is generally shifted more upstream, and has

a bigger amplitude. For small L, we see that the amplitude grows very large, however for

equation (4.36) to hold we are assuming L = O(1).

4.3.2 Small amplitude walls

If we start with the smooth cylinder case, we can find a steady state to the fluid thickness

h0 from equation (4.22). Adding a small perturbation to the wall, so that

η = δη̂ (4.43)
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where δ ≪ h0, then we would expect the steady state fluid thickness to be of the form

h = h0 + δĥ. (4.44)

We also expect the perturbation to H to be of this form

H = H0 + δĤ (4.45)

From equation (4.28), we find by comparing leading order terms in δ that

H0 = h0 +
ϵh20
2R

(4.46)

and comparing O(δ) terms gives

Ĥ =

(
ĥ+

ϵh0
R

(
cos kz + ĥ

))
. (4.47)

Note ϵ terms are also considered small, however they are part of the smooth cylinder

steady state and so are retained. Overall we are looking at how this wall perturbation

causes a perturbation to the fluid thickness. Looking at the smooth cylinder case (4.22),

we see that h0 = 1 is a steady state. If we consider this to be steady state we perturb,

then H0 = 1 + ϵ
2R

is also a constant. Substituting equations (4.43), (4.45) into (4.36), the

leading order cancels as it is a steady state, and at O(δ) we find

Ĥ + ϵ

(
2

15
ReH4

0Ĥz +
H0

3Bo

(
Ĥz + ηz
R2

+ Ĥzzz + ηzzz

)
− 2H0

3R

(
Ĥ + η̂

))
= 0. (4.48)

For a wall η̂ = cos(kz) we look for periodic solutions. We can expect Ĥ to take the

form

Ĥ = A cos(kz − θ) (4.49)

74



4.3. STEADY STATES

where A is the amplitude relative to the wall amplitude and θ represents the phase shift.

These are given as

A = 5ϵ

(
(4R2 Bo2+(k − k3R2)2)

225Bo2R4 + 150ϵBo2R3 + ϵ2(25R2 Bo2+k2(5 + (2BoRe−5k2)R2)2)

) 1
2

,

(4.50)

tan θ =
Bo kR(15R− 15k2R3 + ϵ(15 + (4BoRe−15k2)R2))

30Bo2R3 + ϵ
(
10Bo2R2 − k2(k2R2 − 1)((5k2 − 2BoRe)R2 − 5)

) . (4.51)

To get the phase shift, the branch of arctan is chosen so that the amplitude A > 0. This

is calculated by making use of

Ĥ = A cos(kz − θ) = a cos kz + b sin kz (4.52)

where a = A cos θ, b = A sin θ. So if a < 0, we know cos θ < 0 and so θ ∈ (π
2
, 3π

2
). When

finding other steady states, we use these small amplitude walls as an initial guess of the

fluid thickness for Matlab’s function fsolve.

From Ĥ we can calculate the fluid thickness. We would expect the fluid thickness to

also be of the form

ĥ = B cos(kz − φ). (4.53)

Making use of the definition of Ĥ in equation (4.47), we find

tanφ =
RA tan θ

RA− ϵ sec θ
, (4.54)

B =
AR sin θ

(R + ϵ) sinφ
. (4.55)

For small ϵ we find to leading order that

tan θ =
k − k3R2

2BoR
(4.56)
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A =
ϵ

3BoR2

√
4R2 Bo2+(k − k3R2)2

=
2ϵ

3R
sec θ. (4.57)

Using equations (4.54)-(4.55), we can find the corresponding amplitude and phase shift

for the fluid thickness at small ϵ

tanφ = −2 tan θ (4.58)

=
k −R2k3

BoR
, (4.59)

B = − ϵ

3R
secφ. (4.60)

Here we have recovered the fluid disturbance that we found for small ϵ, described by

equations (4.41)-(4.42). Noting in this limit, the Reynolds number no longer has any effect.

Figure 4.4: Phase shift of the fluid thickness disturbance from the wall disturbance,
depending on the wavelength L and ϵ. Here Re, R,Bo = 1.
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Figure 4.4 shows the phase shift φ of the fluid thickness from the wall. Here the

Reynolds number, Bond number and radius are set to 1. The contour lines occur at 3π
4

and π. We can see that L = 2πR is an important boundary, like in chapter 3. This line

has been slightly deflected left of 2πR as can be seen for ϵ > 0.1. Looking at equation

(4.51), we find that at L = 2πR

tan θ =
2ϵRe

15R− 10ϵ
(4.61)

which is the effect of the inertial term. Like in chapter 3 we see that for L > 2πR we have

π
2
< φ < π, meaning the fluid is thickest after the wall peak. For L < 2πR the opposite is

true with π < φ < 3π
2
, resulting in the fluid being thickest before the wall peak. However,

now θ = π at the boundary and decreases across it. This is as a result of the additional

wall term at this order. To recover the results from chapter 3, we take Bo = ϵB. If we

then take equation (4.51) at leading order, we recover equation (3.18).

(a) (b)

Figure 4.5: How the parameters affect the fluid disturbance. (a) shows the effect of the
wavelength on the amplitude for different radii, here Re,Bo = 1 and ϵ = 0.1. The dotted
lines are the small ϵ approximation from equations (4.41)-(4.42) (b) shows how the phase
shift is deflected from π when L = 2π,R = 1,Bo = 1.

Figure 4.5 shows how the wavelength and the Reynolds number can affect the fluid

disturbance. From (a) we have the amplitude of the fluid thickness, against the wall

wavelength. The dotted lines in this figure are the amplitude of the small ϵ approximation
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described by equations (4.41)-(4.42). We see that the amplitude is generally less than

the small ϵ approximation, as O(ϵ2) terms must act to decrease the amplitude. We also

see in this case that the amplitude does not exceed 1, meaning the fluid disturbance

is never larger than the wall disturbance. However, for small wavelengths, the small ϵ

approximation has the fluid disturbance being around 10 times that of the wall amplitude.

For L > 2π the amplitudes settle to O(ϵ), as here ϵ = 10−1. We also see that increasing the

radius decreases the amplitude. Figure (b) shows how the Reynolds number contributes

to the phase shift in the case where R = 1, L = 2π, as highlighted in equation (4.61). As

this depends on ϵ we do need a fairly large ϵ to see the effect. Here we see that the fluid is

deflected to be thickest just before the wall trough.

4.3.3 Nonlinear steady solutions

We can also seek steady solutions (H∗) of equation (4.29) numerically. The fluid thickness

that relates to these steady state solution will be denoted by h∗. From equation (4.33), we

see that for steady states we need to find

qz = 0 (4.62)

meaning that we wish to solve

q = q0 (4.63)

where q0 is some constant. In order to find the constant flow rate, we impose the condition

that the total volume of the fluid is fixed. As we wish to see the disturbance to the fluid

thickness, we set

1

L

∫ L

0

h∗dz = 1. (4.64)
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This however means that solutions with different amplitude walls will have a different

mass, as integrating H from equation (4.28) gives

1

L

∫ L

0

H∗dz = 1 +
ϵ

RL

∫ L

0

ηh∗ + h∗2dz (4.65)

To numerically solve equation (4.29), we follow steps described in section 2.5. We

have split the domain z into 256 spatial steps and our derivatives are calculated using a

pseudo-spectral technique. We have imposed periodic boundary conditions and have used

(4.49) as an initial guess. This is then solved using MATLAB function fsolve. Solving

this equation gives us H∗ which is related to the mass density, however we wish to find the

more physical property of fluid thickness. Therefore, we convert H∗ back into the fluid

thickness by making use of equation (4.34).

For this problem, as we wish to see the nonlinear effects of equation (4.36), we set

ϵ = 0.1. Again we will set the wall to be

η = δ cos

(
2πz

L

)
. (4.66)

In these examples we will set R = 1, so that the fluid thickness does not vary substantially

between results. As the fluid thickness is not changing, the Bond number and Reynolds

number should also stay constant, and so these will also be set to 1.

To examine the effect of the wall disturbance, we will consider: the amplitude of the

disturbance to the fluid thickness, which is defined as

A =
h∗max − h∗min

2
(4.67)

and the phase shift of the fluid disturbance from the wall disturbance, which is defined as

the normalised distance of the maximum thickness away from the wall maximum

θ = 2π
zmax

L
. (4.68)
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Noting that since the wall is a cosine, the wall maximum is located at z = 0.

(a) (b)

Figure 4.6: How the wall shape affect the disturbance to the fluid thickness. (a) shows the
amplitude of the fluid disturbance compared to the amplitude of the wall. (b) shows the
phase shift of the fluid disturbance from the wall disturbance.

Figure 4.6 shows how walls with different amplitudes and wavelengths affect the

disturbance to the fluid thickness. In both plots, the dark blue region is where no steady

state solutions were found. Subfigure (a) shows the ratio between the amplitude of the

fluid and the amplitude of the wall. We can see that this value is always less than 1, so

we know the fluid disturbance is smaller than the wall disturbance. We see for the vast

majority of wavelengths and amplitude this ratio is around 3× 10−2, with larger amplitude

disturbances occurring for small L or large δ. We also see a faint blue line around L = 2π,

showing that the amplitude of the fluid along this line is even smaller.

Subfigure (b) shows the phase shift of the fluid disturbance from the wall disturbance.

Contours have been overlaid to show every π
2
. For δ > 3.5 and L > 2π we have a region

where 0 < θ < π
2
. Here it is typically closer to 0 than π

2
, showing that the fluid is thickest

just after the wall maximum. For L > 2π and δ < 3.5 we have a region where π
2
< θ < π,

although again it typically is closer to π. For L < 2π and δ < 4.5 we have a region where

π < θ < 3π
2
. Here the phase shift can be seen to increase as L increases up to 1.5π and

then decreases down to π as L increases to 2π. For L < 2π and δ > 4.5 we find the

region where 3π
2
< θ < 2π. This region contains a thin section around L = 1.5π where the
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amplitude can be as small as 2.

The boundary between the fluid being thickest upstream of the wall maximum (θ > π)

and the fluid thickest downstream (θ < π) starts at L = 2π for δ = 0 and then shifts to

higher wavelengths for greater amplitudes. This boundary exists due to the wall effect

inside the pressure term

ηz
R2

+ ηzzz = δ
4π2

L2

(
4π2

L2
− 1

R2

)
sin

(
2πz

L

)
. (4.69)

For L < 2πR equation (4.69) is positive and for L > 2πR (4.69) is negative. This term

vanishes for L = 2πR in which case the only difference of equation (4.36) from the smooth

cylinder equation (4.22) is the term

−ϵ ∂
∂z

(
2H3η

3R

)
. (4.70)

This term is what shifts the boundary to the right.

Increasing the amplitude of the wall will amplify the nonlinear effects of equation

(4.36). As the amplitude of the fluid disturbance is generally small, we will look at plots

of the fluid thickness rather than the fluid profile. Figure 4.7 looks at the normalised fluid

disturbance for different amplitude walls. Figure (a) has a wavelength of L = π. Here

we see that the amplitude of the fluid disturbance is roughly 0.2δ. Increasing the wall

amplitude shifts the maximum fluid thickness left, but also the minimum fluid thickness

right. For δ = 2 we see that the minimum has been slightly flattened. The normalised

amplitude of the fluid disturbance also increases as the wall increases.

For (b) the wavelength is L = 3π
2
. The amplitude of the disturbance here is around

0.04, much smaller than the L = π case. In this case, increasing the wall amplitude from

δ = 0.1 to 2 decreases the fluid maximum. For the larger wall amplitudes the disturbance

shows the nonlinear effects with the δ = 2 case having quite a flat maximum and the δ = 4

case exhibiting a secondary peak at z = 0.5L. In both these cases, the fluid is thickest for

z > 3
4
L.
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(a)

(c)

(b)

(d)

Figure 4.7: Normalised disturbance to the fluid thickness for different amplitude walls.
Here R = Bo = Re = 1. The subplots have wavelengths (a) L = π, (b) L = 3π

2
, (c) L = 2π

and (d) L = 4π.

For (c) the wavelength is L = 2π. Here the maximum fluid thickness increases with

wall amplitude again. Increasing the wall amplitude, we see a secondary fluid maximum

form. For the δ = 4 case we have the fluid thickest in the wall trough but also thicker just

before the wall peak.

For (d) the wavelength is L = 4π. The small amplitude results are generally quite

similar to the L = 2π results with the maximum shifted slightly more left. For the δ = 4

case, we again have 2 peaks, at the minimum of the wall and just after the maximum of

the wall. In this case, the dominant peak is the one just after the wall maximum.

We will now vary the other parameter to see their effect on the fluid thickness. If the

parameter is not being varied, we have Re = Bo = δ = R = 1, ϵ = 0.1. Again we will look

at the cases L = π, 2π, 4π to see the effect of the parameters where the different pressure

terms dominate. While the Bond number and the Reynolds number depend on the fluid

thickness, if we were to have a fixed fluid thickness then changing the Bond number can be

viewed as using a fluid with a different surface tension. Similarly, changing the Reynolds

number can be viewed as using a fluid with a different viscosity.

In figure 4.8 we look at varying the Reynolds and Bond numbers. In (a) we show

the effect of the Reynolds number on the fluid thickness. The values of 0.3, 1, 3, 10 were
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(a)(i)

(ii)

(iii)

(b)(i)

(ii)

(iii)

Figure 4.8: Fluid thickness for different (a) Reynolds numbers and (b) Bond numbers.
The subplots have wavelengths (i) L = π, (ii) L = 2π and (ii) L = 4π.

chosen as these are approximately ϵ0.5, ϵ0, ϵ−0.5, ϵ−1. We see here that the Reynolds number

generally does not have much of an effect on the fluid thickness, with the amplitude

remaining similar. In the L = π case, we see that Re = 10 causes a noticeable phase shift,

with the fluid becoming thicker more downstream.

In (b) we see how the Bond number affects the fluid thickness. Here we see that for

the L = 2π case the fluid thickness hardly changes. In this case, as the wall terms cancel,

the only terms that depend on the Bond number are the derivatives of the fluid thickness.

As the fluid thickness has a small amplitude disturbance, these derivatives are negligible.

In the other two cases, we see that for smaller Bond numbers, we have a larger amplitude

fluid disturbance. We also see that increasing the Bond number shifts the maximum

thickness so that it is more downstream.

The parameters R and ϵ both depend on the dimensional wavelength, so changing

these can also be viewed as changing L. However, these parameters will also change if

the mean fluid thickness h̃0 changes, so we can view this as changing the fluid thickness.

Figure 4.9 shows how changing the radius and ϵ affect the flow. In (a) we look at changing
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(a)(i)

(ii)

(iii)

(b)(i)

(ii)

(iii)

Figure 4.9: Fluid thickness for different (a) radii and (b) ϵ. The subplots have wavelengths
(i) L = π, (ii) L = 2π and (ii) L = 4π

the radius. Here we see that the smaller the radius, the larger the amplitude of the fluid

disturbance. However, in the L = π case, we find that R = 3 leads to a larger amplitude

than R = 1. Due to R appearing in equation (4.69) figures (i)-(iii) no longer show where

the different wall terms dominate. ηz
R2 is always the dominant term for R = 0.3 and ηzzz is

the dominant term for R = 3. This is why the fluid maximum always appears downstream

of the wall maximum for R = 0.3 and always upstream for R = 3. We see that for smaller

R the fluid thickness appears more nonlinear, with a secondary minimum and maximum

appearing for small L, and a very wide minimum for larger L.

In (b) we see the effect of ϵ on the fluid thickness. We have normalised the amplitude

to make the solutions more directly comparable. For L = π we see that the amplitude

is larger for bigger ϵ and the fluid disturbance is shifted to the right. However, in the

L = 2π, 4π cases the smaller ϵ is, the larger the amplitude. For small ϵ the shape of the

fluid disturbance appears more sinusoidal as suggested in section 4.3.1.
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4.4 Linear Stability Analysis

For the smooth cylinder case, we can perform linear stability analysis. The smooth cylinder

equation is

ht +
∂

∂z

(
h3

3
+ ϵ

(
2

15
Reh6hz +

h3

3Bo

(
hz
R2

+ hzzz

)
− h4

12R

))
= 0. (4.71)

By taking a small perturbation of the fluid thickness, so that h = 1 + Heikz−iωt where

|H| ≪ 1, we find

ω = ik2ϵ

(
1

3BoR2
+

2

15
Re− k2

3Bo

)
+ k

(
1− ϵ

3R

)
. (4.72)

Separating into real and imaginary parts, so ω = ωr + iωi, we obtain

ωr = k
(
1− ϵ

3R

)
(4.73)

ωi = k2ϵ

(
1

3BoR2
+

2

15
Re− k2

3Bo

)
. (4.74)

This will be stable if ωi < 0, so this tells us that the inertia and the surface tension due to

the azimuthal curvature are destabilising the fluid, and the surface tension due to axial

curvature stabilises the fluid.

The neutral stability curve lies on

k0 =

√
1

R2
+

2

5
BoRe, (4.75)

with solutions stable if k > k0 and unstable if k < k0. The phase speed is ωr

k
and so we

see that increasing the radius works to slow the speed at which the disturbance to the

fluid thickness travels.

In the case where we have a wall disturbance, the steady state solution is no longer a
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constant. Therefore, we now consider a small perturbation of the form

H = H∗(z) + Ĥ(z)e−ωt (4.76)

where | ˆH(z)| ≪ 1. This can be substituted into (4.29).

ωĤ =
∂

∂z

(
H∗2Ĥ + ϵ

(
2

15
Re
(
6H∗5H∗

zĤ +H∗6Ĥz

)
+
H∗3

3Bo

(
Ĥz

R2
+ Ĥzzz

)))

+ ϵ
∂

∂z

(
H∗2Ĥ

Bo

(
H∗

z + ηz
R2

+H∗
zzz + ηzzz

)
− H∗2Ĥ

3R
(2H∗ + 6η)

)
. (4.77)

Here we compute the spatial derivatives of Ĥ using finite differences. Then our equation

becomes an eigenvalue problem, which can be solved by using MATLAB’s function eig,

as outlined in section 2.5. This returns the eigenvalues and corresponding eigenvectors,

Figure 4.10: The number of unstable modes of the steady state for walls of the form
η = δ cos

(
2πz
L

)
where R = Bo = Re = 1, ϵ = 0.1.

allowing us to determine the number of unstable modes by looking at the eigenvalues

which have negative real part. The imaginary part of these eigenvalues will tell us a wave
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speed for these eigenvectors.

Figure 4.10 shows the number of unstable modes for walls of different amplitude and

wavelength. We see that increasing the amplitude of the wall causes the unstable modes

to appear at longer wavelengths. There is a section between δ = 3 and δ = 4, where

the steady states are seemingly more stable, with there being one fewer unstable mode

than those with smaller amplitude, or an amplitude between 4 and 4.5. Increasing the

amplitude to 5 we find certain wavelengths where no solution can be found. If we look at

the δ = 0 cases, we see that the mth unstable modes occur at L = 2πm
√

5
7
as expected

from equation (4.75). This equation suggests that increasing the radius will mean that

additional unstable modes will appear at longer wavelengths. However, if the Bond number

or the Reynolds number is increased we would expect to find unstable modes appearing at

shorter wavelengths.

4.5 Time Dependent Solutions

We wish to see how the fluid thickness evolves in time. To do this, we will be solving

(4.29) and converting back to the fluid thickness by using (4.34). Equation (4.29) is used

instead of (4.33) in order to conserve mass in the system. As described in section 2.5,

we have discretised z into 256 spatial steps, using a pseudo-spectral technique for the

spatial derivatives. For the temporal integration, MATLAB routine ode15s has been used.

For these calculations, we have considered ϵ = 0.1, R = Bo = Re = 1. Again for these

simulations we take a sinusoidal wall

η = δ cos

(
2πz

L

)
. (4.78)

For these simulations we consider the initial fluid thickness to be

h0 = 1 + 0.1 sin

(
2πz

L

)
. (4.79)
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From this and equation (4.34), we calculate the initial value for H. Solutions were

simulated for wavelengths between L = π and L = 10π and amplitudes from δ = 0 to

δ = 5. We have initially solved most cases for 500 time units to get a basic understanding

of the solutions. Certain cases were integrated further to 2000 time units to get a more

complete understanding of the dynamics.

From this we found that the Floquet analysis, as seen in figure 4.10, gives a good

approximation of the behaviour. The boundaries between the regions are less clear for

the regions with larger δ. Similar to the discussion in chapter 3, we find that where the

Floquet analysis suggests the steady state is stable, the solution will oscillate down to

this steady state. Where there is one unstable mode the solution generally becomes a

time periodic wave, and if there are more unstable modes then we get quasi-periodic or

non-periodic solutions. To characterise the solutions we make use of the norm

∥H∥2 =

√
1

L

∫ L

0

H2 dz. (4.80)

Here we are using ∥H∥2 instead of ∥h∥2, as this better relates the norm to the mass of the

fluid.

4.5.1 Different regimes

Figure 4.11 shows some examples of the different types of solutions. Here we have used

∥H∥2 to highlight the differences between the solution types. Subfigures (a) shows a

solution where the steady state is stable. Here we can see that the solution has a decaying

oscillation in the ∥H∥2 which is shown on the phase plot as an inwards spiral. Once the

oscillation decays, we find that the solution is the same as that of the steady state. These

solutions can be found where the Floquet analysis shown in figure 4.10 gives no unstable

modes. Increasing δ does increase the wavelength at which the first unstable mode appears,

however the wavelength does not increase sharply after δ = 2.5, as figure 4.10 suggests,

but instead increases at much the same rate as before. The closer the parameters are to
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(a) (i)

(b) (i)

(c) (i)

(d) (i)

(e) (i)

(ii)

(ii)

(ii)

(ii)

(ii)

Figure 4.11: Plots used to classify the types of the solutions. (i) are plots of ∥H∥2 against
time and (ii) are phase plots of ∥H∥2 against its time derivative. (a) shows a stable steady
state. (b) shows a time periodic solution. (c) shows a quasi-periodic solution. (d) shows a
non-periodic solution. (e) shows the case where the solution blows up.
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the stability boundary, the slower the decay to the steady state.

Subfigure (b) shows a time periodic solution, which can be seen by the phase plot

being a closed loop. In this case, we find that the time it takes to go between the peaks of

∥h∥2 is equal to the time it takes a wave to travel one period. These occur for parameters

that roughly match those for one unstable mode in figure 4.10.

Figure 4.11(c) shows a quasi-periodic wave. The phase plot here is still a closed loop,

however it now has a much more complicated path. While there is the usual oscillation

in the ∥H∥2, from the fluid traversing a period, there is also a much slower secondary

oscillation. In this case, we have the faster oscillation with a time period of 12.2 time

units. The slower oscillation takes 146 time units.

Subfigure (d) shows a non-periodic solution, as there seems to be no coherent structure

in either plot. Subfigure (e) shows a case where the solution blows up, as here the wave

undergoes sharp steepening which causes the solver to no longer conserve mass. Similar

behaviour is experienced when modelling the Benney equation (1.2) for large Reynold’s

numbers (Craster and Matar, 2009). Here the blow up occurs for large δ, typically with

longer wavelengths. If we increase δ then blow up will occur at shorter wavelengths. This

probably occurs due to the large nonlinearity, of h3 and h6 terms. Here we have the fluid

creating a peak which just keeps growing.

4.5.2 Time periodic waves

Here we wish to look at how time periodic plots evolve over one period. For this, we will

look at walls with different amplitudes and wavelengths. Figure 4.12 shows how the fluid

thickness evolves over a period. In all these figures, the grey lines show the fluid thickness

plotted every 0.1 time units. These show the path of the thickest part and thinnest part

of the fluid. Interestingly, for all of these cases, the paths follow the shape of the steady

state fluid thickness. Taking the mean of the fluid thickness over this period results in the

steady state fluid thickness.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 4.12: Fluid thickness for different shaped walls over a period for time periodic
waves. (a)-(c) have a wavelength of 2π (d) has 1.73π (e) has 3π and (f) has 4π. (a) has
amplitude 0.1, (b), (d) and (e) have amplitude 1 and (c) and (f) have amplitude 3. The
grey lines show the fluid thickness every 0.1 time units. The fluid thicknesses with the
maximum and minimum ∥H∥ are shown, as well as the steady state fluid thickness.

Looking at subfigures (a), (b) and (c) we can compare the results for a wavelength of

2π. Here (a) has amplitude 0.1, (b) has amplitude 1 and (c) has amplitude 3. We see that

increasing the amplitude the band around the steady state decreases in size. Increasing

the amplitude also slows down the wave, with the time taken to traverse a period taking

t = 6.1, 6.3 and 7.3 time units for δ = 0.1, 1 and 3 respectively. Subfigures (b), (d) and

(e) all have amplitude 1 and so can be used to compare the different wavelengths. (d) has

wavelength 1.73π and is close to the steady state boundary, (b) has wavelength L = 2π and

(e) has wavelength 3π. Increasing the wavelength seems to introduce smaller secondary

waves in the fluid thickness. Here, the band around the steady state is largest for the

L = 2π case. The waves travel at speeds 1.009, 1.007 and 1.0210 for L = 1.73π, 2π, 3π.

(f) shows the case where δ = 3 and L = 4π. This case is still time periodic, however, for

δ = 1 we have a quasi-periodic solution. With both the δ = 3π cases, we see that the
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wave travels with 2 peaks, one around the wall maximum and the other around the wall

minimum. This still matches the shape of the steady state. For the L = 4π case we see

that the wave shows the nonlinearity with it having a fairly flat maximum in the minimum

∥H∥2. The wave speed for (c) is 0.865, where the wave speed for (f) is 0.889, suggesting

there isn’t a clear relationship between wave speed and wavelength.

Figure 4.13 shows the fluid thickness in a frame of reference that moves at the mean

speed of the wave c. Here we can further see the difference between time periodic, quasi-

periodic and non-periodic waves. In these figures, the maximum fluid thickness is yellow,

(a) (b) (c)

Figure 4.13: Colour plots that show the fluid thickness moving in a frame that travels at
the mean wave speed. (a) shows a time periodic wave, (b) shows a quasi periodic wave
and (c) shows a chaotic wave.

and the minimum thickness is the deepest blue. The maximum thickness oscillates in

size over a period, as can be seen by the changing intensity of yellow. In these cases, one

ripple is equivalent to the fluid travelling a period. Figure (a) shows the time periodic

wave which can be seen by the maximum peak not oscillating in space. Figure (b) is a

quasiperiodic wave as we can see the maximum peak oscillates in space, with the wave

travelling at a slower speed than the mean for around 130 time units and then speeding

up for 20 time units. Figure (c) has 3 peaks that seem to travel around the mean speed,

slowing down and speeding up with no regularity.
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4.6 Conclusions

In this chapter, we have looked at gravity driven thin flow down a cylinder with topography.

We have derived an evolution equation for the film thickness, which incorporates inertial

and capillary forces. The difference between this equation and that of chapter 3 is that

here the Bond number is O(ϵ2). From this equation, we have looked at the steady states

that arise. Like in chapter 3 L = 2πR is an important wavelength for determining the

shape of the steady states. However, in this case the key wavelength is slightly less than

2πR as it is shifted left by the effects of inertia. Similar to the findings of chapter 3, the

amplitude of the fluid disturbance is again generally larger for wavelengths of L < 2π

than those with L > 2π. The phase shift here however decreases from θ = 3π
2
to π as L

increases to 2πR, where in chapter 3, the phase shift increases from π to 3π
2
. Similarly,

for L > 2π the phase shift decreases from π, before increasing and tending to π as the

wavelength increases. In chapter 3 the phase shift increased from π
2
before decreasing and

tending back towards π
2
. This is due to the extra wall term in equation (4.29) compared

to equation (3.13).

Additionally, we have two extra parameters Re, ϵ to vary here. We looked at the effect

of changing the wall amplitude, Reynolds number, Bond number and radius had on the

steady states. Here we found that the Reynolds number didn’t have much of an effect.

Focusing on changing the wall wavelength and amplitude, we performed Floquet analysis

to determine the stability of the steady states. For the smooth cylinder case, we found that

the neutral stability curve was at k =
√

1
R2 +

2
5
BoRe, where increasing the amplitude

helps stabilise the steady state. Here the inertia plays a key role in stabilising the fluid,

and without it the neutral stability curve is at L = 2πR as in chapter 3.

We then looked into numerically integrating the equation. Here again we found that

the Floquet analysis provided a good prediction for the type of solution that occurs. We

found that the stable cases settled into the steady states. Our solutions settled into time

periodic, quasi-periodic and chaotic waves as more unstable modes appeared. In the large

amplitude case, we found the numerical solution blows up. Taking a time average of the
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numerical solutions, we again found that they approximated the steady state.
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Chapter 5

Deposition

5.1 Introduction

Deposition is an important geological process shaping the world around us. Stalactites

grow as a result of calcite being deposited on the surface from a supersaturated liquid film.

The precipitation of calcite from this film is studied by Plummer et al. (1978); Buhmann

and Dreybrodt (1985); Kaufmann and Dreybrodt (2007). Short et al. (2005b,a) made use

of the deposition to model the shape of stalactites.

In this chapter, we will look into how crenulations on the surface of stalactites form.

Previous works looking into the growth of crenulations include Camporeale and Ridolfi

(2012); Vesipa et al. (2015); Camporeale (2017), however in these works they approximate

the fluid to be flowing down an inclined plane, instead of down a cylinder, which better

approximates the shape of stalactites. Here we will look to rectify this by using flow down

cylinders, as derived in chapters 3 and 4.
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5.2 Underlying Chemistry

5.2.1 Chemical reactions

In this chapter we will be looking at the chemicals listed in table 5.1.

Symbol Name

Ca2+ calcium

CaCO3 calcium carbonate or calcite

CO2 carbon dioxide

CO3
2– carbonate

H+ hydrogen

HCO3
– bicarbonate

H2CO3
0 carbonic acid

H2O water

OH– hydroxide

Table 5.1: Names of chemicals and their symbols.

Stalactites grow when the calcite, which is supersaturated in the fluid, is deposited

onto the surface as carbon dioxide is degassed due to lower carbon dioxide pressure in the

cave’s air. The stoichiometry of the reaction is given by

Ca2+ + 2HCO3
− −−⇀↽−− CaCO3 + CO2 +H2O (5.1)

which tells us that one calcium ion and two bicarbonate ions react to become calcium

carbonate, carbon dioxide and water (Kaufmann and Dreybrodt, 2007). Note that this

reaction is reversible, and the other direction occurs when the calcite is dissolved by the

rain water initially. Calcite is produced as a result of of several reactions which occur
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simultaneously (Plummer et al., 1978), these are

Ca2+ +HCO3
− κ̂1−−⇀↽−−

κ1

CaCO3 +H+ (5.2)

Ca2+ + 2HCO3
− κ̂2−−⇀↽−−

κ2

CaCO3 +H2CO3
0 (5.3)

Ca2+ +HCO3
− +OH− κ̂3−−⇀↽−−

κ3

CaCO3 +H2O (5.4)

where κi are the rate constants for the dissolution reactions and κ̂i are the rate constants

for the precipitation reactions. The neutrally charged carbonic acid, from equation (5.3),

will quickly reach an equilibrium by dissociating into hydrogen and bicarbonate ions.

H2CO3
0 K5−−⇀↽−− H+ +HCO3

− (5.5)

where K5 is the equilibrium constant. In this section rate constants will be lowercase, and

equilibrium constants, for instantaneous reactions, will be upper case.

From these equations Plummer et al. (1978) formulated what is known as the PWP

equation for calcite dissolution

F̃ = κ1(H
+) + κ2(H2CO3

∗) + κ3 − κ4(Ca
2+)(HCO3

−) (5.6)

where F̃ is the rate of calcite dissolution in mol/(cm2s). The round brackets denote the

activities of the chemicals. The activities are related to the concentration through an ion

activity coefficient γi, where chemical Xi has activity (Xi) = γi[Xi], with square brackets

denoting the concentration. κ4 is derived from the backwards rate constants of (5.2)-(5.4).

κ4 = κ̂1 + κ̂2(HCO3−) + κ̂3(OH−) (5.7)

The rate constants depend on the temperature of the reaction and can be found in table

5.2.

As mineral surfaces slightly inhibit precipitation onto them, Dreybrodt (1999) modified
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the PWP equation to be used for precipitation. They found that the rate of precipitation

was

F̃ = κ1(H
+) + κ2(H2CO3

∗) + κ3 − fκ4(Ca
2+)(HCO3

−), (5.8)

where experiments found f to be a factor of about 0.8. As we are now looking at

precipitation we expect F in this case to be negative.

Precipitation occurs when there is a low carbon dioxide pressure, in waters with a

pH=8-10 (Dreybrodt, 2012). These conditions mean that (5.4) is the dominant reaction,

with the effects of (5.2) and (5.3) being small. We can therefore approximate the modified

PWP equation (5.8) as

F̃ = κ3 − fκ̂3(OH−)(Ca2+)(HCO3
−). (5.9)

Vesipa et al. (2015) reduces the PWP equation (5.6) further by making use of the

electro-neutrality condition

2 [Ca2+] + [H+] = [HCO3
−] + 2 [CO3

2−] + [OH−]. (5.10)

There they note in typical karst waters that only the calcium and bicarbonate concentrations

are significant, so 2 [Ca2+] –– [HCO3
– ].

This gives them a calcite flux of

F̃ = ϱ0 + ϱ1[Ca
2+] + ϱ2[CO2] + ϱ3[Ca

2+]2 (5.11)

for some constants ϱi. This calcite flux modifies the wall of the stalactite through the

relation

R̃t̃ + η̃t̃ = −ρcF̃ , (5.12)

where ρc is the molar volume of calcite (Vesipa et al., 2015). We have a negative sign
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here, as F̃ is the rate of change of calcium ions in solution. As the calcium is reacting to

make calcite F̃ < 0 and therefore the wall is growing. The growth of the wall here is split

into the growth of the radius and the growth of the wall perturbation, where the mean

calcite flux increases the radius, and the difference from the mean gives the growth of the

crenulations. In Vesipa et al. (2015) the mean flux was set to 0 as there it is related to a

slow translation of the wall, which has no effect on the fluid dynamics. Here however, as

the mean flux causes the radius to grow, this will in turn affect the mean fluid thickness

as well as the shape of the fluid disturbance.

5.2.2 Chemical transport

The precipitation of calcite is driven by the carbon dioxide pressure in the atmosphere.

The transport of the chemicals is described by the convection-diffusion-reaction equations

(Dreybrodt, 2012; Buhmann and Dreybrodt, 1985). We use these to describe the transport

of calcium and carbon dioxide within the fluid layer.

∂c̃i
∂t

+ ũ · ∇̃c̃i = Di∇̃
2
c̃i + q̃i, (5.13)

where c̃i denotes the concentration, with the subscripts i = 1, 2 referring to calcium and

carbon dioxide respectively. Here ũ is the velocity of the fluid, Di denotes the diffusion

coefficients and q̃i is the reaction rate.

We also have boundary conditions, which are based on Fick’s first law of diffusion (Fick,

1855). This tells us that the flux of calcium at the wall is F, which can be calculated from

the PWP equation (5.8). We have no calcium ions leaving the fluid, and therefore the flux

at the fluid-air interface is 0. For every mole of calcium deposited, we must also have a

mole of carbon dioxide outgassed. The number of moles can be calculated by multiplying

the flux by the surface area of the boundary that is crossed. As we are on a cylinder,

the surface area of the fluid-air interface is larger than the surface area of the stalactite.
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Overall we find

(R̃ + η̃)F̃ = −(R̃ + η̃ + h̃)F̃CO2 (5.14)

We also have no flux of carbon dioxide at the wall. Finally, the carbon dioxide at the

fluid-air interface must be proportional to that of the atmospheric carbon dioxide. This is

known as Henry’s law. These boundary conditions are written as

−D1
∂c̃1
∂r̃

∣∣∣∣
R̃+η̃

= F̃ (5.15)

−D2
∂c̃2
∂r̃

∣∣∣∣
R̃+η̃

= 0 (5.16)

−D1
∂c̃1
∂r̃

∣∣∣∣
S̃

= 0 (5.17)

−D2
∂c̃2
∂r̃

∣∣∣∣
S̃

= F̃CO2 (5.18)

c̃2(S̃) = H[CO2]atm (5.19)

where H is Henry’s constant and [CO2]atm is the atmospheric concentration of carbon

dioxide. As there are five boundary conditions for two second order differential equations,

the flux of carbon dioxide across the fluid air interface can be used to calculate the calcite

flux. The wall evolution equation (5.12) comes about as the wall must grow at a speed

proportional to the rate at which calcite is deposited.

For this problem, the conversion of carbon dioxide to bicarbonate is the rate limiting

process (Kaufmann and Dreybrodt, 2007). Here the key reactions are

CO2 +H2O
k+1−−⇀↽−−
k−1

H2CO3
0 K5−−⇀↽−− H+ +HCO3

− (5.20)

CO2 +OH− k+2−−⇀↽−−
k−2

HCO3
−. (5.21)

The second part of (5.20) is an instantaneous reaction, so here K5 denotes the equilibrium

constant (Dreybrodt, 2012). The other chemical reactions of the system (5.2)-(5.4) can be

assumed to be in equilibrium, as they occur much faster than the reactions (5.20)-(5.21)
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(Buhmann and Dreybrodt, 1985). Therefore, the reaction rate for calcium is

q̃1 = 0 (5.22)

and the reaction rate for carbon dioxide is

q̃2 = k−[HCO3
−]− k+c̃2 (5.23)

where the rate constants are defined by

k− = ka[H
+] + k−2 (5.24)

k+ = k+1 + k+2[OH−] (5.25)

and here ka = γH+γHCO3
−
k−1

K5
. These rate constants are derived from laboratory experiments

and have been listed in table 5.2.

Parameter Value Unit of Constant

log10 k+1 330− 111 log10 T − 17300/T s−1

log10 k−1 13.6− 3620/T s−1

log10 k+2 13.6− 2900/T l(mol s)−1

log10 k−2 14.0− 5310/T s−1

log10K2 5150/T − 564000T−2 − 0.0325T + 38.9 log10 T − 108 mol l−1

log10KW 22.8− 4790/T − 0.0104T − 7.13 log10 T mol2 l−2

log10H 108− 6920/T + 0.0199T − 40.5 log10(T ) + 669000T−2 mol/(l atm)

K5 1.71× 10−4 mol l−1

log10 κ1 0.198− 444/T cm s−1

log10 κ2 2.84− 2180/T cm s−1

log10 κ3 −5.86− 317/T mmol cm−2s−1

Table 5.2: Rate and equilibrium constants. Here T is the temperature in Kelvin (Kaufmann
and Dreybrodt, 2007; Buhmann and Dreybrodt, 1985).
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Cave temperatures stay fairly constant, with daily and seasonal oscillations of outside

temperature largely dampened (Smithson, 1991; Bourges et al., 2006). The temperature

in Poole’s Cavern, Buxton, UK being 6− 7◦C (Smithson, 1991), and the temperature in

Orgnac’s cave ranging from 10− 12◦C (Bourges et al., 2006). An appropriate temperature

for the rate constants therefore would be 285K. Table 5.3 shows the values of the rate

constants at this temperature.

Rate Constant value

k+1 8.15× 10−3 s−1

k−1 7.36 s−1

k+2 0.930 l(mol s)−1

k−2 2.92× 10−5 s−1

ka 4.31× 103 l(mol s)−1

K2 3.43× 10−11 mol l−1

Kw 3.48× 10−15 mol2 l−2

Table 5.3: Rate constants for conversion of carbon dioxide to bicarbonate at 285 K.

For this problem we are losing carbon dioxide to the atmosphere, so in order for the

overall reaction (5.1) to return to equilibrium, more carbon dioxide must be produced.

This also creates calcium carbonate, which is precipitated. From equation (5.23) we can

calculate the rate at which carbon dioxide is produced for different pH, partial pressure of

carbon dioxide and calcium concentration. The pH tells us the concentration of hydrogen

ions by the formula

pH = − log10([H
+]). (5.26)

The carbon dioxide concentration can be approximated from the partial pressure using

Henry’s law

[CO2] = HpCO2 , (5.27)

To find the bicarbonate concentration, we make use of the electro-neutrality condition

(5.10). Here we also make use of the conversion of carbonate to bicarbonate, which as a
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faster reaction than (5.20), (5.21) will be in equilibrium. The concentrations are related

by

[H+][CO3
2−] = K2[HCO3

−] (5.28)

with K2 the equilibrium constant. We can also eliminate hydroxide ions by making use of

the equilibrium constant of water [H+][OH−] = Kw. Using these equations we can write

bicarbonate in terms of calcium and hydrogen ions

[HCO3
−] =

1

[H+] + 2K2

(
2 [Ca2+][H+] + [H+]2 −Kw

)
. (5.29)

This expression is used by Short et al. (2005b) to find the reaction rate of carbon dioxide

and hence the growth rate at different pH. Vesipa et al. (2015) further simplifies the

expression for bicarbonate by considering the equilibrium constant for calcite

[Ca2+][CO3−] = KC. (5.30)

From this Vesipa et al. (2015) approximates the bicarbonate as

[HCO3
−] = α1[Ca

2+] + α2 (5.31)

for constants αi. The water in caves is typically slightly alkaline, with pH 7-9 (Sasowsky

and Dalton, 2005; White, 1976). Figure 5.1, shows the rate constants for the carbon dioxide

produced as seen in equation (5.23). Here we see that for our typical cave temperature of

12◦C, the rates are about 1.5 times smaller than at 20◦C as used by Short et al. (2005b).

We also see that at pH 8 k+ = 1× 10−2 is much larger than k− = 2× 10−4. This means we

need to have significantly more bicarbonate, and therefore also more calcium, than carbon

dioxide in order for the reaction to produce carbon dioxide.

Partial pressures of carbon dioxide in soils, which influences the partial pressure in the

cave water, vary seasonally. Typical values of the partial pressure are between 10−3 − 10−1

atm, with the higher values occurring in tropical regions during the summer (Fairchild
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Figure 5.1: Values for the rates k+ and k− for different pH, at temperatures of 12◦C and
20◦C.

et al., 2012). The carbon dioxide pressure in caves is similar to that of the atmosphere

at around 5× 10−4 atm, however in poorly ventilated caves this can reach up to 6% atm

(Ford and Williams, 2013). In order for calcite to be deposited, we require the soil partial

pressure to be bigger than that of the cave. Calcium concentrations in cave waters were

found to be 100-200 mg/L in caves in Grotte de Villars, France (Baker et al., 2000; Pitty,

1971). The atomic mass of calcium is 40g/mol, making the molar calcium concentration

to be 2.5-5 mmol/L. This is within the range that Buhmann and Dreybrodt (1985) used

experimentally.

Figure 5.2 shows the rate at which CO2 is produced as a function of the partial pressure.

Here we have used pH = 8, and a temperature of 12◦C, with calcium concentrations of 2

and 5 mol/m3. We can see that by increasing pCO2 , the rate at which CO2 is produced

decreases. For large enough partial pressures, the rate becomes negative, at which point

the reaction is reversed and therefore calcium will be dissolved instead of precipitated.

These higher partial pressures are what we may expect in soils, where we would expect

the calcium to be dissolved. We also see that for smaller initial calcium concentrations,

there is a smaller reaction rate. For smaller concentrations, we also start to dissolve more

calcium at lower partial pressures. Initially, the water in the soil will have a much smaller
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Figure 5.2: Rate at which carbon dioxide is produced dependent on the partial pressure
of Carbon dioxide. The rate was calculated from equation (5.23), where the bicarbonate
concentration is calculated using equation (5.29), at a temperature of 12◦C and a pH of 8.
This was done for initial calcium concentrations of 2 and 5 mol/m3.

calcium concentration. If it stays near the bedrock long enough to reach equilibrium, so

that the reaction rate will be 0, then if the pH, temperature and calcium concentration are

known, the pCO2 of the soil can be calculated. For a cave atmosphere with pCO2 = 1× 10−3

atm, we have a reaction rate of the order 10−3 mol m−3 s−1.

We will now scale equation (5.13) using the scaling derived in section 2.2.1. Here the

nondimensional coordinates are

r̃ = h̃0

(
R

ϵ
+ η(z) + r

)
(5.32)

z̃ = h̃0
z

ϵ
. (5.33)

The velocities are scaled by W =
gh̃2

0

ν
and the calcium concentration is scaled by the mean

calcium concentration c̃1 = C1c1. The carbon dioxide is scaled by the partial pressure

c̃2 = C2c2 where C2 = HpCO2 . The calcite flux is F̃ = h̃0

τρc
F , where τ is the time it takes

to deposit a layer of calcite of thickness equivalent to that of the fluid. We also seek

an equilibrium solution, so the partial time derivative will be zero (Short et al., 2005b).
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Equation (5.13) becomes

ϵPe1

(
(u− ηzw)

∂c1
∂r

+ w
∂c1
∂z

)
=

(
∂2c1
∂r2

+
ϵ

R

∂c1
∂r

)
+O(ϵ2) (5.34)

ϵPe2

(
(u− ηzw)

∂c2
∂r

+ w
∂c2
∂z

)
=

(
∂2c2
∂r2

+
ϵ

R

∂c2
∂r

)
+ κc(ϕ− c2) +O(ϵ2) (5.35)

where Pei =
h̃0W
Di

=
h̃3
0g

νDi
is the Péclet number. κc =

k+h̃2
0

D2
and ϕ = k−[HCO3

−]
k+C2 . The boundary

conditions (5.15)-(5.19) become

ξ1
∂c1
∂r

∣∣∣∣
0

= −F (5.36)

∂c2
∂r

∣∣∣∣
0

= 0 (5.37)

∂c1
∂r

∣∣∣∣
h

= 0 (5.38)

ξ2
∂c2
∂r

∣∣∣∣
h

= −
(
1− ϵh

R

)
F (5.39)

c2(h) = 1 (5.40)

where ξi =
DiCiτρc

h̃2
0

. Finally we also have the growth rate of the stalactite from equation

(5.12)

Rt

ϵ
+ ηt = F. (5.41)

For pH = 8, T = 12◦C, the bicarbonate concentration is approximately twice the

calcium concentration, so we consider ϕ = αc1 with α = 2k−C1
k+C2 . For a partial pressure of

carbon dioxide pCO2=10−3 atm and calcium concentration [Ca] = 2 mol m−3 we find that

mean(ϕ) ∼ 3c2, meaning that carbon dioxide is being produced by this reaction. Here,

the diffusion coefficient for calcium at 12◦C is 0.9× 10−9 m2/s. At this temperature, the

diffusion coefficient for carbon dioxide is 1.3× 10−9 m2/s (Buhmann and Dreybrodt, 1985).

For a fluid thickness of 10−5 m we find that the Péclet number Pe2 = 7.5 and

κc = 7.7 × 10−4, which means κc = O(ϵ). ξ1 = 1.8 × 104 so ξ1 = O(ϵ−1) and ξ2 = 440.
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With a film of this size we are in regime 1 according to Dreybrodt (2012). In this regime,

diffusion is fast across the film layer and so all chemicals are effectively constant in

the radial direction. The carbon dioxide production is the rate limiting step, and the

precipitation rates are proportional to the fluid thickness.

Increasing the fluid thickness slightly to 5× 10−5m, we are in regime 2 of Dreybrodt

(2012). The lower boundary for the thickness may be slightly less than 5× 10−5m to be in

regime 2 here, as we are using a lower temperature. In regime 2, the precipitation rate

depends on both the diffusion and the carbon dioxide production. We can see this from

the reaction diffusion equation as now Pe2 = 4 × 103 = O(ϵ−1) and κc = 0.02 = O(1).

ξ1 = 720 and ξ2 = 18.

Note while the temperature, pH, calcium concentration and pressure of carbon dioxide

can also affect the growth rate, we will primarily focus on the effects of the radius R̃ and

the flow rate Q. From these parameter the mean fluid thickness can be calculated using

equation (2.4). Unless specified, we will use pH = 8, T = 12◦C, [Ca] = 5 mol m−3 and

pCO2=10−3 atm in the rest of this chapter.

5.3 Linear Stability Analysis

In order to see under what conditions crenulations form, we start by considering a

perfectly smooth cylinder. From this, we consider a small perturbation from the wall. If

this perturbation grows in time, then this tells us that crenulations should form. The

perturbation with the fastest growing wavelength tells us the wavelength that we would

expect the crenulations to have. For the hydrodynamics, we will be using the equations of

chapter 4. By also including the Reynolds number and ϵ, we better capture the effect of

the flow rate on the fluid thickness.

In the smooth cylinder case, there is no z dependence. As seen in chapter 4, the

smooth cylinder fluid thickness is h0 = 1. We can calculate the velocities from (4.10),
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(4.12), (4.17), (4.19), resulting in

w0 = r − r2

2
+

ϵ

6R

(
r3 − 3r2 + 3r

)
(5.42)

u0 = 0. (5.43)

Here we still have a base calcium c10 and carbon dioxide c20 concentration in the water.

This will lead to a base calcite flux F0. Adding a perturbation to the wall of amplitude

δ ≪ 1 results in a disturbance to the fluid thickness of the same order. We will also

consider that the velocities, carbon dioxide and calcium and therefore also the calcite flux

to be perturbed similarly. Now the variables can be written as

η = δeikz−ωt (5.44)

h = 1 + δh1e
ikz−ωt (5.45)

w = w0(r) + δw1(r)e
ikz−ωt (5.46)

u = δu1(r)e
ikz−ωt (5.47)

c1 = c10(r) + δc11(r)e
ikz−ωt (5.48)

c2 = c20(r) + δc21(r)e
ikz−ωt (5.49)

F = F0 + δF1e
ikz−ωt. (5.50)

For the bicarbonate we will use the approximation from equation (5.31). Looking at

equation (5.34) at leading order in δ, we find

∂2c10
∂r2

+
ϵ

R

∂c10
∂r

= 0. (5.51)

The boundary conditions (5.36), (5.38) give

ξ1c
′
10(0) = −F (5.52)

c′10(1) = 0. (5.53)
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The flux at the fluid-air interface (5.53) gives us that the leading order calcium is a

constant. As we scaled the calcium using its mean, this tells us that c10 = 1. This however

would result in the flux at the wall from equation (5.52) also being 0, suggesting this flux

is driven by smaller terms.

From equation (5.35) we find the leading order equation for the concentration of carbon

dioxide to be

∂2c20
∂r2

+
ϵ

R

∂c20
∂r

+ κc(α− c20) = 0 (5.54)

where α = α1 + α2. The boundary conditions (5.37), (5.40) at leading order are

c′20(0) = 0 (5.55)

c20(1) = 1. (5.56)

The carbon dioxide flux at the fluid-air interface (5.39) can be used to find the leading

order calcite flux

F0 = − R

R− ϵ
ξ2
∂c20
∂r

∣∣∣∣
1

. (5.57)

Substituting this into equation (5.41), we find the growth rate of the radius

Rt = ϵF0. (5.58)

At O(δ), equation (5.34) gives

∂2c11
∂r2

+
ϵ

R

∂c11
∂r

= ikϵPe1w0c11, (5.59)
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with boundary conditions (5.36), (5.38)

ξ1c
′
11(0) = −F1 (5.60)

c′11(1) = 0. (5.61)

The O(δ) carbon dioxide can be found from equation (5.35).

∂2c21
∂r2

+
1

R

∂c21
∂r

+ κc(α1c11 − c21) = ikϵPe2

(
(u1 − w0)

∂c20
∂r

+ w0c21

)
. (5.62)

The boundary conditions are again found from equations (5.37), (5.40)

c′21(0) = 0 (5.63)

c21(1) + h1c
′
20(1) = 0 (5.64)

The calcite flux perturbation is found from (5.39)

F1 = − R

R− ϵ

(
ξ2 (c

′
21(1) + h1c

′′
20(1))−

ϵh1F0

R

)
. (5.65)

Substituting into equation (5.41), we get the growth rate of the crenulations

ω = −F1 (5.66)

We solve equations (5.54)-(5.66) numerically using methods described in section 2.5.

Here we discretise r into 100 spatial points and use a second order finite difference for the

derivatives. We then use the MATLAB function fsolve to solve the system of equations.

Overall we want to calculate the growth rate ω from equation (5.66). Writing ω =

−σ + ikc, where σ is the real part of ω and kc is the imaginary part, we find that the

perturbation will grow if σ > 0. This perturbation has a wave speed of c, which will

determine whether the crenulations should travel upstream (c < 0) or downstream c > 0.

Another important quantity is the wavelength which achieves the largest growth rate. As
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this disturbance grows faster than all the others, it tells us the wavelength which we would

expect our crenulations to have.

(a)

(c)

(b)

(d)

(e)

Figure 5.3: Growth of wall perturbation. (a) and (b) shows for which radius and wavelength
that the wall perturbation grows, highlighting the most unstable wavelength for a given
radius. (c) shows the speed at which the radius grows. (d) and (e) show the speed at
which the perturbation grows and also the speed at which it travels. (a) and (d) have a
flow rate of 10−9 m3/s. (b) and (e) have a flow rate of 5× 10−9 m3/s.

Figure 5.3 shows the growth of this wall perturbation for various radii and wavelengths.

Plots (a) and (b) are coloured in where the wall perturbation should grow and are white

where it does not. In both cases there is a region for smaller radii, where growth occurs,

however the most unstable wavelength in this region is much smaller than 10−3 m. In the

region where we expect growth, we find that the most unstable wavelength increases with

the radius. Figure (a) has a flow rate of Q = 1× 10−9 m3/s. Here we expect crenulations

to form for radii between 4 − 30 mm, however for radii larger than 30 mm we would
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not expect to have crenulations. In this case, our most unstable wavelength ranges from

3− 7 mm. Increasing the flow rate to 5× 10−9 m3/s, as seen in (b), we now experience

crenulations for radii of 2− 10 cm. Here, the most unstable wavelength ranges from 3− 5

mm. The regions where we see the most unstable wavelengths in (a) and (b) roughly

correspond to similar fluid thicknesses.

Figure (c) shows the speed at which the radius grows for these flow rates. Here it can

be seen that the radius grows at speeds of the order 10−12 m/s. This is similar to growth

rates reported in Short et al. (2005b), as 1 cm/century is 3.1× 10−12 m/s. Increasing the

radius decreases the speed at which it grows. As increasing the radius decreases the fluid

thickness, we see that this agrees with the leading order findings of Short et al. (2005b)

that thinner fluids result in slower growth. Figures (d) and (e) show the maximum growth

rate ω and the corresponding speed c for increasing radii. In both cases we have c < 0

suggesting that the wall perturbations travel upstream. This agrees with observations

and results from Camporeale (2017). In both cases, the speed is around O(10−14 − 10−12)

m/s. The growth rate and the wave speed both decrease in magnitude for larger radii.

These growth rates will also be multiplied by our small wall amplitude δ, showing that

the growth of the wall perturbation is substantially slower than that of the radius.

(a) (b)

Figure 5.4: Growth of wall perturbation for different flow rates and wavelengths. (a) has a
radius of 5 mm and (b) has a radius of 5 cm.

Figure 5.4 looks at how the growth rate changes with the flow rate Q. Here we see

there is a region for larger Q where growth occurs, however the most unstable wavelength
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is much smaller than we would expect. Subfigure (a) has a radius of 5 mm. Here we see

the expected growth for Q between 3.5 × 10−10 − 1.5 × 10−9 m3/s. The most unstable

wavelength decreases from 5-3 mm. The growth rate of the most unstable mode increases

with the flow rate up to 1.1× 10−8 m3/s. In comparison, figure (b) has a radius of 5 cm.

Now, the ideal region is between Q = 1× 10−9 − 1× 10−8 m3/s. Here, the most unstable

wavelength decreases from 8-3 mm. There is also a small region with Q = 1× 10−10 m3/s

that has a wavelength of 8 mm. Again, the growth rate increases with Q. Here the fluid

thickness increases as Q increases, but also increases as R decreases.

From figures 5.3 and 5.4 and equation (2.4), we effectively see that increasing the fluid

thickness causes the most unstable wavelength to decrease. This is contradictory to results

found in Vesipa et al. (2015); Camporeale (2017), where they find increasing the fluid

thickness (by making use of the Reynolds number) should increase the wavelength. This

could be the result of the different geometries of our models.

5.4 Wall Evolution Models

While the linear stability analysis will tell us under which conditions the crenulations form,

it is also useful to know how the crenulations grow when their amplitude is no longer small

compared to the fluid thickness. This is important for larger radii stalactites, where the

crenulations should have already developed. In order to do this, we will attempt to model

the wall evolution more fully.

5.4.1 Regime 1 - Thin fluid

In regime 1 looking at equations (5.34) and (5.35) to leading order we find

∂2ci
∂r2

= 0 (5.67)
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for both calcium and carbon dioxide. The no flux conditions at the fluid-air (5.38) and

fluid-solid interfaces (5.37) respectively mean that, the concentrations are just constants

at leading order. These constants are set to 1 as these have been scaled by the mean

concentrations Ci. We expand the concentrations to first order in ϵ by setting

c1 = 1 + ϵχ (5.68)

c2 = 1 + ϵψ (5.69)

At O(ϵ) the calcium equation is

χrr = 0 (5.70)

with the fluid-air no flux condition (5.38), this means that the calcium is still constant.

Again as this has been scaled by C1, we can set this flux to be 0. At O(ϵ) the carbon

dioxide equation is forced by the leading order calcium and carbon dioxide, with equation

(5.35) becoming

∂2ψ

∂r2
+ κc(ϕ0 − 1) = 0 (5.71)

where ϕ0 is a constant that depends on the leading order calcium. This can be calculated

from equation (5.29). The boundary conditions here are ψr(0) = 0 and ψ(h) = 0. This

results in

ψ = κc(1− ϕ0)

(
r2 − h2

2

)
. (5.72)

The calcite flux can be found from looking at equation (5.39) at leading order, which

results in

F = ξ2κc(ϕ0 − 1)h (5.73)
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This results in the wall evolution being

ηt = γh (5.74)

for a positive constant γ. This evolution equation was also used by Bertagni and Camporeale

(2017); Ledda et al. (2021). The growth of the wall is very slow, with γ ∼ 10−7 (Bertagni

and Camporeale, 2017). We therefore rescale our time τ = γt so that we have

ητ = h (5.75)

As the fluid has mean thickness 1 this suggests that the crenulations are always growing.

Really the mean fluid thickness grows the radius of the stalactites. The crenulation growth

is therefore the result of the difference from the mean fluid thickness. This means that our

wall growth is

Rτ = ϵ (5.76)

ητ = h− 1. (5.77)

From chapters 3 and 4, we know that the fluid thickness depends on the wall shape.

Due to the different timescales, we will use the wall at each time step to calculate the fluid

thickness. As shown in chapters 3 and 4, the steady state fluid thicknesses are similar to

the time averaged fluid thicknesses, and therefore we will use the steady state thicknesses

to ease the computation.

If we are to maintain the same flow rate, the increasing radius would result in a thinning

fluid thickness. This would in turn slow down the growth of the radius. However, we will

for now ignore this effect by making sure we only integrate up to τ = τT where τT ≪ 1
ϵ

so that the radial growth is small. From the linear stability analysis, we found the most

unstable wavelength. While the wavelength may evolve with time, we would expect the

wavelength to change at slower speeds similar to the radius.
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Small amplitude sinusoidal crenulations

For the cases where we had a small amplitude wall of the form

η(z) = δ cos kz, (5.78)

we showed in chapter 3 and 4 that the fluid thickness was of the form (3.17)-(3.19) and

(4.53)-(4.55). This means that

h− 1 = B cos(kz − θ). (5.79)

If we have the wall amplitude and phase shift changing in time, so

η(z, τ) = A(τ) cos(kz − φ(τ)). (5.80)

If we let ζ = z − φ
k
, then from equations (3.17), (4.53), we expect the difference from the

fluid thickness mean to take the form

h− 1 = B(τ) cos(kζ − θ(τ)). (5.81)

Therefore from equation (5.77), we can find that the amplitude evolves like

Aτ = B cos θ (5.82)

and the phase shift evolves as

φτ =
B

A
sin θ. (5.83)

The crenulations will grow if Aτ > 0 and shrink if Aτ < 0. Noting that the amplitudes

A,B > 0, this means that if the phase shift between the wall and the fluid disturbance is

θ < π
2
or θ > 3π

2
we would expect the crenulations to grow, and the crenulations should
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shrink if π
2
< θ < 3π

2
. On the boundaries of these inequalities at θ = π

2
, 3π

2
, the amplitude

of crenulations will remain constant. φ is the phase shift between the old and new wall. If

0 < θ < π then φτ > 0 and so, the crenulations move downstream. The crenulations move

upstream for π < θ < 2π. Here at θ = 0, π, the crenulations will stay in the same position.

For the small amplitude steady states in chapter 3, we found from equations (3.17)-

(3.19) that the phase shift between the crenulation and the fluid thickness had π
2
< θ < 3π

2
,

which suggests for all cases that the crenulations should shrink. We also have θ > π for

L < 2πR, suggesting that in these cases the crenulations move upstream. For L > 2πR

the crenulations would move downstream. The same is true for the fluid thickness in

chapter 4 as can be seen in figure 4.4. While this suggests that crenulations would be

smoothed out, the wall shape should introduce some z dependence in the concentrations

and therefore the wall growth may be better suited to Regime 2.

5.4.2 Regime 2

As discussed in section 5.2.2, a film thickness of 5×10−5 m results in regime 2 of Dreybrodt

(2012). The Péclet numbers in this case are large, roughly being O(ϵ−1). Therefore we

set Pi = ϵPei to more clearly see that the advection terms appear at leading order. In

order to numerically integrate equations (5.34) and (5.35) it also helps to rectangularise

the domain by letting

r̃ = h̃0

(
R

ϵ
+ η(z) + rh(z)

)
(5.84)

so now the fluid lies in the region between 0 and 1. Now our derivatives are

∂

∂r̃
=

1

h̃0h

∂

∂r
(5.85)

∂

∂z̃
=

ϵ

h̃0

(
∂

∂z
− 1

h
(rhz + ηz)

∂

∂r

)
. (5.86)
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From equations (5.34)-(5.35), we get the scaled diffusion reaction equations

P1

(
(u− (ηz + rhz)w)

h

∂c1
∂r

+ w
∂c1
∂z

)
=

1

h2
∂2c1
∂r2

(5.87)

P2

(
(u− (ηz + rhz)w)

h

∂c2
∂r

+ w
∂c2
∂z

)
=

1

h2
∂2c2
∂r2

+ κc(ϕ(c1)− c2). (5.88)

From the continuity equation (2.20) at leading order we find

u− (ηz + rhz)w = −
∫

∂

∂z
(hw) dr (5.89)

giving an alternative expression for the first terms of equations (5.87)-(5.88). The boundary

conditions are given by equations (5.15)-(5.19)

ξ1
∂c1
∂r

∣∣∣∣
0

= −hF (5.90)

∂c2
∂r

∣∣∣∣
0

= 0 (5.91)

∂c1
∂r

∣∣∣∣
1

= 0 (5.92)

ξ2
∂c2
∂r

∣∣∣∣
1

= −
(
1− ϵh

R

)
hF (5.93)

c2(1) = 1. (5.94)

We attempted to solve equations (5.87) - (5.40) numerically using the methods described

in section 2.5. To do this, z was split into 128 spatial steps, with the derivatives done

using the pseudo spectral method. r was split into 65 spatial steps, with the derivatives

done using second order central finite differences. The flux boundary conditions made

use of forward and backwards finite differences. Then the MATLAB function fsolve was

used to solve the system. In this scenario, no solution was found. A likely reason was

the matching of the calcite flux at the wall (5.15) with the carbon dioxide flux at the

air interface (5.18). The calcium flux may be driven by a boundary layer near the wall.

Buhmann and Dreybrodt (1985) shows the concentration levels of the different species

across the film. Their work shows that for fluids with thickness 0.05 cm the calcium
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concentration across the fluid remains effectively constant, where the carbon dioxide is

about 25% higher at the wall than at the air interface. Therefore, we will consider the

calcium to be constant.

Now we solve the carbon dioxide concentration numerically using equation (5.88), with

boundary conditions (5.91) and (5.94). The rate at which the wall will grow can then be

calculated from the flux of carbon dioxide across the fluid air interface (5.93). The growth

of the radius will be the calculated from the mean flux, and the growth of the perturbation

will be the difference from the mean flux.

F̃ = −ρcC2D2

h̃0h

∂c2
∂r

(5.95)

R̃t = F̄ (5.96)

η̃t = F̃ − F̄ (5.97)

where F̄ is the mean flux. Noting here, we have gone back to the dimensional variables to

see the actual growth values. The growth rates were calculated numerically for walls of

amplitude 1. From this, we found the wall growth to approximate a cosine. Therefore, if

our wall is of the form

η̃(z, t) = A(t) cos(kz − φ(t)) (5.98)

and the growth is of the form

η̃t = B(t) cos(kz − θ), (5.99)

then our growth rate is

At = B cos(θ − φ) (5.100)
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and the phase shift evolves as

φt =
B

A
sin(θ − φ). (5.101)

Physically the crenulations will grow if At > 0 and shrink if At < 0. φt > 0 means that

the crenulations would migrate downstream and φt < 0 causes an upstream migration.

Figure 5.5: Radii and wavelengths for which growth occurs. Here we have a wall amplitude
of δ = 1 and a flow rate Q = 1× 10−9 m3/s.

Figure 5.5 shows the radii and the wavelengths for which we expect the crenulations

to grow. Comparing this to the linear theory shown in figure 5.3(a) we see that the

crenulations allows for growth to occur for both larger radii and shorter and longer

wavelengths. The wavelengths that we expect vary between 3 mm and 2 cm. We see that

for larger radii, growth occurs for longer wavelengths.

A potential stalactite from the linear theory, with flow rate of 1 × 10−9m3/s would be

one that has a radius of 10 mm and a wavelength of 5 mm. Numerically solving the

growth of stalactites given by equations (5.95)-(5.97) is done in stages. At each time step,

a new radius and crenulation shape are found. These are then used to calculate the new
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Initial Radius 1 cm
Crenulation wavelength 5 mm

Initial Crenulation amplitude/fluid thickness 0.1
Flow rate 1× 10−9 m3/s

Calcium concentration 5 mol/m3

Pressure of carbon dioxide 1× 10−3 atm
Temperature 12◦C

pH 8

Table 5.4: Modelled Stalactite Parameters

mean fluid thickness. This allows us to then calculate the nondimensional ϵ, L,Bo,Re

and η, noting that here we scale the vertical length scale by R̃ and so R = 1. Using

these parameters, we then calculate the new steady state fluid thickness using equations

(4.29) and (4.34). Using this fluid thickness, we can then calculate the carbon dioxide

concentration using equations (5.88), (5.91) and (5.94). Which gives the new flux for

equations (5.95)-(5.97). Again, we have used MATLAB function ode15s to perform the

time-stepping.

From figure 5.5 we see that the wall growth is around 1×10−14, which is approximately

0.1 mm/century. The radius is expected to grow by 10 mm/century. As the fluid thickness

is around 0.01 mm thick, in a century the crenulation will grow ten times its size while

the radius only doubles. As our model requires the wall to be of an amplitude similar

to the fluid thickness, we will look to integrate the wall shape over a period of decades.

We modelled the stalactite to initially have the parameters shown in table 5.4. Time was

integrated in years and was stopped when the solver failed to find a steady state fluid

thickness.

Figure 5.6 shows the growth of the radius for our stalactite. From (a) we see that in 60

years it has grown by 2 mm. (b) shows that the speed of the radial growth decreases with

time. This is as expected, as increasing the radius decreases the fluid thickness, which

slows down the growth. This is however very slight, as the radius does not grow by much

in this time.

Figure 5.7 shows the growth of the crenulations for the modelled stalactite. From (a)
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(a) (b)

Figure 5.6: Growth of the radius for the modelled stalactite (a) shows the size of the
radius and (b) shows the speed at which it grows.

(a) (b)

Figure 5.7: Growth of the crenulation amplitude for the modelled stalactite (a) shows the
size of the amplitude and (b) shows the speed at which it grows.

we can see that the amplitude of the crenulation increases by 0.013 mm. From (b) we see

that the speed at which the crenulation grows increases in time. From the linear theory,

the growth rate of the crenulation depended on the amplitude, and we can see that (a)

and (b) are similar curves. Figure (b) is slightly flatter however, this is because the growth

rate decreases with the increased radius, due to the thinner film.

Figure 5.8 shows how the crenulation maximum migrates with time. The negative sign

tells us that the crenulation is migrating upstream. As here the wavelength was 5 mm, we

can see that the crenulation migrates a period in around 39 years.
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Figure 5.8: Migration of the crenulation peak.

5.5 Conclusion

In this chapter, we have looked at modelling the deposition of calcium on the surface of the

stalactite. As the rate limiting reaction for the process is the conversion of bicarbonate into

carbon dioxide, we have looked at how this affects the carbon dioxide concentration and

calcium concentrations. We performed linear stability analysis to determine for what flow

rates, radii, and wavelengths of crenulation, we would expect crenulations to form. Here

we found the fastest growing wavelength increased with an increasing radius. A simplified

model where the growth depended only on the fluid thickness was considered, however this

suggested that no growth should occur. As the wall shape should bring z dependence to

the carbon dioxide concentration, we derived a more involved model. For this, we decided

to use the hydrodynamics derived in chapter 4. For this model, we assumed the calcium

concentration was a constant. We looked again whether a crenulation of amplitude equal

to the fluid thickness would result in growth, and we found that growth did occur for larger

radii than the linear stability suggested. We then modelled an example stalactite with
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wavelength and radius suggested by the linear stability analysis. Here we found that the

radius grew proportionally to the fluid thickness and the crenulations grew proportionally

to their amplitude. We also found that the crenulations migrate upstream.
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Conclusion

In this thesis, we have looked at fluid flows that result from the cylinders that have a

sinusoidal surface that we expect from stalactites. Here, we have used a gradient expansion

technique to develop two fluid thickness evolution equations. These models are building

on models for thin film flow down a cylinder derived by Kalliadasis and Chang (1994);

Frenkel (1993) but now including a small amplitude disturbance to the wall. T

he first fluid evolution equation results from a large surface tension, where the flow

is driven as a result of a balance between the azimuthal and axial curvatures. From this

equation, we found that the ratio between the wavelength and the radius is an important

parameter, which controlled both the shape and stability of the steady states. We found

the steady states to be located just before the wall trough for L < 2πR and just after

the wall maximum for L > 2πR. The cases where L < 2πR generally lead to a larger

amplitude disturbance. We performed Floquet analysis to determine the stability of the

steady states. Here we found the cases where L < 2πR were stable and the cases with

L > 2πR unstable. For the flat wall case, additional unstable modes appeared every 2πR,

however increasing the amplitude in the wall made the additional unstable modes appear

at a longer wavelength. We then modelled the dynamics of this equation, where we found

the unstable cases developed into waves. Where there was only one unstable mode in

the Floquet analysis, we found that the solutions settled into time periodic waves. In the
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cases with multiple unstable modes, we found that we could get many different solutions

by changing the initial conditions. In these cases we could get periodic, quasi-periodic or

non-periodic solutions depending on the contributions from the unstable modes. Despite

the different possible solutions, we found that the time average of these solutions provided

a good approximation for the steady state. For larger amplitude walls, we also found a

special case, where the fluid appears to drip.

The second model for the hydrodynamics made use of a scaling to balance inertial

terms with the surface tension terms. This resulted in a Benney like equation for the fluid

thickness. Here the surface tension terms appeared at the same order as inertial terms, as

well as an additional shear from the cylindrical geometry. Steady states were found, where

again we found that for L < 2πR the fluid was thickest upstream of the wall minimum

and for L > 2πR the fluid was thickest downstream of the wall minimum. The exact

wavelength for this transition was actually slightly less, as it is deflected by ϵRe. As with

the first model, the amplitude of the fluid disturbance was larger for the L < 2πR cases.

The phase shift in this model differs from the first model, with now at L = 2πR and in

the long wavelength limit the phase shift is θ = π, where previously the phase shift was pi
2
.

Increasing the amplitude of the wall made the fluid disturbance appear more nonlinear,

with narrower and sometimes multiple peaks. We performed Floquet analysis to find the

stability of these steady states. Here we found that inertia had a stabilising effect, with

the critical wavenumber k0 =
√

1
R2 +

2
5
BoRe. Increasing the amplitude of the wall also

acted to stabilise the steady state. Again we simulated numerical solutions and found the

Floquet analysis generally provided a good insight to the dynamics. Where this analysis

suggested the steady state was stable, the solution oscillated down to the steady state.

Where there was one unstable mode, the fluid thickness formed a time periodic wave.

With more unstable modes, the solutions exhibited quasi-periodic and non-periodic waves.

The Floquet analysis was less accurate at predicting the dynamics for larger amplitudes.

Here, certain stable cases were forming time periodic solutions. However, the wavelength

where the first unstable solution occurred did increase with amplitude. In some cases, the

larger amplitude caused the solution to blow up. With the various dynamics exhibited, it
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was still found that the time average of the waves formed gave a good approximation for

the steady state.

Finally, we looked at modelling the evolution of the wall of the stalactite. To do this

we incorporated our second hydrodynamic model, as this model captures the effect of

the flow rate, and recovers the first model for small Bond numbers. As the time average

flows approximated the steady states, we used the steady state fluid thickness in the

model. The growth rate depends on the calcite flux. As the rate limiting reaction for

the process is the conversion of bicarbonate into carbon dioxide, we have looked at how

this affects the carbon dioxide concentration and calcium concentrations. We performed

linear stability analysis to determine for what size radii and flow rates we would expect

crenulations to form. We calculated the fastest growing wavelength to determine the

wavelength that we would expect crenulations to have. We found that this wavelength

increased with the radius of the fluid, but also decreased with the flow rate. This suggests

that this wavelength is linked to the fluid thickness, with thinner fluids resulting in longer

wavelengths. This is in contrast to the results found by Camporeale and Ridolfi (2012);

Vesipa et al. (2015); Camporeale (2017), where increasing the fluid thickness, through the

Reynolds number, results in longer wavelengths. This is perhaps a consequence of the

fluid flowing down a cylinder rather than a flat wall. We then looked at the growth rates

for when the crenulation had already formed. Here we found that the crenulation could

grow on larger radii than the linear stability suggested. This means that if the crenulation

forms with the radius growing, the crenulation will also continue to grow. Finally, we

modelled the growth of a stalactite starting with radius and wavelength suggested by the

linear theory. Here we saw the radius grow proportionally to the fluid thickness. The

crenulation grew proportionally to its amplitude, however this was also affected by the

decreasing fluid thickness. Here the crenulations migrate upstream, completing a period

over several decades. The upstream migration of crenulations agrees with observations

made on a stalactite from in Bossea Cave (Camporeale and Ridolfi, 2012).

Future work can look to improve the fluid dynamics model by also including the slope
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of the stalactite. As stalactites taper down to a tip, the model could be improved by

no longer assuming periodic boundary conditions and instead modelling the stalactite

as a whole. Work can also be down to improve the chemical models. Here it would be

beneficial to introduce a third reaction-diffusion equation for bicarbonate, to better capture

its dynamics. The problem can also be looked at with crenulations larger than the fluid

thickness, to see whether that would change the rate at which they grow. Finally it would

also be good to include the evolution of the radius and wavelength of the crenulations in

the model.
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